Chris Oswald
commited on
Commit
·
d004e7b
1
Parent(s):
5fa2de2
added parameter checking
Browse files
SPIDER.py
CHANGED
@@ -170,13 +170,15 @@ class SPIDER(datasets.GeneratorBasedBuilder):
|
|
170 |
def _generate_examples(
|
171 |
self,
|
172 |
paths_dict: Dict[str, str],
|
173 |
-
|
|
|
174 |
validate_share: float = 0.3,
|
175 |
test_share: float = 0.2,
|
176 |
raw_image: bool = True,
|
177 |
numeric_array: bool = True,
|
178 |
metadata: bool = True,
|
179 |
rad_gradings: bool = True,
|
|
|
180 |
) -> Tuple[str, Dict]:
|
181 |
"""
|
182 |
This method handles input defined in _split_generators to yield
|
@@ -185,6 +187,7 @@ class SPIDER(datasets.GeneratorBasedBuilder):
|
|
185 |
|
186 |
Args
|
187 |
paths_dict
|
|
|
188 |
split:
|
189 |
validate_share
|
190 |
test_share
|
@@ -194,24 +197,47 @@ class SPIDER(datasets.GeneratorBasedBuilder):
|
|
194 |
rad_gradings
|
195 |
|
196 |
Yields
|
197 |
-
|
198 |
"""
|
199 |
-
#
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
211 |
# Generate train/validate/test partitions of patient IDs
|
212 |
partition = np.random.choice(
|
213 |
['train', 'dev', 'test'],
|
214 |
-
p=[
|
215 |
size=N_PATIENTS,
|
216 |
)
|
217 |
patient_ids = (np.arange(N_PATIENTS) + 1)
|
@@ -270,12 +296,6 @@ class SPIDER(datasets.GeneratorBasedBuilder):
|
|
270 |
subset_ids = validate_ids
|
271 |
elif split == 'test':
|
272 |
subset_ids = test_ids
|
273 |
-
else:
|
274 |
-
subset_ids = None
|
275 |
-
raise ValueError( #TODO: move all parameter checking to beginning
|
276 |
-
f'Split argument "{split}" is not recognized. \
|
277 |
-
Please enter one of ["train", "validate", "test"]'
|
278 |
-
)
|
279 |
|
280 |
image_files = [
|
281 |
file for file in image_files
|
@@ -313,11 +333,14 @@ class SPIDER(datasets.GeneratorBasedBuilder):
|
|
313 |
# Extract overview data corresponding to image
|
314 |
image_overview = overview_dict[scan_id]
|
315 |
|
316 |
-
# Extract patient radiological gradings corresponding to
|
317 |
patient_grades_dict = {}
|
318 |
for item in grades_dict[patient_id]:
|
319 |
key = f'IVD{item["IVD label"]}'
|
320 |
-
value = {
|
|
|
|
|
|
|
321 |
patient_grades_dict[key] = value
|
322 |
|
323 |
# Prepare example return dict
|
|
|
170 |
def _generate_examples(
|
171 |
self,
|
172 |
paths_dict: Dict[str, str],
|
173 |
+
scan_types: List[str] = ['t1', 't2', 't2_SPACE'],
|
174 |
+
split: str = 'train',
|
175 |
validate_share: float = 0.3,
|
176 |
test_share: float = 0.2,
|
177 |
raw_image: bool = True,
|
178 |
numeric_array: bool = True,
|
179 |
metadata: bool = True,
|
180 |
rad_gradings: bool = True,
|
181 |
+
random_seed: int = 9999,
|
182 |
) -> Tuple[str, Dict]:
|
183 |
"""
|
184 |
This method handles input defined in _split_generators to yield
|
|
|
187 |
|
188 |
Args
|
189 |
paths_dict
|
190 |
+
scan_types:
|
191 |
split:
|
192 |
validate_share
|
193 |
test_share
|
|
|
197 |
rad_gradings
|
198 |
|
199 |
Yields
|
200 |
+
Tuple (unique patient-scan ID, dict of
|
201 |
"""
|
202 |
+
# Set constants
|
203 |
+
N_PATIENTS = 257
|
204 |
+
train_share = (1.0 - validate_share - test_share)
|
205 |
+
np.random.seed(int(random_seed))
|
206 |
+
|
207 |
+
# Validate params
|
208 |
+
for item in scan_types:
|
209 |
+
if item not in ['t1', 't2', 't2_SPACE']:
|
210 |
+
raise ValueError(
|
211 |
+
'Scan type "{item}" not recognized as valid scan type.\
|
212 |
+
Verify scan type argument.'
|
213 |
+
)
|
214 |
+
if split not in ['train', 'validate', 'test']:
|
215 |
+
raise ValueError(
|
216 |
+
f'Split argument "{split}" is not recognized. \
|
217 |
+
Please enter one of ["train", "validate", "test"]'
|
218 |
+
)
|
219 |
+
if train_share <= 0.0:
|
220 |
+
raise ValueError(
|
221 |
+
f'Training share is calculated as (1 - validate_share - test_share) \
|
222 |
+
and must be greater than 0. Current calculated value is \
|
223 |
+
{round(train_share, 3)}. Adjust validate_share and/or \
|
224 |
+
test_share parameters.'
|
225 |
+
)
|
226 |
+
if validate_share > 1.0 or validate_share < 0.0:
|
227 |
+
raise ValueError(
|
228 |
+
f'Validation share must be between (0, 1). Current value is \
|
229 |
+
{validate_share}.'
|
230 |
+
)
|
231 |
+
if test_share > 1.0 or test_share < 0.0:
|
232 |
+
raise ValueError(
|
233 |
+
f'Testing share must be between (0, 1). Current value is \
|
234 |
+
{test_share}.'
|
235 |
+
)
|
236 |
+
|
237 |
# Generate train/validate/test partitions of patient IDs
|
238 |
partition = np.random.choice(
|
239 |
['train', 'dev', 'test'],
|
240 |
+
p=[train_share, validate_share, test_share],
|
241 |
size=N_PATIENTS,
|
242 |
)
|
243 |
patient_ids = (np.arange(N_PATIENTS) + 1)
|
|
|
296 |
subset_ids = validate_ids
|
297 |
elif split == 'test':
|
298 |
subset_ids = test_ids
|
|
|
|
|
|
|
|
|
|
|
|
|
299 |
|
300 |
image_files = [
|
301 |
file for file in image_files
|
|
|
333 |
# Extract overview data corresponding to image
|
334 |
image_overview = overview_dict[scan_id]
|
335 |
|
336 |
+
# Extract patient radiological gradings corresponding to patient
|
337 |
patient_grades_dict = {}
|
338 |
for item in grades_dict[patient_id]:
|
339 |
key = f'IVD{item["IVD label"]}'
|
340 |
+
value = {
|
341 |
+
k:v for k,v in item.items()
|
342 |
+
if k not in ['Patient', 'IVD label']
|
343 |
+
}
|
344 |
patient_grades_dict[key] = value
|
345 |
|
346 |
# Prepare example return dict
|