Chris Oswald commited on
Commit
5fa2de2
·
1 Parent(s): f7a1cfb

generated examples

Browse files
Files changed (1) hide show
  1. SPIDER.py +81 -43
SPIDER.py CHANGED
@@ -14,17 +14,28 @@
14
  # TODO: Address all TODOs and remove all explanatory comments
15
  """TODO: Add a description here."""
16
 
17
-
18
  import csv
19
  import json
20
  import os
21
- from typing import Dict, List, Optional, Set
22
 
23
  import numpy as np
24
 
25
  import datasets
26
  import SimpleITK as sitk
27
 
 
 
 
 
 
 
 
 
 
 
 
28
  # TODO: Add BibTeX citation
29
  # Find for instance the citation on arxiv or on the dataset repo/website
30
  _CITATION = """\
@@ -156,11 +167,36 @@ class SPIDER(datasets.GeneratorBasedBuilder):
156
  ]
157
 
158
  # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
159
- def _generate_examples(self, paths_dict, split):
160
- # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
161
- # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
162
 
163
- # Config params
 
 
 
164
  #TODO: make hardcoded values dynamic
165
  np.random.seed(9999)
166
  N_PATIENTS = 257
@@ -188,6 +224,21 @@ class SPIDER(datasets.GeneratorBasedBuilder):
188
  overview_data = import_csv_data(paths_dict['overview'])
189
  grades_data = import_csv_data(paths_dict['gradings'])
190
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
191
  # Import image and mask data
192
  image_files = [
193
  file for file in os.listdir(os.path.join(paths_dict['images'], 'images'))
@@ -221,8 +272,10 @@ class SPIDER(datasets.GeneratorBasedBuilder):
221
  subset_ids = test_ids
222
  else:
223
  subset_ids = None
224
- raise ValueError(f'Split argument "{split}" is not recognized. \
225
- Please enter one of ["train", "validate", "test"]')
 
 
226
 
227
  image_files = [
228
  file for file in image_files
@@ -258,40 +311,25 @@ class SPIDER(datasets.GeneratorBasedBuilder):
258
  image_array = sitk.GetArrayFromImage(image)
259
 
260
  # Extract overview data corresponding to image
261
-
262
- # Extract patient radiological gradings corresponding to image
263
-
264
-
265
-
266
-
267
-
268
-
269
 
270
-
271
- def import_csv_data(filepath: str) -> List[Dict[str, str]]:
272
- """Import all rows of CSV file."""
273
- results = []
274
- with open(filepath, encoding='utf-8') as f:
275
- reader = csv.DictReader(f)
276
- for line in reader:
277
- results.append(line)
278
- return results
279
-
280
-
281
 
282
- with open(filepath, encoding="utf-8") as f:
283
- for key, row in enumerate(f):
284
- data = json.loads(row)
285
- if self.config.name == "first_domain":
286
- # Yields examples as (key, example) tuples
287
- yield key, {
288
- "sentence": data["sentence"],
289
- "option1": data["option1"],
290
- "answer": "" if split == "test" else data["answer"],
291
- }
292
- else:
293
- yield key, {
294
- "sentence": data["sentence"],
295
- "option2": data["option2"],
296
- "second_domain_answer": "" if split == "test" else data["second_domain_answer"],
297
- }
 
14
  # TODO: Address all TODOs and remove all explanatory comments
15
  """TODO: Add a description here."""
16
 
17
+ # Import packages
18
  import csv
19
  import json
20
  import os
21
+ from typing import Dict, List, Optional, Set, Tuple
22
 
23
  import numpy as np
24
 
25
  import datasets
26
  import SimpleITK as sitk
27
 
28
+ # Define functions
29
+ def import_csv_data(filepath: str) -> List[Dict[str, str]]:
30
+ """Import all rows of CSV file."""
31
+ results = []
32
+ with open(filepath, encoding='utf-8') as f:
33
+ reader = csv.DictReader(f)
34
+ for line in reader:
35
+ results.append(line)
36
+ return results
37
+
38
+
39
  # TODO: Add BibTeX citation
40
  # Find for instance the citation on arxiv or on the dataset repo/website
41
  _CITATION = """\
 
167
  ]
168
 
169
  # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
170
+ def _generate_examples(
171
+ self,
172
+ paths_dict: Dict[str, str],
173
+ split: str = 'train', # ['train', 'validate', 'test']
174
+ validate_share: float = 0.3,
175
+ test_share: float = 0.2,
176
+ raw_image: bool = True,
177
+ numeric_array: bool = True,
178
+ metadata: bool = True,
179
+ rad_gradings: bool = True,
180
+ ) -> Tuple[str, Dict]:
181
+ """
182
+ This method handles input defined in _split_generators to yield
183
+ (key, example) tuples from the dataset. The `key` is for legacy reasons
184
+ (tfds) and is not important in itself, but must be unique for each example.
185
+
186
+ Args
187
+ paths_dict
188
+ split:
189
+ validate_share
190
+ test_share
191
+ raw_image
192
+ numeric_array
193
+ metadata
194
+ rad_gradings
195
 
196
+ Yields
197
+
198
+ """
199
+ # Configure params
200
  #TODO: make hardcoded values dynamic
201
  np.random.seed(9999)
202
  N_PATIENTS = 257
 
224
  overview_data = import_csv_data(paths_dict['overview'])
225
  grades_data = import_csv_data(paths_dict['gradings'])
226
 
227
+ # Convert overview data list of dicts to dict of dicts
228
+ overview_dict = {}
229
+ for item in overview_data:
230
+ key = item['new_file_name']
231
+ overview_dict[key] = item
232
+
233
+ # Merge patient records for radiological gradings data
234
+ grades_dict = {}
235
+ for patient_id in patient_ids:
236
+ patient_grades = [
237
+ x for x in grades_data if x['Patient'] == str(patient_id)
238
+ ]
239
+ if patient_grades:
240
+ grades_dict[str(patient_id)] = patient_grades
241
+
242
  # Import image and mask data
243
  image_files = [
244
  file for file in os.listdir(os.path.join(paths_dict['images'], 'images'))
 
272
  subset_ids = test_ids
273
  else:
274
  subset_ids = None
275
+ raise ValueError( #TODO: move all parameter checking to beginning
276
+ f'Split argument "{split}" is not recognized. \
277
+ Please enter one of ["train", "validate", "test"]'
278
+ )
279
 
280
  image_files = [
281
  file for file in image_files
 
311
  image_array = sitk.GetArrayFromImage(image)
312
 
313
  # Extract overview data corresponding to image
314
+ image_overview = overview_dict[scan_id]
 
 
 
 
 
 
 
315
 
316
+ # Extract patient radiological gradings corresponding to image
317
+ patient_grades_dict = {}
318
+ for item in grades_dict[patient_id]:
319
+ key = f'IVD{item["IVD label"]}'
320
+ value = {k:v for k,v in item.items() if k not in ['Patient', 'IVD label']}
321
+ patient_grades_dict[key] = value
 
 
 
 
 
322
 
323
+ # Prepare example return dict
324
+ return_dict = {'patient_id':patient_id, 'scan_type':scan_type}
325
+ if raw_image:
326
+ return_dict['raw_image'] = image
327
+ if numeric_array:
328
+ return_dict['numeric_array'] = image_array
329
+ if metadata:
330
+ return_dict['metadata'] = image_overview
331
+ if rad_gradings:
332
+ return_dict['rad_gradings'] = patient_grades_dict
333
+
334
+ # Yield example
335
+ yield (scan_id, return_dict)