|
import os |
|
import random |
|
import datasets |
|
from datasets.tasks import ImageClassification |
|
|
|
|
|
_NAMES = { |
|
"PearlRiver": [2.33, 2.53, 2.37, 2.41], |
|
"YoungChang": [2.53, 2.63, 2.97, 2.71], |
|
"Steinway-T": [3.6, 3.63, 3.67, 3.63], |
|
"Hsinghai": [3.4, 3.27, 3.2, 3.29], |
|
"Kawai": [3.17, 2.5, 2.93, 2.87], |
|
"Steinway": [4.23, 3.67, 4, 3.97], |
|
"Kawai-G": [3.37, 2.97, 3.07, 3.14], |
|
"Yamaha": [3.23, 3.03, 3.17, 3.14], |
|
} |
|
|
|
_HOMEPAGE = f"https://www.modelscope.cn/datasets/ccmusic-database/{os.path.basename(__file__)[:-3]}" |
|
|
|
_DOMAIN = f"{_HOMEPAGE}/resolve/master/data" |
|
|
|
_PITCHES = { |
|
"009": "A2", |
|
"010": "A2#/B2b", |
|
"011": "B2", |
|
"100": "C1", |
|
"101": "C1#/D1b", |
|
"102": "D1", |
|
"103": "D1#/E1b", |
|
"104": "E1", |
|
"105": "F1", |
|
"106": "F1#/G1b", |
|
"107": "G1", |
|
"108": "G1#/A1b", |
|
"109": "A1", |
|
"110": "A1#/B1b", |
|
"111": "B1", |
|
"200": "C", |
|
"201": "C#/Db", |
|
"202": "D", |
|
"203": "D#/Eb", |
|
"204": "E", |
|
"205": "F", |
|
"206": "F#/Gb", |
|
"207": "G", |
|
"208": "G#/Ab", |
|
"209": "A", |
|
"210": "A#/Bb", |
|
"211": "B", |
|
"300": "c", |
|
"301": "c#/db", |
|
"302": "d", |
|
"303": "d#/eb", |
|
"304": "e", |
|
"305": "f", |
|
"306": "f#/gb", |
|
"307": "g", |
|
"308": "g#/ab", |
|
"309": "a", |
|
"310": "a#/bb", |
|
"311": "b", |
|
"400": "c1", |
|
"401": "c1#/d1b", |
|
"402": "d1", |
|
"403": "d1#/e1b", |
|
"404": "e1", |
|
"405": "f1", |
|
"406": "f1#/g1b", |
|
"407": "g1", |
|
"408": "g1#/a1b", |
|
"409": "a1", |
|
"410": "a1#/b1b", |
|
"411": "b1", |
|
"500": "c2", |
|
"501": "c2#/d2b", |
|
"502": "d2", |
|
"503": "d2#/e2b", |
|
"504": "e2", |
|
"505": "f2", |
|
"506": "f2#/g2b", |
|
"507": "g2", |
|
"508": "g2#/a2b", |
|
"509": "a2", |
|
"510": "a2#/b2b", |
|
"511": "b2", |
|
"600": "c3", |
|
"601": "c3#/d3b", |
|
"602": "d3", |
|
"603": "d3#/e3b", |
|
"604": "e3", |
|
"605": "f3", |
|
"606": "f3#/g3b", |
|
"607": "g3", |
|
"608": "g3#/a3b", |
|
"609": "a3", |
|
"610": "a3#/b3b", |
|
"611": "b3", |
|
"700": "c4", |
|
"701": "c4#/d4b", |
|
"702": "d4", |
|
"703": "d4#/e4b", |
|
"704": "e4", |
|
"705": "f4", |
|
"706": "f4#/g4b", |
|
"707": "g4", |
|
"708": "g4#/a4b", |
|
"709": "a4", |
|
"710": "a4#/b4b", |
|
"711": "b4", |
|
"800": "c5", |
|
} |
|
|
|
_URLS = { |
|
"audio": f"{_DOMAIN}/audio.zip", |
|
"mel": f"{_DOMAIN}/mel.zip", |
|
"eval": f"{_DOMAIN}/eval.zip", |
|
} |
|
|
|
|
|
class pianos(datasets.GeneratorBasedBuilder): |
|
def _info(self): |
|
names = list(_NAMES.keys()) |
|
if self.config.name == "default": |
|
names = names[:-1] |
|
|
|
return datasets.DatasetInfo( |
|
features=( |
|
datasets.Features( |
|
{ |
|
"audio": datasets.Audio(sampling_rate=44100), |
|
"mel": datasets.Image(), |
|
"label": datasets.features.ClassLabel(names=names), |
|
"pitch": datasets.features.ClassLabel( |
|
names=list(_PITCHES.values()) |
|
), |
|
"bass_score": datasets.Value("float32"), |
|
"mid_score": datasets.Value("float32"), |
|
"treble_score": datasets.Value("float32"), |
|
"avg_score": datasets.Value("float32"), |
|
} |
|
) |
|
if self.config.name != "eval" |
|
else datasets.Features( |
|
{ |
|
"mel": datasets.Image(), |
|
"label": datasets.features.ClassLabel(names=names), |
|
"pitch": datasets.features.ClassLabel( |
|
names=list(_PITCHES.values()) |
|
), |
|
"bass_score": datasets.Value("float32"), |
|
"mid_score": datasets.Value("float32"), |
|
"treble_score": datasets.Value("float32"), |
|
"avg_score": datasets.Value("float32"), |
|
} |
|
) |
|
), |
|
homepage=_HOMEPAGE, |
|
license="CC-BY-NC-ND", |
|
version="1.2.0", |
|
supervised_keys=("mel", "label"), |
|
task_templates=ImageClassification( |
|
image_column="mel", |
|
label_column="label", |
|
), |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
dataset = [] |
|
if self.config.name != "eval": |
|
subset = {} |
|
audio_files = dl_manager.download_and_extract(_URLS["audio"]) |
|
for path in dl_manager.iter_files([audio_files]): |
|
fname = os.path.basename(path) |
|
if fname.endswith(".wav"): |
|
lebal = os.path.basename(os.path.dirname(path)) |
|
if self.config.name == "default" and lebal == "Yamaha": |
|
continue |
|
|
|
subset[fname.split(".")[0]] = { |
|
"audio": path, |
|
"label": lebal, |
|
"pitch": _PITCHES[fname[1:4]], |
|
"bass_score": _NAMES[lebal][0], |
|
"mid_score": _NAMES[lebal][1], |
|
"treble_score": _NAMES[lebal][2], |
|
"avg_score": _NAMES[lebal][3], |
|
} |
|
|
|
mel_files = dl_manager.download_and_extract(_URLS["mel"]) |
|
for path in dl_manager.iter_files([mel_files]): |
|
fname = os.path.basename(path) |
|
pname = fname.split(".")[0] |
|
if fname.endswith(".jpg") and pname in subset: |
|
subset[pname]["mel"] = path |
|
|
|
dataset = list(subset.values()) |
|
|
|
else: |
|
data_files = dl_manager.download_and_extract(_URLS["eval"]) |
|
for path in dl_manager.iter_files([data_files]): |
|
fname: str = os.path.basename(path) |
|
if fname.endswith(".jpg"): |
|
lebal = os.path.basename(os.path.dirname(path)) |
|
dataset.append( |
|
{ |
|
"mel": path, |
|
"label": lebal, |
|
"pitch": _PITCHES[fname.split("_")[0]], |
|
"bass_score": _NAMES[lebal][0], |
|
"mid_score": _NAMES[lebal][1], |
|
"treble_score": _NAMES[lebal][2], |
|
"avg_score": _NAMES[lebal][3], |
|
} |
|
) |
|
|
|
names = list(_NAMES.keys()) |
|
if self.config.name == "default": |
|
names = names[:-1] |
|
|
|
categories = {} |
|
for name in names: |
|
categories[name] = [] |
|
|
|
for data in dataset: |
|
categories[data["label"]].append(data) |
|
|
|
testset, validset, trainset = [], [], [] |
|
for cls in categories: |
|
random.shuffle(categories[cls]) |
|
count = len(categories[cls]) |
|
p80 = int(count * 0.8) |
|
p90 = int(count * 0.9) |
|
trainset += categories[cls][:p80] |
|
validset += categories[cls][p80:p90] |
|
testset += categories[cls][p90:] |
|
|
|
random.shuffle(trainset) |
|
random.shuffle(validset) |
|
random.shuffle(testset) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, gen_kwargs={"files": trainset} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, gen_kwargs={"files": validset} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, gen_kwargs={"files": testset} |
|
), |
|
] |
|
|
|
def _generate_examples(self, files): |
|
for i, path in enumerate(files): |
|
yield i, path |
|
|