Datasets:

Languages:
English
ArXiv:
License:
pianos / pianos.py
admin
upd api
2a33ba4
raw
history blame
7.71 kB
import os
import random
import datasets
from datasets.tasks import ImageClassification
_NAMES = {
"PearlRiver": [2.33, 2.53, 2.37, 2.41],
"YoungChang": [2.53, 2.63, 2.97, 2.71],
"Steinway-T": [3.6, 3.63, 3.67, 3.63],
"Hsinghai": [3.4, 3.27, 3.2, 3.29],
"Kawai": [3.17, 2.5, 2.93, 2.87],
"Steinway": [4.23, 3.67, 4, 3.97],
"Kawai-G": [3.37, 2.97, 3.07, 3.14],
"Yamaha": [3.23, 3.03, 3.17, 3.14],
}
_HOMEPAGE = f"https://www.modelscope.cn/datasets/ccmusic-database/{os.path.basename(__file__)[:-3]}"
_DOMAIN = f"{_HOMEPAGE}/resolve/master/data"
_PITCHES = {
"009": "A2",
"010": "A2#/B2b",
"011": "B2",
"100": "C1",
"101": "C1#/D1b",
"102": "D1",
"103": "D1#/E1b",
"104": "E1",
"105": "F1",
"106": "F1#/G1b",
"107": "G1",
"108": "G1#/A1b",
"109": "A1",
"110": "A1#/B1b",
"111": "B1",
"200": "C",
"201": "C#/Db",
"202": "D",
"203": "D#/Eb",
"204": "E",
"205": "F",
"206": "F#/Gb",
"207": "G",
"208": "G#/Ab",
"209": "A",
"210": "A#/Bb",
"211": "B",
"300": "c",
"301": "c#/db",
"302": "d",
"303": "d#/eb",
"304": "e",
"305": "f",
"306": "f#/gb",
"307": "g",
"308": "g#/ab",
"309": "a",
"310": "a#/bb",
"311": "b",
"400": "c1",
"401": "c1#/d1b",
"402": "d1",
"403": "d1#/e1b",
"404": "e1",
"405": "f1",
"406": "f1#/g1b",
"407": "g1",
"408": "g1#/a1b",
"409": "a1",
"410": "a1#/b1b",
"411": "b1",
"500": "c2",
"501": "c2#/d2b",
"502": "d2",
"503": "d2#/e2b",
"504": "e2",
"505": "f2",
"506": "f2#/g2b",
"507": "g2",
"508": "g2#/a2b",
"509": "a2",
"510": "a2#/b2b",
"511": "b2",
"600": "c3",
"601": "c3#/d3b",
"602": "d3",
"603": "d3#/e3b",
"604": "e3",
"605": "f3",
"606": "f3#/g3b",
"607": "g3",
"608": "g3#/a3b",
"609": "a3",
"610": "a3#/b3b",
"611": "b3",
"700": "c4",
"701": "c4#/d4b",
"702": "d4",
"703": "d4#/e4b",
"704": "e4",
"705": "f4",
"706": "f4#/g4b",
"707": "g4",
"708": "g4#/a4b",
"709": "a4",
"710": "a4#/b4b",
"711": "b4",
"800": "c5",
}
_URLS = {
"audio": f"{_DOMAIN}/audio.zip",
"mel": f"{_DOMAIN}/mel.zip",
"eval": f"{_DOMAIN}/eval.zip",
}
class pianos(datasets.GeneratorBasedBuilder):
def _info(self):
names = list(_NAMES.keys())
if self.config.name == "default":
names = names[:-1]
return datasets.DatasetInfo(
features=(
datasets.Features(
{
"audio": datasets.Audio(sampling_rate=44100),
"mel": datasets.Image(),
"label": datasets.features.ClassLabel(names=names),
"pitch": datasets.features.ClassLabel(
names=list(_PITCHES.values())
),
"bass_score": datasets.Value("float32"),
"mid_score": datasets.Value("float32"),
"treble_score": datasets.Value("float32"),
"avg_score": datasets.Value("float32"),
}
)
if self.config.name != "eval"
else datasets.Features(
{
"mel": datasets.Image(),
"label": datasets.features.ClassLabel(names=names),
"pitch": datasets.features.ClassLabel(
names=list(_PITCHES.values())
),
"bass_score": datasets.Value("float32"),
"mid_score": datasets.Value("float32"),
"treble_score": datasets.Value("float32"),
"avg_score": datasets.Value("float32"),
}
)
),
homepage=_HOMEPAGE,
license="CC-BY-NC-ND",
version="1.2.0",
supervised_keys=("mel", "label"),
task_templates=ImageClassification(
image_column="mel",
label_column="label",
),
)
def _split_generators(self, dl_manager):
dataset = []
if self.config.name != "eval":
subset = {}
audio_files = dl_manager.download_and_extract(_URLS["audio"])
for path in dl_manager.iter_files([audio_files]):
fname = os.path.basename(path)
if fname.endswith(".wav"):
lebal = os.path.basename(os.path.dirname(path))
if self.config.name == "default" and lebal == "Yamaha":
continue
subset[fname.split(".")[0]] = {
"audio": path,
"label": lebal,
"pitch": _PITCHES[fname[1:4]],
"bass_score": _NAMES[lebal][0],
"mid_score": _NAMES[lebal][1],
"treble_score": _NAMES[lebal][2],
"avg_score": _NAMES[lebal][3],
}
mel_files = dl_manager.download_and_extract(_URLS["mel"])
for path in dl_manager.iter_files([mel_files]):
fname = os.path.basename(path)
pname = fname.split(".")[0]
if fname.endswith(".jpg") and pname in subset:
subset[pname]["mel"] = path
dataset = list(subset.values())
else:
data_files = dl_manager.download_and_extract(_URLS["eval"])
for path in dl_manager.iter_files([data_files]):
fname: str = os.path.basename(path)
if fname.endswith(".jpg"):
lebal = os.path.basename(os.path.dirname(path))
dataset.append(
{
"mel": path,
"label": lebal,
"pitch": _PITCHES[fname.split("_")[0]],
"bass_score": _NAMES[lebal][0],
"mid_score": _NAMES[lebal][1],
"treble_score": _NAMES[lebal][2],
"avg_score": _NAMES[lebal][3],
}
)
names = list(_NAMES.keys())
if self.config.name == "default":
names = names[:-1]
categories = {}
for name in names:
categories[name] = []
for data in dataset:
categories[data["label"]].append(data)
testset, validset, trainset = [], [], []
for cls in categories:
random.shuffle(categories[cls])
count = len(categories[cls])
p80 = int(count * 0.8)
p90 = int(count * 0.9)
trainset += categories[cls][:p80]
validset += categories[cls][p80:p90]
testset += categories[cls][p90:]
random.shuffle(trainset)
random.shuffle(validset)
random.shuffle(testset)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN, gen_kwargs={"files": trainset}
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION, gen_kwargs={"files": validset}
),
datasets.SplitGenerator(
name=datasets.Split.TEST, gen_kwargs={"files": testset}
),
]
def _generate_examples(self, files):
for i, path in enumerate(files):
yield i, path