metadata
language:
- en
multilinguality:
- monolingual
size_categories:
- 100K<n<1M
task_categories:
- summarization
- text-generation
task_ids: []
tags:
- conditional-text-generation
dataset_info:
- config_name: document
features:
- name: article
dtype: string
- name: abstract
dtype: string
splits:
- name: train
num_bytes: 2236406736
num_examples: 119924
- name: validation
num_bytes: 126510743
num_examples: 6633
- name: test
num_bytes: 126296182
num_examples: 6658
download_size: 1154975484
dataset_size: 2489213661
- config_name: section
features:
- name: article
dtype: string
- name: abstract
dtype: string
splits:
- name: train
num_bytes: 2257744955
num_examples: 119924
- name: validation
num_bytes: 127711559
num_examples: 6633
- name: test
num_bytes: 127486937
num_examples: 6658
download_size: 1163165290
dataset_size: 2512943451
configs:
- config_name: document
data_files:
- split: train
path: document/train-*
- split: validation
path: document/validation-*
- split: test
path: document/test-*
- config_name: section
data_files:
- split: train
path: section/train-*
- split: validation
path: section/validation-*
- split: test
path: section/test-*
default: true
PubMed dataset for summarization
Dataset for summarization of long documents.
Adapted from this repo.
Note that original data are pre-tokenized so this dataset returns " ".join(text) and add "\n" for paragraphs.
This dataset is compatible with the run_summarization.py
script from Transformers if you add this line to the summarization_name_mapping
variable:
"ccdv/pubmed-summarization": ("article", "abstract")
Data Fields
id
: paper idarticle
: a string containing the body of the paperabstract
: a string containing the abstract of the paper
Data Splits
This dataset has 3 splits: train, validation, and test.
Token counts are white space based.
Dataset Split | Number of Instances | Avg. tokens |
---|---|---|
Train | 119,924 | 3043 / 215 |
Validation | 6,633 | 3111 / 216 |
Test | 6,658 | 3092 / 219 |
Cite original article
@inproceedings{cohan-etal-2018-discourse,
title = "A Discourse-Aware Attention Model for Abstractive Summarization of Long Documents",
author = "Cohan, Arman and
Dernoncourt, Franck and
Kim, Doo Soon and
Bui, Trung and
Kim, Seokhwan and
Chang, Walter and
Goharian, Nazli",
booktitle = "Proceedings of the 2018 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N18-2097",
doi = "10.18653/v1/N18-2097",
pages = "615--621",
abstract = "Neural abstractive summarization models have led to promising results in summarizing relatively short documents. We propose the first model for abstractive summarization of single, longer-form documents (e.g., research papers). Our approach consists of a new hierarchical encoder that models the discourse structure of a document, and an attentive discourse-aware decoder to generate the summary. Empirical results on two large-scale datasets of scientific papers show that our model significantly outperforms state-of-the-art models.",
}