metadata
language:
- en
multilinguality:
- monolingual
size_categories:
- 100K<n<1M
task_categories:
- summarization
- text2text-generation
task_ids: []
tags:
- conditional-text-generation
MediaSum dataset for summarization
Summarization dataset copied from MediaSum: A Large-scale Media Interview Dataset for Dialogue Summarization
This dataset is compatible with the run_summarization.py
script from Transformers if you add this line to the summarization_name_mapping
variable:
"ccdv/mediasum": ("document", "summary")
Configs
4 possibles configs:
roberta
will concatenate documents with "</s>"newline
will concatenate documents with "\n"bert
will concatenate documents with "[SEP]"list
will return the list of documents instead of a single string
Add _prepended
to config name to prepend the speaker name before each dialogue: speaker: text
Default is roberta_prepended
(compatible with BART).
Data Fields
id
: paper iddocument
: a string/list containing the body of a set of documentssummary
: a string containing the abstract of the set
Data Splits
This dataset has 3 splits: train, validation, and test. \
Dataset Split | Number of Instances |
---|---|
Train | 443596 |
Validation | 10000 |
Test | 10000 |
Cite original article
@article{zhu2021mediasum,
title={MediaSum: A Large-scale Media Interview Dataset for Dialogue Summarization},
author={Zhu, Chenguang and Liu, Yang and Mei, Jie and Zeng, Michael},
journal={arXiv preprint arXiv:2103.06410},
year={2021}
}