|
--- |
|
languages: fr |
|
task_ids: |
|
- multi-class-classification |
|
- topic-classification |
|
- summarization |
|
task_categories: |
|
- text-classification |
|
- conditional-text-generation |
|
size_categories: 10K<n<100K |
|
--- |
|
|
|
**QR-AN Dataset: a classification and generation dataset of french Parliament questions-answers.** |
|
|
|
This is a dataset for theme/topic classification, made of questions and answers from https://www2.assemblee-nationale.fr/recherche/resultats_questions . \ |
|
|
|
It contains 188 unbalanced classes, 80k questions-answers divided into 3 splits: train (60k), val (10k) and test (10k). \ |
|
|
|
Can be used for generation with 'qran_generation' |
|
This dataset is compatible with the [`run_summarization.py`](https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization) script from Transformers if you add this line to the `summarization_name_mapping` variable: |
|
```python |
|
"ccdv/cass-summarization": ("question", "answer") |
|
``` |
|
|
|
Compatible with [run_glue.py](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification) script: |
|
``` |
|
export MODEL_NAME=camembert-base |
|
export MAX_SEQ_LENGTH=512 |
|
|
|
python run_glue.py \ |
|
--model_name_or_path $MODEL_NAME \ |
|
--dataset_name cassandra-themis/QR-AN \ |
|
--do_train \ |
|
--do_eval \ |
|
--max_seq_length $MAX_SEQ_LENGTH \ |
|
--per_device_train_batch_size 8 \ |
|
--gradient_accumulation_steps 4 \ |
|
--learning_rate 2e-5 \ |
|
--num_train_epochs 1 \ |
|
--max_eval_samples 500 \ |
|
--output_dir tmp/QR-AN |
|
``` |