carlosdanielhernandezmena commited on
Commit
95b2d68
·
verified ·
1 Parent(s): 678512c

Convert dataset to Parquet (#1)

Browse files

- Convert dataset to Parquet (68d050d74b4397ea4941ba4eea823d8c39f2e691)
- Delete loading script (d4be9d02aa826aeed417e022d61bcd6d2ec5aeff)
- Delete data file (8c95a1c0b2e178b9ecee3dbbd80a1bf4d61ac156)
- Delete data file (0090de78ee138783e285c1b815ee59adc1c268a8)
- Delete data file (6d3a49ec98d3d331f7ede70083d09d01d458a2ee)

README.md CHANGED
@@ -1,3 +1,32 @@
1
  ---
2
  license: cc-by-sa-4.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
1
  ---
2
  license: cc-by-sa-4.0
3
+ dataset_info:
4
+ config_name: chm150_asr
5
+ features:
6
+ - name: audio_id
7
+ dtype: string
8
+ - name: audio
9
+ dtype:
10
+ audio:
11
+ sampling_rate: 16000
12
+ - name: speaker_id
13
+ dtype: string
14
+ - name: gender
15
+ dtype: string
16
+ - name: duration
17
+ dtype: float32
18
+ - name: normalized_text
19
+ dtype: string
20
+ splits:
21
+ - name: train
22
+ num_bytes: 106136396.519
23
+ num_examples: 2663
24
+ download_size: 110058240
25
+ dataset_size: 106136396.519
26
+ configs:
27
+ - config_name: chm150_asr
28
+ data_files:
29
+ - split: train
30
+ path: chm150_asr/train-*
31
+ default: true
32
  ---
chm150_asr.py DELETED
@@ -1,122 +0,0 @@
1
- from collections import defaultdict
2
- import os
3
- import json
4
- import csv
5
- import datasets
6
-
7
- _NAME="chm150_asr"
8
- _VERSION="1.0.0"
9
-
10
- _DESCRIPTION = """
11
- The CHM150 is a corpus of microphone speech of mexican Spanish taken from 75 male speakers and
12
- 75 female speakers in a noise environment of a "quiet office" with a total duration of 1.63 hours.
13
- """
14
-
15
- _CITATION = """
16
- @misc{menachm150asr2016,
17
- title={CHM150 CORPUS: Audio and Transcripts in Spanish of 150 speakers from Mexico City.},
18
- ldc_catalog_no={LDC2016S04},
19
- DOI={https://doi.org/10.35111/ygn0-wm25},
20
- author={Hernandez Mena, Carlos Daniel and Herrera Camacho, Jose Abel},
21
- journal={Linguistic Data Consortium, Philadelphia},
22
- year={2016},
23
- url={https://catalog.ldc.upenn.edu/LDC2016S04},
24
- }
25
- """
26
-
27
- _HOMEPAGE = "https://catalog.ldc.upenn.edu/LDC2016S04"
28
-
29
- _LICENSE = "CC-BY-SA-4.0, See http://creativecommons.org/licenses/by-sa/4.0/"
30
-
31
- _BASE_DATA_DIR = "corpus/"
32
- _METADATA_TRAIN = os.path.join(_BASE_DATA_DIR,"files", "metadata_train.tsv")
33
-
34
- _TARS_TRAIN = os.path.join(_BASE_DATA_DIR,"files", "tars_train.paths")
35
-
36
- class CHM150Config(datasets.BuilderConfig):
37
- """BuilderConfig for CHM150 CORPUS"""
38
-
39
- def __init__(self, name, **kwargs):
40
- name=_NAME
41
- super().__init__(name=name, **kwargs)
42
-
43
- class CHM150(datasets.GeneratorBasedBuilder):
44
- """CHM150 CORPUS"""
45
-
46
- VERSION = datasets.Version(_VERSION)
47
- BUILDER_CONFIGS = [
48
- CHM150Config(
49
- name=_NAME,
50
- version=datasets.Version(_VERSION),
51
- )
52
- ]
53
-
54
- def _info(self):
55
- features = datasets.Features(
56
- {
57
- "audio_id": datasets.Value("string"),
58
- "audio": datasets.Audio(sampling_rate=16000),
59
- "speaker_id": datasets.Value("string"),
60
- "gender": datasets.Value("string"),
61
- "duration": datasets.Value("float32"),
62
- "normalized_text": datasets.Value("string"),
63
- }
64
- )
65
- return datasets.DatasetInfo(
66
- description=_DESCRIPTION,
67
- features=features,
68
- homepage=_HOMEPAGE,
69
- license=_LICENSE,
70
- citation=_CITATION,
71
- )
72
-
73
- def _split_generators(self, dl_manager):
74
-
75
- metadata_train=dl_manager.download_and_extract(_METADATA_TRAIN)
76
-
77
- tars_train=dl_manager.download_and_extract(_TARS_TRAIN)
78
-
79
- hash_tar_files=defaultdict(dict)
80
-
81
- with open(tars_train,'r') as f:
82
- hash_tar_files['train']=[path.replace('\n','') for path in f]
83
-
84
- hash_meta_paths={"train":metadata_train}
85
- audio_paths = dl_manager.download(hash_tar_files)
86
-
87
- splits=["train"]
88
- local_extracted_audio_paths = (
89
- dl_manager.extract(audio_paths) if not dl_manager.is_streaming else
90
- {
91
- split:[None] * len(audio_paths[split]) for split in splits
92
- }
93
- )
94
-
95
- return [
96
- datasets.SplitGenerator(
97
- name=datasets.Split.TRAIN,
98
- gen_kwargs={
99
- "audio_archives": [dl_manager.iter_archive(archive) for archive in audio_paths["train"]],
100
- "local_extracted_archives_paths": local_extracted_audio_paths["train"],
101
- "metadata_paths": hash_meta_paths["train"],
102
- }
103
- ),
104
- ]
105
-
106
- def _generate_examples(self, audio_archives, local_extracted_archives_paths, metadata_paths):
107
-
108
- features = ["speaker_id","gender","duration","normalized_text"]
109
-
110
- with open(metadata_paths) as f:
111
- metadata = {x["audio_id"]: x for x in csv.DictReader(f, delimiter="\t")}
112
-
113
- for audio_archive, local_extracted_archive_path in zip(audio_archives, local_extracted_archives_paths):
114
- for audio_filename, audio_file in audio_archive:
115
- audio_id =os.path.splitext(os.path.basename(audio_filename))[0]
116
- path = os.path.join(local_extracted_archive_path, audio_filename) if local_extracted_archive_path else audio_filename
117
-
118
- yield audio_id, {
119
- "audio_id": audio_id,
120
- **{feature: metadata[audio_id][feature] for feature in features},
121
- "audio": {"path": path, "bytes": audio_file.read()},
122
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
corpus/speech/train.tar.gz → chm150_asr/train-00000-of-00001.parquet RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:22edab7b068873e44acd52a6f1f1465279bc5821ba29bcf2485bb75b027a0870
3
- size 110086793
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f4a516b4bb69050897457428907f5df1c04ad89901aa83340ad68b68c05e7fe5
3
+ size 110058240
corpus/files/metadata_train.tsv DELETED
The diff for this file is too large to render. See raw diff
 
corpus/files/tars_train.paths DELETED
@@ -1 +0,0 @@
1
- corpus/speech/train.tar.gz