|
--- |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train_en |
|
path: "dataset/en/en_train.jsonl" |
|
language: |
|
- en |
|
- ja |
|
- el |
|
- es |
|
license: |
|
- other |
|
multilinguality: |
|
- monolingual |
|
size_categories: |
|
- 1K<n<10K |
|
task_categories: |
|
- text-classification |
|
pretty_name: xtopic |
|
--- |
|
|
|
# Dataset Card for "cardiffnlp/tweet_topic_multilingual" |
|
|
|
## Dataset Description |
|
- **Dataset:** X-Topic |
|
- **Domain:** X (Twitter) |
|
- **Number of Class:** 19 |
|
|
|
|
|
### Dataset Summary |
|
This is the official repository of X-Topic ([Multilingual Topic Classification in X: Dataset and Analysis](https://arxiv.org/abs/2410.03075), EMNLP 2024), a topic classification dataset based on X (formerly Twitter), featuring 19 topic labels. |
|
|
|
The classification task is multi-label, with tweets available in four languages: English, Japanese, Spanish, and Greek. |
|
|
|
The dataset comprises 4,000 tweets (1,000 per language), collected between September 2021 and August 2022. |
|
|
|
The dataset uses the same taxonomy as [TweetTopic](https://huggingface.co/datasets/cardiffnlp/tweet_topic_multi). |
|
|
|
|
|
## Dataset Structure |
|
|
|
### Data Splits |
|
|
|
The dataset includes the following splits: |
|
|
|
- **en**: English |
|
- **es**: Spanish |
|
- **ja**: Japanese |
|
- **gr**: Greek |
|
- **en_2022**: English data from 2022 (TweetTopic) |
|
- **mix**: Mixed-language data |
|
- **mix_2022**: Mixed-language data including (TweetTopic) from 2022 |
|
- **Cross-validation splits:** |
|
- **en_cross_validation_0** to **en_cross_validation_4**: English cross-validation splits |
|
- **es_cross_validation_0** to **es_cross_validation_4**: Spanish cross-validation splits |
|
- **ja_cross_validation_0** to **ja_cross_validation_4**: Japanese cross-validation splits |
|
- **gr_cross_validation_0** to **gr_cross_validation_4**: Greek cross-validation splits |
|
|
|
|
|
### Data Instances |
|
An example of `train` looks as follows. |
|
|
|
```python |
|
{ |
|
"id": 1470030676816797696, |
|
"text": "made a matcha latte, black tea and green juice until i break my fast at 1!! my body and skin are thanking me", |
|
"label": [0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], |
|
"label_name": ["Diaries & Daily Life", "Fitness & Health", "Food & Dining"], |
|
"label_name_flatten": "Diaries & Daily Life, Fitness & Health, Food & Dining" |
|
} |
|
``` |
|
|
|
### Labels |
|
| <span style="font-weight:normal">0: arts_&_culture</span> | <span style="font-weight:normal">5: fashion_&_style</span> | <span style="font-weight:normal">10: learning_&_educational</span> | <span style="font-weight:normal">15: science_&_technology</span> | |
|
|-----------------------------|---------------------|----------------------------|--------------------------| |
|
| 1: business_&_entrepreneurs | 6: film_tv_&_video | 11: music | 16: sports | |
|
| 2: celebrity_&_pop_culture | 7: fitness_&_health | 12: news_&_social_concern | 17: travel_&_adventure | |
|
| 3: diaries_&_daily_life | 8: food_&_dining | 13: other_hobbies | 18: youth_&_student_life | |
|
| 4: family | 9: gaming | 14: relationships | | |
|
|
|
Annotation instructions for English can be found [here](https://docs.google.com/document/d/1IaIXZYof3iCLLxyBdu_koNmjy--zqsuOmxQ2vOxYd_g/edit?usp=sharing). |
|
|
|
|
|
|
|
## Citation Information |
|
**TBA** |
|
|