|
--- |
|
language: |
|
- en |
|
license: |
|
- other |
|
multilinguality: |
|
- monolingual |
|
size_categories: |
|
- 1k<10K |
|
task_categories: |
|
- text-classification |
|
task_ids: |
|
- sentiment-classification |
|
pretty_name: TweetTopicSingle |
|
--- |
|
|
|
# Dataset Card for "cardiff_nlp/tweet_topic_multi" |
|
|
|
## Dataset Description |
|
|
|
- **Paper:** TBA |
|
- **Dataset:** Tweet Topic Dataset |
|
- **Domain:** Twitter |
|
- **Number of Class:** 6 |
|
|
|
|
|
### Dataset Summary |
|
Topic classification dataset on Twitter with multiple labels per tweet. |
|
- Label Types: `arts_&_culture`, `business_&_entrepreneurs`, `celebrity_&_pop_culture`, `diaries_&_daily_life`, `family`, `fashion_&_style`, `film_tv_&_video`, `fitness_&_health`, `food_&_dining`, `gaming`, `learning_&_educational`, `music`, `news_&_social_concern`, `other_hobbies`, `relationships`, `science_&_technology`, `sports`, `travel_&_adventure`, `youth_&_student_life` |
|
|
|
## Dataset Structure |
|
|
|
### Data Instances |
|
An example of `train` looks as follows. |
|
|
|
```python |
|
{ |
|
"date": "2021-03-07", |
|
"text": "The latest The Movie theater Daily! {{URL}} Thanks to {{USERNAME}} {{USERNAME}} {{USERNAME}} #lunchtimeread #amc1000", |
|
"id": 1368464923370676231, |
|
"label": [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], |
|
"label_name": ["film_tv_&_video"] |
|
} |
|
``` |
|
|
|
### Label ID |
|
The label2id dictionary can be found at [here](https://huggingface.co/datasets/tner/tweet_topic_multi/raw/main/dataset/label.multi.json). |
|
```python |
|
{ |
|
"arts_&_culture": 0, |
|
"business_&_entrepreneurs": 1, |
|
"celebrity_&_pop_culture": 2, |
|
"diaries_&_daily_life": 3, |
|
"family": 4, |
|
"fashion_&_style": 5, |
|
"film_tv_&_video": 6, |
|
"fitness_&_health": 7, |
|
"food_&_dining": 8, |
|
"gaming": 9, |
|
"learning_&_educational": 10, |
|
"music": 11, |
|
"news_&_social_concern": 12, |
|
"other_hobbies": 13, |
|
"relationships": 14, |
|
"science_&_technology": 15, |
|
"sports": 16, |
|
"travel_&_adventure": 17, |
|
"youth_&_student_life": 18 |
|
} |
|
``` |
|
|
|
### Data Splits |
|
|
|
|
|
|
|
### Citation Information |
|
|
|
``` |
|
TBA |
|
``` |