antypasd commited on
Commit
f8ff84a
1 Parent(s): b26e2c1

added sentiment/emoji labels

Browse files
data/tweet_hate/map.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ 0,hate_gender
2
+ 1,hate_race
3
+ 2,hate_sexuality
4
+ 3,hate_religion
5
+ 4,hate_origin
6
+ 5,hate_disability
7
+ 6,hate_age
8
+ 7,not_hate
data/tweet_sentiment/test.jsonl CHANGED
The diff for this file is too large to render. See raw diff
 
data/tweet_sentiment/train.jsonl CHANGED
The diff for this file is too large to render. See raw diff
 
data/tweet_sentiment/validation.jsonl CHANGED
The diff for this file is too large to render. See raw diff
 
process/tweet_sentiment.py CHANGED
@@ -59,6 +59,19 @@ train['text'] = train['text'].apply(clean_text)
59
  validation['text'] = validation['text'].apply(clean_text)
60
  test['text'] = test['text'].apply(clean_text)
61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
  # save splits
63
  cols_to_keep = ['gold_label', 'topic', 'text']
64
  train[cols_to_keep].to_json(
 
59
  validation['text'] = validation['text'].apply(clean_text)
60
  test['text'] = test['text'].apply(clean_text)
61
 
62
+ # map classes to 0-4
63
+ class_map = {
64
+ -2:0,
65
+ -1:1,
66
+ 0:2,
67
+ 1:3,
68
+ 2:4
69
+ }
70
+ train['gold_label'] = train['gold_label'].map(class_map)
71
+ validation['gold_label'] = validation['gold_label'].map(class_map)
72
+ test['gold_label'] = test['gold_label'].map(class_map)
73
+
74
+
75
  # save splits
76
  cols_to_keep = ['gold_label', 'topic', 'text']
77
  train[cols_to_keep].to_json(
super_tweet_eval.py CHANGED
@@ -2,7 +2,7 @@
2
  import json
3
  import datasets
4
 
5
- _VERSION = "0.1.37"
6
  _SUPER_TWEET_EVAL_CITATION = """TBA"""
7
  _SUPER_TWEET_EVAL_DESCRIPTION = """TBA"""
8
  _TWEET_TOPIC_DESCRIPTION = """
@@ -274,8 +274,6 @@ class SuperTweetEval(datasets.GeneratorBasedBuilder):
274
  features["gold_score"] = datasets.Value("float32")
275
  if self.config.name == "tempo_wic":
276
  features["gold_label_binary"] = datasets.Value("int32")
277
- # features["token_idx_1"] = datasets.Value("int32")
278
- # features["token_idx_2"] = datasets.Value("int32")
279
  features["text_start_1"] = datasets.Value("int32")
280
  features["text_start_2"] = datasets.Value("int32")
281
  features["text_end_1"] = datasets.Value("int32")
@@ -285,9 +283,8 @@ class SuperTweetEval(datasets.GeneratorBasedBuilder):
285
  if self.config.name == "tweet_hate":
286
  label_classes = [
287
  'hate_gender','hate_race', 'hate_sexuality', 'hate_religion','hate_origin', 'hate_disability',
288
- 'target_age', 'not_hate']
289
  features['gold_label'] = datasets.features.ClassLabel(names=label_classes)
290
- #features["gold_label"] = datasets.Value("int32")
291
  features["text"] = datasets.Value("string")
292
  if self.config.name == "tweet_nerd":
293
  features['target'] = datasets.Value("string")
@@ -297,10 +294,14 @@ class SuperTweetEval(datasets.GeneratorBasedBuilder):
297
  features['text_end'] = datasets.Value("int32")
298
  features['gold_label_binary'] = datasets.Value("int32")
299
  if self.config.name == "tweet_emoji":
300
- features["gold_label"] = datasets.Value("int32")
 
 
 
301
  features["text"] = datasets.Value("string")
302
  if self.config.name == "tweet_sentiment":
303
- features["gold_label"] = datasets.Value("int32")
 
304
  features["text"] = datasets.Value("string")
305
  features["target"] = datasets.Value("string")
306
 
 
2
  import json
3
  import datasets
4
 
5
+ _VERSION = "0.1.38"
6
  _SUPER_TWEET_EVAL_CITATION = """TBA"""
7
  _SUPER_TWEET_EVAL_DESCRIPTION = """TBA"""
8
  _TWEET_TOPIC_DESCRIPTION = """
 
274
  features["gold_score"] = datasets.Value("float32")
275
  if self.config.name == "tempo_wic":
276
  features["gold_label_binary"] = datasets.Value("int32")
 
 
277
  features["text_start_1"] = datasets.Value("int32")
278
  features["text_start_2"] = datasets.Value("int32")
279
  features["text_end_1"] = datasets.Value("int32")
 
283
  if self.config.name == "tweet_hate":
284
  label_classes = [
285
  'hate_gender','hate_race', 'hate_sexuality', 'hate_religion','hate_origin', 'hate_disability',
286
+ 'hate_age', 'not_hate']
287
  features['gold_label'] = datasets.features.ClassLabel(names=label_classes)
 
288
  features["text"] = datasets.Value("string")
289
  if self.config.name == "tweet_nerd":
290
  features['target'] = datasets.Value("string")
 
294
  features['text_end'] = datasets.Value("int32")
295
  features['gold_label_binary'] = datasets.Value("int32")
296
  if self.config.name == "tweet_emoji":
297
+ with open('./data/tweet_emoji/map.txt') as f:
298
+ label_classes = f.readlines()
299
+ label_classes = [x.strip('\n') for x in label_classes]
300
+ features['gold_label'] = datasets.features.ClassLabel(names=label_classes)
301
  features["text"] = datasets.Value("string")
302
  if self.config.name == "tweet_sentiment":
303
+ label_classes = ["strongly negative", "negative", "negative or neutral", "positive", "strongly positive"]
304
+ features['gold_label'] = datasets.features.ClassLabel(names=label_classes)
305
  features["text"] = datasets.Value("string")
306
  features["target"] = datasets.Value("string")
307