antypasd commited on
Commit
9679397
·
1 Parent(s): 9b0461e

added evaluation script/updated README

Browse files
Files changed (3) hide show
  1. README.md +30 -25
  2. evaluation.py +306 -0
  3. super_tweeteval.py +7 -8
README.md CHANGED
@@ -41,20 +41,20 @@ More details on the task and an evaluation of language models can be found on th
41
 
42
  All tasks provide custom training, validation and test splits.
43
 
44
- | task | description | number of instances |
45
- |:-----------------|:-----------------------------------|:----------------------|
46
- | tweet_topic | multi-label classification | 4,585 / 573 / 1,679 |
47
- | tweet_ner7 | sequence labeling | 4,616 / 576 / 2,807 |
48
- | tweet_qa | generation | 9,489 / 1,086 / 1,203 |
49
- | tweet_qg | generation | 9,489 / 1,086 / 1,203 |
50
- | tweet_intimacy | regression on a single text | 1,191 / 396 / 396 |
51
- | tweet_similarity | regression on two texts | 450 / 100 / 450 |
52
- | tempo_wic | binary classification on two texts | 1,427 / 395 / 1,472 |
53
- | tweet_hate | multi-class classification | 5,019 / 716 / 1,433 |
54
- | tweet_emoji | multi-class classification | 50,000 / 5,000 / 50,000 |
55
- | tweet_sentiment | ABSA on a five-pointscale | 26,632 / 4,000 / 12,379 |
56
- | tweet_nerd | binary classification | 20,164 / 4,100 / 20,075 |
57
- | tweet_emotion | multi-label classification | 6,838 / 886 / 3,259 |
58
 
59
  ## Dataset Structure
60
  ### Data Fields
@@ -134,26 +134,29 @@ In the following we present the information contained in each of the datasets.
134
 
135
 
136
  ## Evaluation Metrics
137
- - __tweet_topic:__ ```macro-F1```
138
-
139
- - __tweet_ner7:__ ```span-F1```
140
 
141
- - __tweet_qa:__ ```answer-F1```
142
 
143
- - __tweet_intimacy:__ ```accuracy```
144
 
145
- - __tweet_similarity:__ ```spearman correlation```
146
 
147
- - __tempo_wic:__ ```accuracy ```
148
 
149
- - __tweet_hate:__ ```accuracy```
150
 
151
  - __tweet_emoji:__ ``` accuracy at top 5 ```
152
 
153
- - __tweet_sentiment:__ ```accuracy```
154
 
155
- - __tweet_nerd:__ ```accuracy```
156
 
 
 
 
 
 
157
 
158
 
159
  ## Citation Information
@@ -289,7 +292,9 @@ N/A
289
  ```
290
 
291
  - TweetEmoji
292
- ```N/A``
 
 
293
 
294
  - TweetSentiment
295
  ```
 
41
 
42
  All tasks provide custom training, validation and test splits.
43
 
44
+ | **task** | **dataset** | **load dataset** | **description** | **number of instances** |
45
+ |----------------------------|----------------|------------------|------------------------------------|-------------------------|
46
+ | Topic Classification | TWEETTOPIC | tweet_topic | multi-label classification | 4,585 / 573 / 1,679 |
47
+ | NER | TWEETNER7 | tweet_ner7 | sequence labeling | 4,616 / 576 / 2,807 |
48
+ | Question Answering | TWEETQA | tweet_qa | generation | 9,489 / 1,086 / 1,203 |
49
+ | Question Generation | TWEETQG | tweet_qg | generation | 9,489 / 1,086 / 1,203 |
50
+ | Intimacy Analysis | TWEETINTIMACY | tweet_intimacy | regression on a single text | 1,191 / 396 / 396 |
51
+ | Tweet Similarity | TWEETSIM | tweet_similarity | regression on two texts | 450 / 100 / 450 |
52
+ | Meaning Shift Detection | TEMPOWIC | tempo_wic | binary classification on two texts | 1,427 / 395 / 1,472 |
53
+ | Hate Speech Detection | TWEETHATE | tweet_hate | multi-class classification | 5,019 / 716 / 1,433 |
54
+ | Emoji Classification | TWEETEMOJI100 | tweet_emoji | multi-class classification | 50,000 / 5,000 / 50,000 |
55
+ | Sentiment Classification | TWEETSENTIMENT | tweet_sentiment | ABSA on a five-pointscale | 26,632 / 4,000 / 12,379 |
56
+ | Name Entity Disambiguation | TWEETNERD | tweet_nerd | binary classification | 20,164 / 4,100 / 20,075 |
57
+ | Emotion Classification | TWEETEMOTION | tweet_emotion | multi-label classification | 6,838 / 886 / 3,259 |
58
 
59
  ## Dataset Structure
60
  ### Data Fields
 
134
 
135
 
136
  ## Evaluation Metrics
137
+ - __tweet_ner7:__ ```macro-F1```
 
 
138
 
139
+ - __tweet_emotion:__ ```macro-F1```
140
 
141
+ - __tweet_qg:__ ```METEOR```
142
 
143
+ - __tweet_nerd:__ ```accuracy```
144
 
145
+ - __tweet_sentiment:__ ```1 - MAE<sup>M</sup> (MAE<sup>M</sup>: Macro Averaged Mean Absolute Error )```
146
 
147
+ - __tempo_wic:__ ```accuracy```
148
 
149
  - __tweet_emoji:__ ``` accuracy at top 5 ```
150
 
151
+ - __tweet_intimacy:__ ```spearman correlation```
152
 
153
+ - __tweet_qa:__ ```answer-F1```
154
 
155
+ - __tweet_topic:__ ```macro-F1```
156
+
157
+ - __tweet_hate:__ ```combined-F1 (micro-F1 for hate/not-hate & macro-F1 for hate speech subclasses)```
158
+
159
+ - __tweet_similarity:__ ```spearman correlation```
160
 
161
 
162
  ## Citation Information
 
292
  ```
293
 
294
  - TweetEmoji
295
+ ```
296
+ N/A
297
+ ```
298
 
299
  - TweetSentiment
300
  ```
evaluation.py ADDED
@@ -0,0 +1,306 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ from datasets import load_dataset
3
+ from imblearn.metrics import macro_averaged_mean_absolute_error
4
+ from sklearn.metrics import f1_score
5
+ from evaluate import load
6
+ import numpy as np
7
+ import argparse
8
+ from collections import defaultdict
9
+
10
+
11
+ logging.basicConfig(format='%(asctime)s %(levelname)-8s %(message)s', level=logging.INFO, datefmt='%Y-%m-%d %H:%M:%S')
12
+
13
+ # argument
14
+ parser = argparse.ArgumentParser(description='Super TweetEval evaluation script.')
15
+ parser.add_argument('-p', '--prediction-path', required=True, type=str,
16
+ help="a text file that contains the model prediction on the test set in each line")
17
+ parser.add_argument('-o', '--output-file', default="super_tweeteval_result.json", type=str, help="path to the output file")
18
+ parser.add_argument('--t2t-format', action="store_false", default=True, help="format prediction file in T2T format (ONLY for NER7)")
19
+
20
+
21
+ opt = parser.parse_args()
22
+
23
+ task_names = ['tweet_topic', 'tweet_ner7', 'tweet_qa', 'tweet_qg',
24
+ 'tweet_intimacy', 'tweet_similarity', 'tempo_wic',
25
+ 'tweet_hate', 'tweet_nerd', 'tweet_emoji',
26
+ 'tweet_sentiment', 'tweet_emotion']
27
+
28
+ scores = defaultdict(lambda : 0) #{k:0 for k in task_names}
29
+ not_found = []
30
+
31
+ for task in task_names:
32
+ # load dataset
33
+ data = load_dataset("cardiffnlp/super_tweeteval", task, use_auth_token=True, split="test")
34
+ try:
35
+ if task == 'tempo_wic':
36
+ label2id = {"no": 0, "yes": 1}
37
+
38
+ with open(f"{opt.prediction_path}/tempo-wic.txt") as f:
39
+ _predictions = []
40
+ output = f.read().split('\n')
41
+ for entry in output:
42
+ if entry in label2id:
43
+ _predictions.append(label2id[entry])
44
+ else:
45
+ _predictions.append(-1)
46
+
47
+ gold_labels = data["gold_label_binary"]
48
+ eval_metric = {"accuracy": np.mean([int(a == b) for a, b in zip(_predictions, gold_labels)])}
49
+ scores[task] = eval_metric["accuracy"]
50
+ elif task == "tweet_emoji":
51
+ with open('./emoji_map.csv') as f:
52
+ label_classes = f.readlines()
53
+ label_names = [x.strip('\n') for x in label_classes]
54
+
55
+
56
+ label_names = [x.split(',')[1] for x in label_names]
57
+
58
+ with open(f"{opt.prediction_path}/tweet-emoji.txt") as f:
59
+ lines = f.readlines()
60
+ lines = [l.strip('\n') for l in lines]
61
+ predictions = []
62
+
63
+ for l in lines:
64
+ pred_instance = []
65
+ # consider only top 5 predictions
66
+
67
+ lines = l.split(',') if ',' in l else l.split(' ')
68
+ for label in lines[:5]:
69
+ label = label.strip(" ,")
70
+ if label in label_names:
71
+ pred_instance.append(label_names.index(label))
72
+ else:
73
+ pred_instance.append(-1) # emoji not in label_names
74
+
75
+ predictions.append(pred_instance)
76
+
77
+ # metric: accuracy at top 5
78
+ gold_labels = np.array(data["gold_label"][:40_000])
79
+ eval_metric = {"accuracy_top5": np.mean([1 if gold_labels[i] in predictions[i] else 0 for i in range(len(gold_labels))])}
80
+ scores[task] = eval_metric["accuracy_top5"]
81
+ elif task == "tweet_emotion":
82
+ label_names = data.features['gold_label_list'].feature.names
83
+
84
+ with open(f"{opt.prediction_path}/tweet-emotion.txt") as f:
85
+ lines = f.readlines()
86
+ lines = [l.strip('\n') for l in lines]
87
+ predictions = []
88
+ for l in lines:
89
+ pred_instance = [0] * len(label_names)
90
+ for label in l.split(','):
91
+ label = label.strip(' ')
92
+ if label in label_names:
93
+ pred_instance[label_names.index(label)] = 1
94
+
95
+ predictions.append(pred_instance)
96
+
97
+ # metric
98
+ gold_labels = data["gold_label_list"]
99
+ eval_metric = {"macro_f1": f1_score(gold_labels, predictions, average='macro')}
100
+ scores[task] = eval_metric["macro_f1"]
101
+ elif task == "tweet_ner7":
102
+ labels = [
103
+ 'B-corporation', 'B-creative_work', 'B-event', 'B-group', 'B-location', 'B-person', 'B-product',
104
+ 'I-corporation', 'I-creative_work', 'I-event', 'I-group', 'I-location', 'I-person', 'I-product', 'O'
105
+ ]
106
+ id2label = {i: label for i, label in enumerate(labels)}
107
+ true_sequence = [[id2label[i] for i in ii] for ii in data['gold_label_sequence']]
108
+
109
+ # metric
110
+ metric = load("seqeval")
111
+ if opt.t2t_format:
112
+ # format prediction file in IOB sequence
113
+ with open(f"{opt.prediction_path}/tweet-ner7.txt") as f:
114
+ lines = f.read().split("\n")
115
+ output = [l.strip('\n') for l in lines]
116
+ output = [list(set(i.split(","))) for i in output]
117
+ prediction_sequence = []
118
+ for d, o in zip(data, output):
119
+ tag_seq = ['O'] * len(d['text_tokenized'])
120
+ for _o in o:
121
+ if len(_o.split(":")) != 2:
122
+ continue
123
+ entity, _type = _o.split(":")
124
+ entity_tokens = entity.split(" ")
125
+ try:
126
+ i = d['text_tokenized'].index(entity_tokens[0])
127
+ tag_seq[i] = f"B-{_type.strip()}"
128
+ if len(entity_tokens) > 1:
129
+ for j in range(1, len(entity_tokens)):
130
+ tag_seq[i + j] = f"I-{_type.strip()}"
131
+ except:
132
+ continue
133
+ prediction_sequence.append(tag_seq)
134
+ else:
135
+ with open(opt.prediction_file) as f:
136
+ prediction_sequence = [[id2label[j] if j in id2label else j for j in i.split('\t')] for i in f.read().split("\n")]
137
+
138
+ eval_metric = metric.compute(predictions=prediction_sequence, references=true_sequence)
139
+ eval_metric = {'overall_f1': eval_metric['overall_f1']}
140
+ scores[task] = eval_metric['overall_f1']
141
+ elif task == "tweet_hate":
142
+ label_names = data.features['gold_label'].names
143
+
144
+ with open(f"{opt.prediction_path}/tweet-hate.txt") as f:
145
+ lines = f.readlines()
146
+ output = [i.strip('\n') for i in lines]
147
+ predictions = []
148
+ for x in output:
149
+ if x not in label_names:
150
+ predictions.append(-1)
151
+ else:
152
+ predictions.append(label_names.index(x))
153
+ gold_labels = data["gold_label"]
154
+ # do not consider not_hate class
155
+ f1_multi = f1_score(gold_labels, predictions, labels=list(range(7)), average='macro')
156
+
157
+ # consider all hate subclasses as one class
158
+ predictions_binary = [1 if x in list(range(7)) else 0 for x in predictions]
159
+ gold_labels_binary = [1 if x in list(range(7)) else 0 for x in gold_labels]
160
+ f1_binary = f1_score(gold_labels_binary, predictions_binary, average='micro')
161
+
162
+ eval_metric = {"combined_f1": (f1_multi+f1_binary)/2}
163
+ scores[task] = eval_metric["combined_f1"]
164
+
165
+ elif task == "tweet_intimacy":
166
+ gold_labels = data["gold_score"]
167
+ # mean_value to be used if model outputs a non-numeric value
168
+ mean_value = sum(gold_labels)/len(gold_labels)
169
+
170
+ # metric
171
+ metric = load("spearmanr")
172
+ with open(f"{opt.prediction_path}/tweet-intimacy.txt") as f:
173
+ _predictions = []
174
+ lines = f.readlines()
175
+ output = [l.strip('\n') for l in lines]
176
+ for i in output:
177
+ try:
178
+ _predictions.append(float(i))
179
+ except ValueError:
180
+ _predictions.append(mean_value)
181
+ failed_predictions += 1
182
+
183
+ corr_spear = metric.compute(predictions=_predictions, references=gold_labels)
184
+ eval_metric = {"spearmanr": corr_spear}
185
+ scores[task] = eval_metric["spearmanr"]['spearmanr']
186
+ elif task == "tweet_nerd":
187
+ # metric
188
+ label2id = {"no": 0, "yes": 1}
189
+ with open(f"{opt.prediction_path}/tweet-nerd.txt") as f:
190
+ _predictions = []
191
+ output = f.read().split('\n')
192
+ output = [x.lower().strip() for x in output]
193
+ for entry in output:
194
+ if entry in label2id:
195
+ _predictions.append(label2id[entry])
196
+ else:
197
+ _predictions.append(-1)
198
+
199
+ gold_labels = data["gold_label_binary"]
200
+ eval_metric = {"accuracy": np.mean([int(a == b) for a, b in zip(_predictions, gold_labels)])}
201
+ scores[task] = eval_metric["accuracy"]
202
+ elif task == "tweet_qa":
203
+ metric = load("squad")
204
+ with open(f"{opt.prediction_path}/tweet-qa.txt") as f:
205
+ lines = f.readlines()
206
+ output = [l.strip('\n') for l in lines]
207
+ _predictions = [{"prediction_text": p, "id": str(_n)} for _n, p in enumerate(output)]
208
+
209
+ _references = [{"answers": {"answer_start": [100], "text": [r["gold_label_str"]]}, "id": str(_n)} for _n, r in enumerate(data)]
210
+ eval_metric = metric.compute(predictions=_predictions, references=_references)
211
+ eval_metric.pop("exact_match")
212
+ eval_metric["f1"] = eval_metric["f1"]/100
213
+ scores[task] = eval_metric["f1"]
214
+ elif task == "tweet_qg":
215
+ metric = load("meteor")
216
+ with open(f"{opt.prediction_path}/tweet-qg.txt") as f:
217
+ lines = f.readlines()
218
+ _predictions = [l.strip('\n') for l in lines]
219
+ _references = data["gold_label_str"]
220
+ eval_metric = metric.compute(predictions=_predictions, references=_references)
221
+ scores[task] = eval_metric["meteor"]
222
+ elif task == "tweet_sentiment":
223
+ label_names = data.features['gold_label'].names
224
+ with open(f"{opt.prediction_path}/tweet-sentiment.txt") as f:
225
+ lines = f.readlines()
226
+ output = [l.strip('\n') for l in lines]
227
+ predictions = []
228
+ # if the model outputs a label that is not in the label set, we set the label to be "neutral or negative" (2)
229
+ for x in output:
230
+ x = x.strip(' ')
231
+ if x not in label_names:
232
+ predictions.append(2)
233
+ else:
234
+ predictions.append(label_names.index(x))
235
+
236
+ # metric: r2 score
237
+ gold_labels = data["gold_label"]
238
+
239
+ macro_mae = macro_averaged_mean_absolute_error(gold_labels, predictions)
240
+ macro_mae = 1 - macro_mae
241
+ # set a floor of -1 for worst model
242
+ macro_mae = max([-1, macro_mae])
243
+ eval_metric = {"macro_mae": macro_mae}
244
+ scores[task] = eval_metric["macro_mae"]
245
+ elif task == "tweet_similarity":
246
+ gold_labels = data["gold_score"]
247
+ # mean_value to be used if model outputs a non-numeric value
248
+ mean_value = sum(gold_labels)/len(gold_labels)
249
+ # metric
250
+ metric = load("spearmanr")
251
+ with open(f"{opt.prediction_path}/tweet-similarity.txt") as f:
252
+ _predictions = []
253
+ lines = f.readlines()
254
+ output = [l.strip('\n') for l in lines]
255
+ for i in output:
256
+ try:
257
+ _predictions.append(float(i))
258
+ except ValueError:
259
+ _predictions.append(mean_value)
260
+
261
+ corr_spear = metric.compute(predictions=_predictions, references=gold_labels)
262
+ eval_metric = {"spearmanr": corr_spear}
263
+ scores[task] = eval_metric["spearmanr"]['spearmanr']
264
+ elif task == "tweet_topic":
265
+ label_names = data.features['gold_label_list'].feature.names
266
+
267
+ with open(f"{opt.prediction_path}/tweet-topic.txt") as f:
268
+ lines = f.readlines()
269
+ lines = [l.strip('\n') for l in lines]
270
+ predictions = []
271
+ for l in lines:
272
+ pred_instance = [0] * len(label_names)
273
+ for label in l.split(','):
274
+ label = label.strip(' ')
275
+ if label in label_names:
276
+ pred_instance[label_names.index(label)] = 1
277
+
278
+ predictions.append(pred_instance)
279
+
280
+ # metric
281
+ gold_labels = data["gold_label_list"]
282
+ eval_metric = {"macro_f1": f1_score(gold_labels, predictions, average='macro')}
283
+ scores[task] = eval_metric["macro_f1"]
284
+ except FileNotFoundError:
285
+ not_found.append(task)
286
+ continue
287
+
288
+ # clusters/groups to evaluate
289
+ subgroups = {
290
+ "temporal": ["tweet_ner7", "tempo_wic", "tweet_topic", "tweet_nerd"],
291
+ "temporal**": ["tempo_wic", "tweet_topic", "tweet_nerd"],
292
+ "multi-label": ["tweet_topic", "tweet_emotion"],
293
+ "multi-class": ["tweet_sentiment", "tweet_hate"],
294
+ "regression": ["tweet_similarity", "tweet_intimacy", "tweet_sentiment"],
295
+ "target-based": ["tweet_sentiment", "tempo_wic", "tweet_nerd"],
296
+ "big-label": ["tweet_emoji", "tweet_topic"],
297
+ "disambiguation": ["tempo_wic", "tweet_nerd"],
298
+ "generation": ["tweet_qa", "tweet_qg"],
299
+ }
300
+
301
+ scores = {k:round(v*100, 2) for k,v in scores.items()}
302
+ logging.info(f"Tasks not found: {not_found}")
303
+ logging.info(f"Scores: {scores}")
304
+ logging.info(f"Average score: {np.mean(list(scores.values()))}")
305
+ for group in subgroups:
306
+ logging.info(f"Average score {group}: {np.mean([scores[task] for task in subgroups[group] if task not in not_found])}")
super_tweeteval.py CHANGED
@@ -341,14 +341,13 @@ class SuperTweetEval(datasets.GeneratorBasedBuilder):
341
  features['date'] = datasets.Value("string")
342
  if self.config.name == "tweet_emoji":
343
  # download class mapping
344
- # Temporary disabled (till made public)
345
- # dl_manager = datasets.utils.download_manager.DownloadManager()
346
- # url_map = "https://huggingface.co/datasets/cardiffnlp/super_tweet_eval/resolve/main/data/tweet_emoji/map.txt"
347
- # with open(dl_manager.download(url_map)) as f:
348
- # label_classes = f.readlines()
349
- # label_classes = [x.strip('\n') for x in label_classes]
350
- # features['gold_label'] = datasets.features.ClassLabel(
351
- # names=label_classes)
352
  features['gold_label'] = datasets.Value("int32")
353
  features["text"] = datasets.Value("string")
354
  if self.config.name == "tweet_sentiment":
 
341
  features['date'] = datasets.Value("string")
342
  if self.config.name == "tweet_emoji":
343
  # download class mapping
344
+ dl_manager = datasets.utils.download_manager.DownloadManager()
345
+ url_map = "https://huggingface.co/datasets/cardiffnlp/super_tweet_eval/resolve/main/data/tweet_emoji/map.txt"
346
+ with open(dl_manager.download(url_map)) as f:
347
+ label_classes = f.readlines()
348
+ label_classes = [x.strip('\n') for x in label_classes]
349
+ features['gold_label'] = datasets.features.ClassLabel(
350
+ names=label_classes)
 
351
  features['gold_label'] = datasets.Value("int32")
352
  features["text"] = datasets.Value("string")
353
  if self.config.name == "tweet_sentiment":