Keegan Skeate
commited on
Commit
β’
2b99de3
1
Parent(s):
33c4691
Refactored get results for MCR Labs and SC Labs
Browse files- .gitignore +8 -0
- LICENSE +395 -0
- README.md +58 -19
- algorithms/algorithm_constants.py +903 -0
- algorithms/algorithm_utils.py +240 -0
- algorithms/get_results_mcrlabs.py +63 -0
- algorithms/get_results_psilabs.py +714 -0
- algorithms/{get_all_rawgarden_data.py β get_results_rawgarden.py} +28 -21
- algorithms/get_results_sclabs.py +133 -0
- algorithms/get_results_sdpharmlabs.py +28 -0
- algorithms/get_results_washington_ccrs.py +471 -0
- algorithms/get_results_washington_leaf.py +490 -0
- algorithms/main.py +370 -0
- cannabis_tests.py +3 -3
- {rawgarden β data/rawgarden}/details.csv +0 -0
- {rawgarden β data/rawgarden}/results.csv +0 -0
- {rawgarden β data/rawgarden}/values.csv +0 -0
- requirements.txt +7 -0
- test.py +28 -0
.gitignore
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Ignore environment variables.
|
2 |
+
*.env
|
3 |
+
|
4 |
+
# Ignore temporary files.
|
5 |
+
*tmp
|
6 |
+
|
7 |
+
# Ignore PDFs.
|
8 |
+
*pdfs
|
LICENSE
ADDED
@@ -0,0 +1,395 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Attribution 4.0 International
|
2 |
+
|
3 |
+
=======================================================================
|
4 |
+
|
5 |
+
Creative Commons Corporation ("Creative Commons") is not a law firm and
|
6 |
+
does not provide legal services or legal advice. Distribution of
|
7 |
+
Creative Commons public licenses does not create a lawyer-client or
|
8 |
+
other relationship. Creative Commons makes its licenses and related
|
9 |
+
information available on an "as-is" basis. Creative Commons gives no
|
10 |
+
warranties regarding its licenses, any material licensed under their
|
11 |
+
terms and conditions, or any related information. Creative Commons
|
12 |
+
disclaims all liability for damages resulting from their use to the
|
13 |
+
fullest extent possible.
|
14 |
+
|
15 |
+
Using Creative Commons Public Licenses
|
16 |
+
|
17 |
+
Creative Commons public licenses provide a standard set of terms and
|
18 |
+
conditions that creators and other rights holders may use to share
|
19 |
+
original works of authorship and other material subject to copyright
|
20 |
+
and certain other rights specified in the public license below. The
|
21 |
+
following considerations are for informational purposes only, are not
|
22 |
+
exhaustive, and do not form part of our licenses.
|
23 |
+
|
24 |
+
Considerations for licensors: Our public licenses are
|
25 |
+
intended for use by those authorized to give the public
|
26 |
+
permission to use material in ways otherwise restricted by
|
27 |
+
copyright and certain other rights. Our licenses are
|
28 |
+
irrevocable. Licensors should read and understand the terms
|
29 |
+
and conditions of the license they choose before applying it.
|
30 |
+
Licensors should also secure all rights necessary before
|
31 |
+
applying our licenses so that the public can reuse the
|
32 |
+
material as expected. Licensors should clearly mark any
|
33 |
+
material not subject to the license. This includes other CC-
|
34 |
+
licensed material, or material used under an exception or
|
35 |
+
limitation to copyright. More considerations for licensors:
|
36 |
+
wiki.creativecommons.org/Considerations_for_licensors
|
37 |
+
|
38 |
+
Considerations for the public: By using one of our public
|
39 |
+
licenses, a licensor grants the public permission to use the
|
40 |
+
licensed material under specified terms and conditions. If
|
41 |
+
the licensor's permission is not necessary for any reason--for
|
42 |
+
example, because of any applicable exception or limitation to
|
43 |
+
copyright--then that use is not regulated by the license. Our
|
44 |
+
licenses grant only permissions under copyright and certain
|
45 |
+
other rights that a licensor has authority to grant. Use of
|
46 |
+
the licensed material may still be restricted for other
|
47 |
+
reasons, including because others have copyright or other
|
48 |
+
rights in the material. A licensor may make special requests,
|
49 |
+
such as asking that all changes be marked or described.
|
50 |
+
Although not required by our licenses, you are encouraged to
|
51 |
+
respect those requests where reasonable. More considerations
|
52 |
+
for the public:
|
53 |
+
wiki.creativecommons.org/Considerations_for_licensees
|
54 |
+
|
55 |
+
=======================================================================
|
56 |
+
|
57 |
+
Creative Commons Attribution 4.0 International Public License
|
58 |
+
|
59 |
+
By exercising the Licensed Rights (defined below), You accept and agree
|
60 |
+
to be bound by the terms and conditions of this Creative Commons
|
61 |
+
Attribution 4.0 International Public License ("Public License"). To the
|
62 |
+
extent this Public License may be interpreted as a contract, You are
|
63 |
+
granted the Licensed Rights in consideration of Your acceptance of
|
64 |
+
these terms and conditions, and the Licensor grants You such rights in
|
65 |
+
consideration of benefits the Licensor receives from making the
|
66 |
+
Licensed Material available under these terms and conditions.
|
67 |
+
|
68 |
+
|
69 |
+
Section 1 -- Definitions.
|
70 |
+
|
71 |
+
a. Adapted Material means material subject to Copyright and Similar
|
72 |
+
Rights that is derived from or based upon the Licensed Material
|
73 |
+
and in which the Licensed Material is translated, altered,
|
74 |
+
arranged, transformed, or otherwise modified in a manner requiring
|
75 |
+
permission under the Copyright and Similar Rights held by the
|
76 |
+
Licensor. For purposes of this Public License, where the Licensed
|
77 |
+
Material is a musical work, performance, or sound recording,
|
78 |
+
Adapted Material is always produced where the Licensed Material is
|
79 |
+
synched in timed relation with a moving image.
|
80 |
+
|
81 |
+
b. Adapter's License means the license You apply to Your Copyright
|
82 |
+
and Similar Rights in Your contributions to Adapted Material in
|
83 |
+
accordance with the terms and conditions of this Public License.
|
84 |
+
|
85 |
+
c. Copyright and Similar Rights means copyright and/or similar rights
|
86 |
+
closely related to copyright including, without limitation,
|
87 |
+
performance, broadcast, sound recording, and Sui Generis Database
|
88 |
+
Rights, without regard to how the rights are labeled or
|
89 |
+
categorized. For purposes of this Public License, the rights
|
90 |
+
specified in Section 2(b)(1)-(2) are not Copyright and Similar
|
91 |
+
Rights.
|
92 |
+
|
93 |
+
d. Effective Technological Measures means those measures that, in the
|
94 |
+
absence of proper authority, may not be circumvented under laws
|
95 |
+
fulfilling obligations under Article 11 of the WIPO Copyright
|
96 |
+
Treaty adopted on December 20, 1996, and/or similar international
|
97 |
+
agreements.
|
98 |
+
|
99 |
+
e. Exceptions and Limitations means fair use, fair dealing, and/or
|
100 |
+
any other exception or limitation to Copyright and Similar Rights
|
101 |
+
that applies to Your use of the Licensed Material.
|
102 |
+
|
103 |
+
f. Licensed Material means the artistic or literary work, database,
|
104 |
+
or other material to which the Licensor applied this Public
|
105 |
+
License.
|
106 |
+
|
107 |
+
g. Licensed Rights means the rights granted to You subject to the
|
108 |
+
terms and conditions of this Public License, which are limited to
|
109 |
+
all Copyright and Similar Rights that apply to Your use of the
|
110 |
+
Licensed Material and that the Licensor has authority to license.
|
111 |
+
|
112 |
+
h. Licensor means the individual(s) or entity(ies) granting rights
|
113 |
+
under this Public License.
|
114 |
+
|
115 |
+
i. Share means to provide material to the public by any means or
|
116 |
+
process that requires permission under the Licensed Rights, such
|
117 |
+
as reproduction, public display, public performance, distribution,
|
118 |
+
dissemination, communication, or importation, and to make material
|
119 |
+
available to the public including in ways that members of the
|
120 |
+
public may access the material from a place and at a time
|
121 |
+
individually chosen by them.
|
122 |
+
|
123 |
+
j. Sui Generis Database Rights means rights other than copyright
|
124 |
+
resulting from Directive 96/9/EC of the European Parliament and of
|
125 |
+
the Council of 11 March 1996 on the legal protection of databases,
|
126 |
+
as amended and/or succeeded, as well as other essentially
|
127 |
+
equivalent rights anywhere in the world.
|
128 |
+
|
129 |
+
k. You means the individual or entity exercising the Licensed Rights
|
130 |
+
under this Public License. Your has a corresponding meaning.
|
131 |
+
|
132 |
+
|
133 |
+
Section 2 -- Scope.
|
134 |
+
|
135 |
+
a. License grant.
|
136 |
+
|
137 |
+
1. Subject to the terms and conditions of this Public License,
|
138 |
+
the Licensor hereby grants You a worldwide, royalty-free,
|
139 |
+
non-sublicensable, non-exclusive, irrevocable license to
|
140 |
+
exercise the Licensed Rights in the Licensed Material to:
|
141 |
+
|
142 |
+
a. reproduce and Share the Licensed Material, in whole or
|
143 |
+
in part; and
|
144 |
+
|
145 |
+
b. produce, reproduce, and Share Adapted Material.
|
146 |
+
|
147 |
+
2. Exceptions and Limitations. For the avoidance of doubt, where
|
148 |
+
Exceptions and Limitations apply to Your use, this Public
|
149 |
+
License does not apply, and You do not need to comply with
|
150 |
+
its terms and conditions.
|
151 |
+
|
152 |
+
3. Term. The term of this Public License is specified in Section
|
153 |
+
6(a).
|
154 |
+
|
155 |
+
4. Media and formats; technical modifications allowed. The
|
156 |
+
Licensor authorizes You to exercise the Licensed Rights in
|
157 |
+
all media and formats whether now known or hereafter created,
|
158 |
+
and to make technical modifications necessary to do so. The
|
159 |
+
Licensor waives and/or agrees not to assert any right or
|
160 |
+
authority to forbid You from making technical modifications
|
161 |
+
necessary to exercise the Licensed Rights, including
|
162 |
+
technical modifications necessary to circumvent Effective
|
163 |
+
Technological Measures. For purposes of this Public License,
|
164 |
+
simply making modifications authorized by this Section 2(a)
|
165 |
+
(4) never produces Adapted Material.
|
166 |
+
|
167 |
+
5. Downstream recipients.
|
168 |
+
|
169 |
+
a. Offer from the Licensor -- Licensed Material. Every
|
170 |
+
recipient of the Licensed Material automatically
|
171 |
+
receives an offer from the Licensor to exercise the
|
172 |
+
Licensed Rights under the terms and conditions of this
|
173 |
+
Public License.
|
174 |
+
|
175 |
+
b. No downstream restrictions. You may not offer or impose
|
176 |
+
any additional or different terms or conditions on, or
|
177 |
+
apply any Effective Technological Measures to, the
|
178 |
+
Licensed Material if doing so restricts exercise of the
|
179 |
+
Licensed Rights by any recipient of the Licensed
|
180 |
+
Material.
|
181 |
+
|
182 |
+
6. No endorsement. Nothing in this Public License constitutes or
|
183 |
+
may be construed as permission to assert or imply that You
|
184 |
+
are, or that Your use of the Licensed Material is, connected
|
185 |
+
with, or sponsored, endorsed, or granted official status by,
|
186 |
+
the Licensor or others designated to receive attribution as
|
187 |
+
provided in Section 3(a)(1)(A)(i).
|
188 |
+
|
189 |
+
b. Other rights.
|
190 |
+
|
191 |
+
1. Moral rights, such as the right of integrity, are not
|
192 |
+
licensed under this Public License, nor are publicity,
|
193 |
+
privacy, and/or other similar personality rights; however, to
|
194 |
+
the extent possible, the Licensor waives and/or agrees not to
|
195 |
+
assert any such rights held by the Licensor to the limited
|
196 |
+
extent necessary to allow You to exercise the Licensed
|
197 |
+
Rights, but not otherwise.
|
198 |
+
|
199 |
+
2. Patent and trademark rights are not licensed under this
|
200 |
+
Public License.
|
201 |
+
|
202 |
+
3. To the extent possible, the Licensor waives any right to
|
203 |
+
collect royalties from You for the exercise of the Licensed
|
204 |
+
Rights, whether directly or through a collecting society
|
205 |
+
under any voluntary or waivable statutory or compulsory
|
206 |
+
licensing scheme. In all other cases the Licensor expressly
|
207 |
+
reserves any right to collect such royalties.
|
208 |
+
|
209 |
+
|
210 |
+
Section 3 -- License Conditions.
|
211 |
+
|
212 |
+
Your exercise of the Licensed Rights is expressly made subject to the
|
213 |
+
following conditions.
|
214 |
+
|
215 |
+
a. Attribution.
|
216 |
+
|
217 |
+
1. If You Share the Licensed Material (including in modified
|
218 |
+
form), You must:
|
219 |
+
|
220 |
+
a. retain the following if it is supplied by the Licensor
|
221 |
+
with the Licensed Material:
|
222 |
+
|
223 |
+
i. identification of the creator(s) of the Licensed
|
224 |
+
Material and any others designated to receive
|
225 |
+
attribution, in any reasonable manner requested by
|
226 |
+
the Licensor (including by pseudonym if
|
227 |
+
designated);
|
228 |
+
|
229 |
+
ii. a copyright notice;
|
230 |
+
|
231 |
+
iii. a notice that refers to this Public License;
|
232 |
+
|
233 |
+
iv. a notice that refers to the disclaimer of
|
234 |
+
warranties;
|
235 |
+
|
236 |
+
v. a URI or hyperlink to the Licensed Material to the
|
237 |
+
extent reasonably practicable;
|
238 |
+
|
239 |
+
b. indicate if You modified the Licensed Material and
|
240 |
+
retain an indication of any previous modifications; and
|
241 |
+
|
242 |
+
c. indicate the Licensed Material is licensed under this
|
243 |
+
Public License, and include the text of, or the URI or
|
244 |
+
hyperlink to, this Public License.
|
245 |
+
|
246 |
+
2. You may satisfy the conditions in Section 3(a)(1) in any
|
247 |
+
reasonable manner based on the medium, means, and context in
|
248 |
+
which You Share the Licensed Material. For example, it may be
|
249 |
+
reasonable to satisfy the conditions by providing a URI or
|
250 |
+
hyperlink to a resource that includes the required
|
251 |
+
information.
|
252 |
+
|
253 |
+
3. If requested by the Licensor, You must remove any of the
|
254 |
+
information required by Section 3(a)(1)(A) to the extent
|
255 |
+
reasonably practicable.
|
256 |
+
|
257 |
+
4. If You Share Adapted Material You produce, the Adapter's
|
258 |
+
License You apply must not prevent recipients of the Adapted
|
259 |
+
Material from complying with this Public License.
|
260 |
+
|
261 |
+
|
262 |
+
Section 4 -- Sui Generis Database Rights.
|
263 |
+
|
264 |
+
Where the Licensed Rights include Sui Generis Database Rights that
|
265 |
+
apply to Your use of the Licensed Material:
|
266 |
+
|
267 |
+
a. for the avoidance of doubt, Section 2(a)(1) grants You the right
|
268 |
+
to extract, reuse, reproduce, and Share all or a substantial
|
269 |
+
portion of the contents of the database;
|
270 |
+
|
271 |
+
b. if You include all or a substantial portion of the database
|
272 |
+
contents in a database in which You have Sui Generis Database
|
273 |
+
Rights, then the database in which You have Sui Generis Database
|
274 |
+
Rights (but not its individual contents) is Adapted Material; and
|
275 |
+
|
276 |
+
c. You must comply with the conditions in Section 3(a) if You Share
|
277 |
+
all or a substantial portion of the contents of the database.
|
278 |
+
|
279 |
+
For the avoidance of doubt, this Section 4 supplements and does not
|
280 |
+
replace Your obligations under this Public License where the Licensed
|
281 |
+
Rights include other Copyright and Similar Rights.
|
282 |
+
|
283 |
+
|
284 |
+
Section 5 -- Disclaimer of Warranties and Limitation of Liability.
|
285 |
+
|
286 |
+
a. UNLESS OTHERWISE SEPARATELY UNDERTAKEN BY THE LICENSOR, TO THE
|
287 |
+
EXTENT POSSIBLE, THE LICENSOR OFFERS THE LICENSED MATERIAL AS-IS
|
288 |
+
AND AS-AVAILABLE, AND MAKES NO REPRESENTATIONS OR WARRANTIES OF
|
289 |
+
ANY KIND CONCERNING THE LICENSED MATERIAL, WHETHER EXPRESS,
|
290 |
+
IMPLIED, STATUTORY, OR OTHER. THIS INCLUDES, WITHOUT LIMITATION,
|
291 |
+
WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR
|
292 |
+
PURPOSE, NON-INFRINGEMENT, ABSENCE OF LATENT OR OTHER DEFECTS,
|
293 |
+
ACCURACY, OR THE PRESENCE OR ABSENCE OF ERRORS, WHETHER OR NOT
|
294 |
+
KNOWN OR DISCOVERABLE. WHERE DISCLAIMERS OF WARRANTIES ARE NOT
|
295 |
+
ALLOWED IN FULL OR IN PART, THIS DISCLAIMER MAY NOT APPLY TO YOU.
|
296 |
+
|
297 |
+
b. TO THE EXTENT POSSIBLE, IN NO EVENT WILL THE LICENSOR BE LIABLE
|
298 |
+
TO YOU ON ANY LEGAL THEORY (INCLUDING, WITHOUT LIMITATION,
|
299 |
+
NEGLIGENCE) OR OTHERWISE FOR ANY DIRECT, SPECIAL, INDIRECT,
|
300 |
+
INCIDENTAL, CONSEQUENTIAL, PUNITIVE, EXEMPLARY, OR OTHER LOSSES,
|
301 |
+
COSTS, EXPENSES, OR DAMAGES ARISING OUT OF THIS PUBLIC LICENSE OR
|
302 |
+
USE OF THE LICENSED MATERIAL, EVEN IF THE LICENSOR HAS BEEN
|
303 |
+
ADVISED OF THE POSSIBILITY OF SUCH LOSSES, COSTS, EXPENSES, OR
|
304 |
+
DAMAGES. WHERE A LIMITATION OF LIABILITY IS NOT ALLOWED IN FULL OR
|
305 |
+
IN PART, THIS LIMITATION MAY NOT APPLY TO YOU.
|
306 |
+
|
307 |
+
c. The disclaimer of warranties and limitation of liability provided
|
308 |
+
above shall be interpreted in a manner that, to the extent
|
309 |
+
possible, most closely approximates an absolute disclaimer and
|
310 |
+
waiver of all liability.
|
311 |
+
|
312 |
+
|
313 |
+
Section 6 -- Term and Termination.
|
314 |
+
|
315 |
+
a. This Public License applies for the term of the Copyright and
|
316 |
+
Similar Rights licensed here. However, if You fail to comply with
|
317 |
+
this Public License, then Your rights under this Public License
|
318 |
+
terminate automatically.
|
319 |
+
|
320 |
+
b. Where Your right to use the Licensed Material has terminated under
|
321 |
+
Section 6(a), it reinstates:
|
322 |
+
|
323 |
+
1. automatically as of the date the violation is cured, provided
|
324 |
+
it is cured within 30 days of Your discovery of the
|
325 |
+
violation; or
|
326 |
+
|
327 |
+
2. upon express reinstatement by the Licensor.
|
328 |
+
|
329 |
+
For the avoidance of doubt, this Section 6(b) does not affect any
|
330 |
+
right the Licensor may have to seek remedies for Your violations
|
331 |
+
of this Public License.
|
332 |
+
|
333 |
+
c. For the avoidance of doubt, the Licensor may also offer the
|
334 |
+
Licensed Material under separate terms or conditions or stop
|
335 |
+
distributing the Licensed Material at any time; however, doing so
|
336 |
+
will not terminate this Public License.
|
337 |
+
|
338 |
+
d. Sections 1, 5, 6, 7, and 8 survive termination of this Public
|
339 |
+
License.
|
340 |
+
|
341 |
+
|
342 |
+
Section 7 -- Other Terms and Conditions.
|
343 |
+
|
344 |
+
a. The Licensor shall not be bound by any additional or different
|
345 |
+
terms or conditions communicated by You unless expressly agreed.
|
346 |
+
|
347 |
+
b. Any arrangements, understandings, or agreements regarding the
|
348 |
+
Licensed Material not stated herein are separate from and
|
349 |
+
independent of the terms and conditions of this Public License.
|
350 |
+
|
351 |
+
|
352 |
+
Section 8 -- Interpretation.
|
353 |
+
|
354 |
+
a. For the avoidance of doubt, this Public License does not, and
|
355 |
+
shall not be interpreted to, reduce, limit, restrict, or impose
|
356 |
+
conditions on any use of the Licensed Material that could lawfully
|
357 |
+
be made without permission under this Public License.
|
358 |
+
|
359 |
+
b. To the extent possible, if any provision of this Public License is
|
360 |
+
deemed unenforceable, it shall be automatically reformed to the
|
361 |
+
minimum extent necessary to make it enforceable. If the provision
|
362 |
+
cannot be reformed, it shall be severed from this Public License
|
363 |
+
without affecting the enforceability of the remaining terms and
|
364 |
+
conditions.
|
365 |
+
|
366 |
+
c. No term or condition of this Public License will be waived and no
|
367 |
+
failure to comply consented to unless expressly agreed to by the
|
368 |
+
Licensor.
|
369 |
+
|
370 |
+
d. Nothing in this Public License constitutes or may be interpreted
|
371 |
+
as a limitation upon, or waiver of, any privileges and immunities
|
372 |
+
that apply to the Licensor or You, including from the legal
|
373 |
+
processes of any jurisdiction or authority.
|
374 |
+
|
375 |
+
|
376 |
+
=======================================================================
|
377 |
+
|
378 |
+
Creative Commons is not a party to its public
|
379 |
+
licenses. Notwithstanding, Creative Commons may elect to apply one of
|
380 |
+
its public licenses to material it publishes and in those instances
|
381 |
+
will be considered the βLicensor.β The text of the Creative Commons
|
382 |
+
public licenses is dedicated to the public domain under the CC0 Public
|
383 |
+
Domain Dedication. Except for the limited purpose of indicating that
|
384 |
+
material is shared under a Creative Commons public license or as
|
385 |
+
otherwise permitted by the Creative Commons policies published at
|
386 |
+
creativecommons.org/policies, Creative Commons does not authorize the
|
387 |
+
use of the trademark "Creative Commons" or any other trademark or logo
|
388 |
+
of Creative Commons without its prior written consent including,
|
389 |
+
without limitation, in connection with any unauthorized modifications
|
390 |
+
to any of its public licenses or any other arrangements,
|
391 |
+
understandings, or agreements concerning use of licensed material. For
|
392 |
+
the avoidance of doubt, this paragraph does not form part of the
|
393 |
+
public licenses.
|
394 |
+
|
395 |
+
Creative Commons may be contacted at creativecommons.org.
|
README.md
CHANGED
@@ -18,6 +18,10 @@ tags:
|
|
18 |
|
19 |
# Cannabis Tests, Curated by Cannlytics
|
20 |
|
|
|
|
|
|
|
|
|
21 |
## Table of Contents
|
22 |
- [Table of Contents](#table-of-contents)
|
23 |
- [Dataset Description](#dataset-description)
|
@@ -29,6 +33,7 @@ tags:
|
|
29 |
- [Dataset Creation](#dataset-creation)
|
30 |
- [Curation Rationale](#curation-rationale)
|
31 |
- [Source Data](#source-data)
|
|
|
32 |
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
33 |
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
34 |
- [Social Impact of Dataset](#social-impact-of-dataset)
|
@@ -48,18 +53,19 @@ tags:
|
|
48 |
|
49 |
### Dataset Summary
|
50 |
|
51 |
-
This dataset is a collection of public cannabis lab test results parsed by `CoADoc
|
52 |
|
53 |
## Dataset Structure
|
54 |
|
55 |
The dataset is partitioned into the various sources of lab results.
|
56 |
|
57 |
-
| Source | Observations |
|
58 |
-
|
59 |
-
| Raw Gardens | 2,667 |
|
60 |
-
| MCR Labs | Coming soon! |
|
61 |
-
| PSI Labs | Coming soon! |
|
62 |
-
| SC Labs | Coming soon! |
|
|
|
63 |
|
64 |
### Data Instances
|
65 |
|
@@ -123,8 +129,10 @@ Below is a non-exhaustive list of fields, used to standardize the various data t
|
|
123 |
| `total_thc` | 14.00 | The analytical total of THC and THCA. |
|
124 |
| `total_cbd` | 0.20 | The analytical total of CBD and CBDA. |
|
125 |
| `total_terpenes` | 0.42 | The sum of all terpenes measured. |
|
126 |
-
| `
|
127 |
-
| `
|
|
|
|
|
128 |
|
129 |
Each result can contain the following fields.
|
130 |
|
@@ -148,15 +156,17 @@ The data is split into `details`, `results`, and `values` data. Configurations f
|
|
148 |
```py
|
149 |
from cannlytics.data.coas import CoADoc
|
150 |
from datasets import load_dataset
|
|
|
151 |
|
152 |
# Download Raw Garden lab result details.
|
153 |
-
|
|
|
154 |
details = dataset['details']
|
155 |
|
156 |
# Save the data locally with "Details", "Results", and "Values" worksheets.
|
157 |
outfile = 'details.xlsx'
|
158 |
parser = CoADoc()
|
159 |
-
parser.save(details, outfile)
|
160 |
|
161 |
# Read the values.
|
162 |
values = pd.read_excel(outfile, sheet_name='Values')
|
@@ -181,15 +191,44 @@ Certificates of analysis (CoAs) are abundant for cannabis cultivators, processor
|
|
181 |
| PSI Labs Test Results | <https://results.psilabs.org/test-results/> |
|
182 |
| Raw Garden Test Results | <https://rawgarden.farm/lab-results/> |
|
183 |
| SC Labs Test Results | <https://client.sclabs.com/> |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
|
185 |
-
|
186 |
|
187 |
-
| Algorithm |
|
188 |
-
|
189 |
-
| MCR Labs
|
190 |
-
| PSI Labs
|
191 |
-
|
|
192 |
-
|
|
|
|
193 |
|
194 |
### Personal and Sensitive Information
|
195 |
|
@@ -265,4 +304,4 @@ Please cite the following if you use the code examples in your research:
|
|
265 |
|
266 |
### Contributions
|
267 |
|
268 |
-
Thanks to [π₯Cannlytics](https://cannlytics.com), [@candy-o](https://github.com/candy-o), [@keeganskeate](https://github.com/keeganskeate), [The CESC](https://thecesc.org), and the entire [Cannabis Data Science Team](https://meetup.com/cannabis-data-science/members) for their contributions.
|
|
|
18 |
|
19 |
# Cannabis Tests, Curated by Cannlytics
|
20 |
|
21 |
+
<div style="margin-top:1rem; margin-bottom: 1rem;">
|
22 |
+
<img width="240px" alt="" src="https://firebasestorage.googleapis.com/v0/b/cannlytics.appspot.com/o/public%2Fimages%2Fdatasets%2Fcannabis_tests%2Fcannabis_tests_curated_by_cannlytics.png?alt=media&token=22e4d1da-6b30-4c3f-9ff7-1954ac2739b2">
|
23 |
+
</div>
|
24 |
+
|
25 |
## Table of Contents
|
26 |
- [Table of Contents](#table-of-contents)
|
27 |
- [Dataset Description](#dataset-description)
|
|
|
33 |
- [Dataset Creation](#dataset-creation)
|
34 |
- [Curation Rationale](#curation-rationale)
|
35 |
- [Source Data](#source-data)
|
36 |
+
- [Data Collection and Normalization](#data-collection-and-normalization)
|
37 |
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
38 |
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
39 |
- [Social Impact of Dataset](#social-impact-of-dataset)
|
|
|
53 |
|
54 |
### Dataset Summary
|
55 |
|
56 |
+
This dataset is a collection of public cannabis lab test results parsed by [`CoADoc`](https://github.com/cannlytics/cannlytics/tree/main/cannlytics/data/coas), a certificate of analysis (COA) parsing tool.
|
57 |
|
58 |
## Dataset Structure
|
59 |
|
60 |
The dataset is partitioned into the various sources of lab results.
|
61 |
|
62 |
+
| Subset | Source | Observations |
|
63 |
+
|--------|--------|--------------|
|
64 |
+
| `rawgarden` | Raw Gardens | 2,667 |
|
65 |
+
| `mcrlabs` | MCR Labs | Coming soon! |
|
66 |
+
| `psilabs` | PSI Labs | Coming soon! |
|
67 |
+
| `sclabs` | SC Labs | Coming soon! |
|
68 |
+
| `washington` | Washington State | Coming soon! |
|
69 |
|
70 |
### Data Instances
|
71 |
|
|
|
129 |
| `total_thc` | 14.00 | The analytical total of THC and THCA. |
|
130 |
| `total_cbd` | 0.20 | The analytical total of CBD and CBDA. |
|
131 |
| `total_terpenes` | 0.42 | The sum of all terpenes measured. |
|
132 |
+
| `results_hash` | "{sha256-hash}" | An HMAC of the sample's `results` JSON signed with Cannlytics' public key, `"cannlytics.eth"`. |
|
133 |
+
| `sample_id` | "{sha256-hash}" | A generated ID to uniquely identify the `producer`, `product_name`, and `results`. |
|
134 |
+
| `sample_hash` | "{sha256-hash}" | An HMAC of the entire sample JSON signed with Cannlytics' public key, `"cannlytics.eth"`. |
|
135 |
+
<!-- | `strain_name` | "Blue Rhino" | A strain name, if specified. Otherwise, can be attempted to be parsed from the `product_name`. | -->
|
136 |
|
137 |
Each result can contain the following fields.
|
138 |
|
|
|
156 |
```py
|
157 |
from cannlytics.data.coas import CoADoc
|
158 |
from datasets import load_dataset
|
159 |
+
import pandas as pd
|
160 |
|
161 |
# Download Raw Garden lab result details.
|
162 |
+
repo = 'cannlytics/cannabis_tests'
|
163 |
+
dataset = load_dataset(repo, 'rawgarden')
|
164 |
details = dataset['details']
|
165 |
|
166 |
# Save the data locally with "Details", "Results", and "Values" worksheets.
|
167 |
outfile = 'details.xlsx'
|
168 |
parser = CoADoc()
|
169 |
+
parser.save(details.to_pandas(), outfile)
|
170 |
|
171 |
# Read the values.
|
172 |
values = pd.read_excel(outfile, sheet_name='Values')
|
|
|
191 |
| PSI Labs Test Results | <https://results.psilabs.org/test-results/> |
|
192 |
| Raw Garden Test Results | <https://rawgarden.farm/lab-results/> |
|
193 |
| SC Labs Test Results | <https://client.sclabs.com/> |
|
194 |
+
| Washington State Lab Test Results | <https://lcb.app.box.com/s/e89t59s0yb558tjoncjsid710oirqbgd> |
|
195 |
+
|
196 |
+
#### Data Collection and Normalization
|
197 |
+
|
198 |
+
You can recreate the dataset using the open source algorithms in the repository. First clone the repository:
|
199 |
+
|
200 |
+
```
|
201 |
+
git clone https://huggingface.co/datasets/cannlytics/cannabis_tests
|
202 |
+
```
|
203 |
+
|
204 |
+
You can then install the algorithm Python (3.9+) requirements:
|
205 |
+
|
206 |
+
```
|
207 |
+
cd cannabis_tests
|
208 |
+
pip install -r requirements.txt
|
209 |
+
```
|
210 |
+
|
211 |
+
Then you can run all of the data-collection algorithms:
|
212 |
+
|
213 |
+
```
|
214 |
+
python algorithms/main.py
|
215 |
+
```
|
216 |
+
|
217 |
+
Or you can run each algorithm individually. For example:
|
218 |
+
|
219 |
+
```
|
220 |
+
python algorithms/get_results_mcrlabs.py
|
221 |
+
```
|
222 |
|
223 |
+
In the `algorithms` directory, you can find the data collection scripts described in the table below.
|
224 |
|
225 |
+
| Algorithm | Organization | Description |
|
226 |
+
|-----------|---------------|-------------|
|
227 |
+
| `get_results_mcrlabs.py` | MCR Labs | Get lab results published by MCR Labs. |
|
228 |
+
| `get_results_psilabs.py` | PSI Labs | Get historic lab results published by MCR Labs. |
|
229 |
+
| `get_results_rawgarden.py` | Raw Garden | Get lab results Raw Garden publishes for their products. |
|
230 |
+
| `get_results_sclabs.py` | SC Labs | Get lab results published by SC Labs. |
|
231 |
+
| `get_results_washington.py` | Washington State | Get historic lab results obtained through a FOIA request in Washington State. |
|
232 |
|
233 |
### Personal and Sensitive Information
|
234 |
|
|
|
304 |
|
305 |
### Contributions
|
306 |
|
307 |
+
Thanks to [π₯Cannlytics](https://cannlytics.com), [@candy-o](https://github.com/candy-o), [@hcadeaux](https://huggingface.co/hcadeaux), [@keeganskeate](https://github.com/keeganskeate), [The CESC](https://thecesc.org), and the entire [Cannabis Data Science Team](https://meetup.com/cannabis-data-science/members) for their contributions.
|
algorithms/algorithm_constants.py
ADDED
@@ -0,0 +1,903 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Cannabis Tests | Algorithm Constants
|
3 |
+
Copyright (c) 2022 Cannlytics
|
4 |
+
|
5 |
+
Authors:
|
6 |
+
Keegan Skeate <https://github.com/keeganskeate>
|
7 |
+
Candace O'Sullivan-Sutherland <https://github.com/candy-o>
|
8 |
+
Created: 1/18/2022
|
9 |
+
Updated: 9/16/2022
|
10 |
+
License: CC-BY 4.0 <https://huggingface.co/datasets/cannlytics/cannabis_tests/blob/main/LICENSE>
|
11 |
+
"""
|
12 |
+
|
13 |
+
SC_LABS_PRODUCER_IDS = [
|
14 |
+
'6',
|
15 |
+
'23',
|
16 |
+
'214',
|
17 |
+
'257',
|
18 |
+
'325',
|
19 |
+
'365',
|
20 |
+
'546',
|
21 |
+
'936',
|
22 |
+
'971',
|
23 |
+
'1064',
|
24 |
+
'1212',
|
25 |
+
'1303',
|
26 |
+
'1360',
|
27 |
+
'1503',
|
28 |
+
'1523',
|
29 |
+
'1739',
|
30 |
+
'1811',
|
31 |
+
'1822',
|
32 |
+
'1995',
|
33 |
+
'2243',
|
34 |
+
'2411',
|
35 |
+
'2619',
|
36 |
+
'2728',
|
37 |
+
'2798',
|
38 |
+
'2821',
|
39 |
+
'2850',
|
40 |
+
'2884',
|
41 |
+
'3146',
|
42 |
+
'3153',
|
43 |
+
'3193',
|
44 |
+
'3430',
|
45 |
+
'3448',
|
46 |
+
'3506',
|
47 |
+
'3785',
|
48 |
+
'3798',
|
49 |
+
'3905',
|
50 |
+
'3926',
|
51 |
+
'4069',
|
52 |
+
'4085',
|
53 |
+
'4200',
|
54 |
+
'4252',
|
55 |
+
'4287',
|
56 |
+
'4446',
|
57 |
+
'4512',
|
58 |
+
'4614',
|
59 |
+
'4702',
|
60 |
+
'5029',
|
61 |
+
'5071',
|
62 |
+
'5096',
|
63 |
+
'5139',
|
64 |
+
'5164',
|
65 |
+
'5282',
|
66 |
+
'5505',
|
67 |
+
'5560',
|
68 |
+
'5615',
|
69 |
+
'5950',
|
70 |
+
'6071',
|
71 |
+
'6109',
|
72 |
+
'6112',
|
73 |
+
'6145',
|
74 |
+
'6272',
|
75 |
+
'6331',
|
76 |
+
'6340',
|
77 |
+
'6358',
|
78 |
+
'6399',
|
79 |
+
'6437',
|
80 |
+
'6756',
|
81 |
+
'6762',
|
82 |
+
'6771',
|
83 |
+
'6791',
|
84 |
+
'6815',
|
85 |
+
'6873',
|
86 |
+
'6882',
|
87 |
+
'6887',
|
88 |
+
'6900',
|
89 |
+
'6913',
|
90 |
+
'6933',
|
91 |
+
'7005',
|
92 |
+
'7034',
|
93 |
+
'7065',
|
94 |
+
'7066',
|
95 |
+
'7102',
|
96 |
+
'7112',
|
97 |
+
'7118',
|
98 |
+
'7131',
|
99 |
+
'7132',
|
100 |
+
'7134',
|
101 |
+
'7139',
|
102 |
+
'7147',
|
103 |
+
'7149',
|
104 |
+
'7159',
|
105 |
+
'7169',
|
106 |
+
'7172',
|
107 |
+
'7176',
|
108 |
+
'7195',
|
109 |
+
'7198',
|
110 |
+
'7218',
|
111 |
+
'7221',
|
112 |
+
'7228',
|
113 |
+
'7233',
|
114 |
+
'7249',
|
115 |
+
'7250',
|
116 |
+
'7253',
|
117 |
+
'7275',
|
118 |
+
'7277',
|
119 |
+
'7284',
|
120 |
+
'7303',
|
121 |
+
'7329',
|
122 |
+
'7337',
|
123 |
+
'7346',
|
124 |
+
'7349',
|
125 |
+
'7382',
|
126 |
+
'7393',
|
127 |
+
'7396',
|
128 |
+
'7406',
|
129 |
+
'7414',
|
130 |
+
'7428',
|
131 |
+
'7454',
|
132 |
+
'7472',
|
133 |
+
'7481',
|
134 |
+
'7486',
|
135 |
+
'7503',
|
136 |
+
'7509',
|
137 |
+
'7510',
|
138 |
+
'7524',
|
139 |
+
'7544',
|
140 |
+
'7569',
|
141 |
+
'7589',
|
142 |
+
'7675',
|
143 |
+
'7885',
|
144 |
+
'7939',
|
145 |
+
'7948',
|
146 |
+
'7955',
|
147 |
+
'7959',
|
148 |
+
'7984',
|
149 |
+
'8013',
|
150 |
+
'8027',
|
151 |
+
'8042',
|
152 |
+
'8079',
|
153 |
+
'8082',
|
154 |
+
'8099',
|
155 |
+
'8101',
|
156 |
+
'8104',
|
157 |
+
'8121',
|
158 |
+
'8143',
|
159 |
+
'8156',
|
160 |
+
'8168',
|
161 |
+
'8193',
|
162 |
+
'8269',
|
163 |
+
'8278',
|
164 |
+
'8285',
|
165 |
+
'8381',
|
166 |
+
'8490',
|
167 |
+
'8497',
|
168 |
+
'8516',
|
169 |
+
'8647',
|
170 |
+
'8661',
|
171 |
+
'8676',
|
172 |
+
'8710',
|
173 |
+
'8719',
|
174 |
+
'8724',
|
175 |
+
'8732',
|
176 |
+
'8776',
|
177 |
+
'8778',
|
178 |
+
'8782',
|
179 |
+
'8791',
|
180 |
+
'8809',
|
181 |
+
'8836',
|
182 |
+
'8838',
|
183 |
+
'8839',
|
184 |
+
'8856',
|
185 |
+
'8917',
|
186 |
+
'8923',
|
187 |
+
'8940',
|
188 |
+
'8954',
|
189 |
+
'8992',
|
190 |
+
'9002',
|
191 |
+
'9013',
|
192 |
+
'9071',
|
193 |
+
'9104',
|
194 |
+
'9115',
|
195 |
+
'9147',
|
196 |
+
'9176',
|
197 |
+
'9206',
|
198 |
+
'9216',
|
199 |
+
'9220',
|
200 |
+
'9281',
|
201 |
+
'9292',
|
202 |
+
'9325',
|
203 |
+
'9346',
|
204 |
+
'9370',
|
205 |
+
'9372',
|
206 |
+
'9393',
|
207 |
+
'9420',
|
208 |
+
'9431',
|
209 |
+
'9438',
|
210 |
+
'9460',
|
211 |
+
'9473',
|
212 |
+
'9476',
|
213 |
+
'9484',
|
214 |
+
'9515',
|
215 |
+
'9516',
|
216 |
+
'9536',
|
217 |
+
'9575',
|
218 |
+
'9583',
|
219 |
+
'9584',
|
220 |
+
'9589',
|
221 |
+
'9609',
|
222 |
+
'9647',
|
223 |
+
'9689',
|
224 |
+
'9709',
|
225 |
+
'9715',
|
226 |
+
'9716',
|
227 |
+
'9725',
|
228 |
+
'9726',
|
229 |
+
'9736',
|
230 |
+
'9742',
|
231 |
+
'9745',
|
232 |
+
'9746',
|
233 |
+
'9753',
|
234 |
+
'9787',
|
235 |
+
'9796',
|
236 |
+
'9802',
|
237 |
+
'9805',
|
238 |
+
'9811',
|
239 |
+
'9848',
|
240 |
+
'9856',
|
241 |
+
'9861',
|
242 |
+
'9863',
|
243 |
+
'9872',
|
244 |
+
'9895',
|
245 |
+
'9907',
|
246 |
+
'9912',
|
247 |
+
'9923',
|
248 |
+
'9940',
|
249 |
+
'9958',
|
250 |
+
'9959',
|
251 |
+
'9965',
|
252 |
+
'9982',
|
253 |
+
'9984',
|
254 |
+
'10006',
|
255 |
+
'10014',
|
256 |
+
'10019',
|
257 |
+
'10020',
|
258 |
+
'10022',
|
259 |
+
'10033',
|
260 |
+
'10074',
|
261 |
+
'10085',
|
262 |
+
'10140',
|
263 |
+
'10145',
|
264 |
+
'10164',
|
265 |
+
'10169',
|
266 |
+
'10180',
|
267 |
+
'10197',
|
268 |
+
'10221',
|
269 |
+
'10252',
|
270 |
+
'10254',
|
271 |
+
'10265',
|
272 |
+
'10276',
|
273 |
+
'10293',
|
274 |
+
'10300',
|
275 |
+
'10307',
|
276 |
+
'10316',
|
277 |
+
'10357',
|
278 |
+
'10366',
|
279 |
+
'10376',
|
280 |
+
'10382',
|
281 |
+
'10388',
|
282 |
+
'10394',
|
283 |
+
'10405',
|
284 |
+
'10415',
|
285 |
+
'10446',
|
286 |
+
'10447',
|
287 |
+
'10474',
|
288 |
+
'10477',
|
289 |
+
'10478',
|
290 |
+
'10481',
|
291 |
+
'10482',
|
292 |
+
'10487',
|
293 |
+
'10505',
|
294 |
+
'10513',
|
295 |
+
'10519',
|
296 |
+
'10543',
|
297 |
+
'10553',
|
298 |
+
'10570',
|
299 |
+
'10573',
|
300 |
+
'10590',
|
301 |
+
'10598',
|
302 |
+
'10639',
|
303 |
+
'10644',
|
304 |
+
'10651',
|
305 |
+
'10679',
|
306 |
+
'10683',
|
307 |
+
'10685',
|
308 |
+
'10727',
|
309 |
+
'10767',
|
310 |
+
'10773',
|
311 |
+
'10783',
|
312 |
+
'10793',
|
313 |
+
'10813',
|
314 |
+
'10815',
|
315 |
+
'10830',
|
316 |
+
'10833',
|
317 |
+
'10886',
|
318 |
+
'10905',
|
319 |
+
'10915',
|
320 |
+
'10922',
|
321 |
+
'10924',
|
322 |
+
'10934',
|
323 |
+
'10998',
|
324 |
+
'11006',
|
325 |
+
'11022',
|
326 |
+
'11031',
|
327 |
+
'11033',
|
328 |
+
'11043',
|
329 |
+
'11059',
|
330 |
+
'11067',
|
331 |
+
'11073',
|
332 |
+
'11078',
|
333 |
+
'11083',
|
334 |
+
'11084',
|
335 |
+
'11086',
|
336 |
+
'11088',
|
337 |
+
'11095',
|
338 |
+
'11098',
|
339 |
+
'11119',
|
340 |
+
'11167',
|
341 |
+
'11185',
|
342 |
+
'11195',
|
343 |
+
'11198',
|
344 |
+
'11226',
|
345 |
+
'11232',
|
346 |
+
'11236',
|
347 |
+
'11237',
|
348 |
+
'11248',
|
349 |
+
'11251',
|
350 |
+
'11256',
|
351 |
+
'11259',
|
352 |
+
'11260',
|
353 |
+
'11269',
|
354 |
+
'11273',
|
355 |
+
'11288',
|
356 |
+
'11297',
|
357 |
+
'11301',
|
358 |
+
'11327',
|
359 |
+
'11344',
|
360 |
+
'11368',
|
361 |
+
'11382',
|
362 |
+
'11387',
|
363 |
+
'11399',
|
364 |
+
'11409',
|
365 |
+
'11413',
|
366 |
+
'11424',
|
367 |
+
'11433',
|
368 |
+
]
|
369 |
+
|
370 |
+
#------------------------------------------------------------------------------
|
371 |
+
# Lab result fields.
|
372 |
+
#------------------------------------------------------------------------------
|
373 |
+
|
374 |
+
lab_result_fields = {
|
375 |
+
'global_id': 'string',
|
376 |
+
'mme_id': 'string',
|
377 |
+
'intermediate_type': 'category',
|
378 |
+
'status': 'category',
|
379 |
+
'global_for_inventory_id': 'string',
|
380 |
+
'cannabinoid_status': 'category',
|
381 |
+
'cannabinoid_cbc_percent': 'float',
|
382 |
+
'cannabinoid_cbc_mg_g': 'float',
|
383 |
+
'cannabinoid_cbd_percent': 'float',
|
384 |
+
'cannabinoid_cbd_mg_g': 'float',
|
385 |
+
'cannabinoid_cbda_percent': 'float',
|
386 |
+
'cannabinoid_cbda_mg_g': 'float',
|
387 |
+
'cannabinoid_cbdv_percent': 'float',
|
388 |
+
'cannabinoid_cbdv_mg_g': 'float',
|
389 |
+
'cannabinoid_cbg_percent': 'float',
|
390 |
+
'cannabinoid_cbg_mg_g': 'float',
|
391 |
+
'cannabinoid_cbga_percent': 'float',
|
392 |
+
'cannabinoid_cbga_mg_g': 'float',
|
393 |
+
'cannabinoid_cbn_percent': 'float',
|
394 |
+
'cannabinoid_cbn_mg_g': 'float',
|
395 |
+
'cannabinoid_d8_thc_percent': 'float',
|
396 |
+
'cannabinoid_d8_thc_mg_g': 'float',
|
397 |
+
'cannabinoid_d9_thca_percent': 'float',
|
398 |
+
'cannabinoid_d9_thca_mg_g': 'float',
|
399 |
+
'cannabinoid_d9_thc_percent': 'float',
|
400 |
+
'cannabinoid_d9_thc_mg_g': 'float',
|
401 |
+
'cannabinoid_thcv_percent': 'float',
|
402 |
+
'cannabinoid_thcv_mg_g': 'float',
|
403 |
+
'solvent_status': 'category',
|
404 |
+
'solvent_acetone_ppm': 'float',
|
405 |
+
'solvent_benzene_ppm': 'float',
|
406 |
+
'solvent_butanes_ppm': 'float',
|
407 |
+
'solvent_chloroform_ppm': 'float',
|
408 |
+
'solvent_cyclohexane_ppm': 'float',
|
409 |
+
'solvent_dichloromethane_ppm': 'float',
|
410 |
+
'solvent_ethyl_acetate_ppm': 'float',
|
411 |
+
'solvent_heptane_ppm': 'float',
|
412 |
+
'solvent_hexanes_ppm': 'float',
|
413 |
+
'solvent_isopropanol_ppm': 'float',
|
414 |
+
'solvent_methanol_ppm': 'float',
|
415 |
+
'solvent_pentanes_ppm': 'float',
|
416 |
+
'solvent_propane_ppm': 'float',
|
417 |
+
'solvent_toluene_ppm': 'float',
|
418 |
+
'solvent_xylene_ppm': 'float',
|
419 |
+
'foreign_matter': 'bool',
|
420 |
+
'foreign_matter_stems': 'float',
|
421 |
+
'foreign_matter_seeds': 'float',
|
422 |
+
'microbial_status': 'category',
|
423 |
+
'microbial_bile_tolerant_cfu_g': 'float',
|
424 |
+
'microbial_pathogenic_e_coli_cfu_g': 'float',
|
425 |
+
'microbial_salmonella_cfu_g': 'float',
|
426 |
+
'moisture_content_percent': 'float',
|
427 |
+
'moisture_content_water_activity_rate': 'float',
|
428 |
+
'mycotoxin_status': 'category',
|
429 |
+
'mycotoxin_aflatoxins_ppb': 'float',
|
430 |
+
'mycotoxin_ochratoxin_ppb': 'float',
|
431 |
+
'thc_percent': 'float',
|
432 |
+
'notes': 'string',
|
433 |
+
'testing_status': 'category',
|
434 |
+
'type': 'category',
|
435 |
+
'inventory_id': 'string',
|
436 |
+
'batch_id': 'string',
|
437 |
+
'parent_lab_result_id': 'string',
|
438 |
+
'og_parent_lab_result_id': 'string',
|
439 |
+
'copied_from_lab_id': 'string',
|
440 |
+
'external_id': 'string',
|
441 |
+
'lab_user_id': 'string',
|
442 |
+
'user_id': 'string',
|
443 |
+
'cannabinoid_editor': 'string',
|
444 |
+
'microbial_editor': 'string',
|
445 |
+
'mycotoxin_editor': 'string',
|
446 |
+
'solvent_editor': 'string',
|
447 |
+
}
|
448 |
+
|
449 |
+
lab_result_date_fields = [
|
450 |
+
'created_at',
|
451 |
+
'deleted_at',
|
452 |
+
'updated_at',
|
453 |
+
'received_at',
|
454 |
+
]
|
455 |
+
|
456 |
+
#------------------------------------------------------------------------------
|
457 |
+
# Licensees fields.
|
458 |
+
#------------------------------------------------------------------------------
|
459 |
+
|
460 |
+
licensee_fields = {
|
461 |
+
'global_id': 'string',
|
462 |
+
'name': 'string',
|
463 |
+
'type': 'string',
|
464 |
+
'code': 'string',
|
465 |
+
'address1': 'string',
|
466 |
+
'address2': 'string',
|
467 |
+
'city': 'string',
|
468 |
+
'state_code': 'string',
|
469 |
+
'postal_code': 'string',
|
470 |
+
'country_code': 'string',
|
471 |
+
'phone': 'string',
|
472 |
+
'external_id': 'string',
|
473 |
+
'certificate_number': 'string',
|
474 |
+
'is_live': 'bool',
|
475 |
+
'suspended': 'bool',
|
476 |
+
}
|
477 |
+
|
478 |
+
licensee_date_fields = [
|
479 |
+
'created_at', # No records if issued before 2018-02-21.
|
480 |
+
'updated_at',
|
481 |
+
'deleted_at',
|
482 |
+
'expired_at',
|
483 |
+
]
|
484 |
+
|
485 |
+
#------------------------------------------------------------------------------
|
486 |
+
# Inventories fields.
|
487 |
+
#------------------------------------------------------------------------------
|
488 |
+
|
489 |
+
inventory_fields = {
|
490 |
+
'global_id': 'string',
|
491 |
+
'strain_id': 'string',
|
492 |
+
'inventory_type_id': 'string',
|
493 |
+
'qty': 'float',
|
494 |
+
'uom': 'string',
|
495 |
+
'mme_id': 'string',
|
496 |
+
'user_id': 'string',
|
497 |
+
'external_id': 'string',
|
498 |
+
'area_id': 'string',
|
499 |
+
'batch_id': 'string',
|
500 |
+
'lab_result_id': 'string',
|
501 |
+
'lab_retest_id': 'string',
|
502 |
+
'is_initial_inventory': 'bool',
|
503 |
+
'created_by_mme_id': 'string',
|
504 |
+
'additives': 'string',
|
505 |
+
'serving_num': 'float',
|
506 |
+
'sent_for_testing': 'bool',
|
507 |
+
'medically_compliant': 'string',
|
508 |
+
'legacy_id': 'string',
|
509 |
+
'lab_results_attested': 'int',
|
510 |
+
'global_original_id': 'string',
|
511 |
+
}
|
512 |
+
|
513 |
+
inventory_date_fields = [
|
514 |
+
'created_at', # No records if issued before 2018-02-21.
|
515 |
+
'updated_at',
|
516 |
+
'deleted_at',
|
517 |
+
'inventory_created_at',
|
518 |
+
'inventory_packaged_at',
|
519 |
+
'lab_results_date',
|
520 |
+
]
|
521 |
+
|
522 |
+
#------------------------------------------------------------------------------
|
523 |
+
# Inventory type fields.
|
524 |
+
#------------------------------------------------------------------------------
|
525 |
+
|
526 |
+
inventory_type_fields = {
|
527 |
+
'global_id': 'string',
|
528 |
+
'mme_id': 'string',
|
529 |
+
'user_id': 'string',
|
530 |
+
'external_id': 'string',
|
531 |
+
'uom': 'string',
|
532 |
+
'name': 'string',
|
533 |
+
'intermediate_type': 'string',
|
534 |
+
}
|
535 |
+
|
536 |
+
inventory_type_date_fields = [
|
537 |
+
'created_at',
|
538 |
+
'updated_at',
|
539 |
+
'deleted_at',
|
540 |
+
]
|
541 |
+
|
542 |
+
#------------------------------------------------------------------------------
|
543 |
+
# Strain fields.
|
544 |
+
#------------------------------------------------------------------------------
|
545 |
+
|
546 |
+
strain_fields = {
|
547 |
+
'mme_id': 'string',
|
548 |
+
'user_id': 'string',
|
549 |
+
'global_id': 'string',
|
550 |
+
'external_id': 'string',
|
551 |
+
'name': 'string',
|
552 |
+
}
|
553 |
+
strain_date_fields = [
|
554 |
+
'created_at',
|
555 |
+
'updated_at',
|
556 |
+
'deleted_at',
|
557 |
+
]
|
558 |
+
|
559 |
+
|
560 |
+
#------------------------------------------------------------------------------
|
561 |
+
# Sales fields.
|
562 |
+
# TODO: Parse Sales_0, Sales_1, Sales_2
|
563 |
+
#------------------------------------------------------------------------------
|
564 |
+
|
565 |
+
sales_fields = {
|
566 |
+
'global_id': 'string',
|
567 |
+
'external_id': 'string',
|
568 |
+
'type': 'string', # wholesale or retail_recrational
|
569 |
+
'price_total': 'float',
|
570 |
+
'status': 'string',
|
571 |
+
'mme_id': 'string',
|
572 |
+
'user_id': 'string',
|
573 |
+
'area_id': 'string',
|
574 |
+
'sold_by_user_id': 'string',
|
575 |
+
}
|
576 |
+
sales_date_fields = [
|
577 |
+
'created_at',
|
578 |
+
'updated_at',
|
579 |
+
'sold_at',
|
580 |
+
'deleted_at',
|
581 |
+
]
|
582 |
+
|
583 |
+
|
584 |
+
#------------------------------------------------------------------------------
|
585 |
+
# Sales Items fields.
|
586 |
+
# TODO: Parse SalesItems_0, SalesItems_1, SalesItems_2, SalesItems_3
|
587 |
+
#------------------------------------------------------------------------------
|
588 |
+
|
589 |
+
sales_items_fields = {
|
590 |
+
'global_id': 'string',
|
591 |
+
'mme_id': 'string',
|
592 |
+
'user_id': 'string',
|
593 |
+
'sale_id': 'string',
|
594 |
+
'batch_id': 'string',
|
595 |
+
'inventory_id': 'string',
|
596 |
+
'external_id': 'string',
|
597 |
+
'qty': 'float',
|
598 |
+
'uom': 'string',
|
599 |
+
'unit_price': 'float',
|
600 |
+
'price_total': 'float',
|
601 |
+
'name': 'string',
|
602 |
+
}
|
603 |
+
sales_items_date_fields = [
|
604 |
+
'created_at',
|
605 |
+
'updated_at',
|
606 |
+
'sold_at',
|
607 |
+
'use_by_date',
|
608 |
+
]
|
609 |
+
|
610 |
+
#------------------------------------------------------------------------------
|
611 |
+
# Batches fields.
|
612 |
+
# TODO: Parse Batches_0
|
613 |
+
#------------------------------------------------------------------------------
|
614 |
+
|
615 |
+
batches_fields = {
|
616 |
+
'external_id': 'string',
|
617 |
+
'num_plants': 'float',
|
618 |
+
'status': 'string',
|
619 |
+
'qty_harvest': 'float',
|
620 |
+
'uom': 'string',
|
621 |
+
'is_parent_batch': 'int',
|
622 |
+
'is_child_batch': 'int',
|
623 |
+
'type': 'string',
|
624 |
+
'harvest_stage': 'string',
|
625 |
+
'qty_accumulated_waste': 'float',
|
626 |
+
'qty_packaged_flower': 'float',
|
627 |
+
'qty_packaged_by_product': 'float',
|
628 |
+
'origin': 'string',
|
629 |
+
'source': 'string',
|
630 |
+
'qty_cure': 'float',
|
631 |
+
'plant_stage': 'string',
|
632 |
+
'flower_dry_weight': 'float',
|
633 |
+
'waste': 'float',
|
634 |
+
'other_waste': 'float',
|
635 |
+
'flower_waste': 'float',
|
636 |
+
'other_dry_weight': 'float',
|
637 |
+
'flower_wet_weight': 'float',
|
638 |
+
'other_wet_weight': 'float',
|
639 |
+
'global_id': 'string',
|
640 |
+
'global_area_id': 'string',
|
641 |
+
'area_name': 'string',
|
642 |
+
'global_mme_id': 'string',
|
643 |
+
'mme_name': 'string',
|
644 |
+
'mme_code': 'string',
|
645 |
+
'global_user_id': 'string',
|
646 |
+
'global_strain_id': 'string',
|
647 |
+
'strain_name': 'string',
|
648 |
+
'global_mother_plant_id': 'string',
|
649 |
+
'global_flower_area_id': 'string',
|
650 |
+
'global_other_area_id': 'string',
|
651 |
+
}
|
652 |
+
batches_date_fields = [
|
653 |
+
'created_at',
|
654 |
+
'updated_at',
|
655 |
+
'planted_at',
|
656 |
+
'harvested_at',
|
657 |
+
'batch_created_at',
|
658 |
+
'deleted_at',
|
659 |
+
'est_harvest_at',
|
660 |
+
'packaged_completed_at',
|
661 |
+
'harvested_end_at',
|
662 |
+
]
|
663 |
+
|
664 |
+
|
665 |
+
#------------------------------------------------------------------------------
|
666 |
+
# Taxes fields.
|
667 |
+
# TODO: Parse Taxes_0
|
668 |
+
#------------------------------------------------------------------------------
|
669 |
+
|
670 |
+
taxes_fields = {
|
671 |
+
|
672 |
+
}
|
673 |
+
taxes_date_fields = [
|
674 |
+
|
675 |
+
]
|
676 |
+
|
677 |
+
#------------------------------------------------------------------------------
|
678 |
+
# Areas fields.
|
679 |
+
#------------------------------------------------------------------------------
|
680 |
+
|
681 |
+
areas_fields = {
|
682 |
+
'external_id': 'string',
|
683 |
+
'name': 'string',
|
684 |
+
'type': 'string',
|
685 |
+
'is_quarantine_area': 'bool',
|
686 |
+
'global_id': 'string',
|
687 |
+
}
|
688 |
+
areas_date_fields = [
|
689 |
+
'created_at',
|
690 |
+
'updated_at',
|
691 |
+
'deleted_at',
|
692 |
+
]
|
693 |
+
|
694 |
+
#------------------------------------------------------------------------------
|
695 |
+
# Inventory Transfer Items fields.
|
696 |
+
# TODO: Parse InventoryTransferItems_0
|
697 |
+
#------------------------------------------------------------------------------
|
698 |
+
|
699 |
+
inventory_transfer_items_fields = {
|
700 |
+
'external_id': 'string',
|
701 |
+
'is_sample': 'int',
|
702 |
+
'sample_type': 'string',
|
703 |
+
'product_sample_type': 'string',
|
704 |
+
'description': 'string',
|
705 |
+
'qty': 'float',
|
706 |
+
'price': 'float',
|
707 |
+
'uom': 'string',
|
708 |
+
'received_qty': 'float',
|
709 |
+
'retest': 'int',
|
710 |
+
'global_id': 'string',
|
711 |
+
'is_for_extraction': 'int',
|
712 |
+
'propagation_source': 'string',
|
713 |
+
'inventory_name': 'string',
|
714 |
+
'intermediate_type': 'string',
|
715 |
+
'strain_name': 'string',
|
716 |
+
'global_mme_id': 'string',
|
717 |
+
'global_user_id': 'string',
|
718 |
+
'global_batch_id': 'string',
|
719 |
+
'global_plant_id': 'string',
|
720 |
+
'global_inventory_id': 'string',
|
721 |
+
'global_lab_result_id': 'string',
|
722 |
+
'global_received_area_id': 'string',
|
723 |
+
'global_received_strain_id': 'string',
|
724 |
+
'global_inventory_transfer_id': 'string',
|
725 |
+
'global_received_batch_id': 'string',
|
726 |
+
'global_received_inventory_id': 'string',
|
727 |
+
'global_received_plant_id': 'string',
|
728 |
+
'global_received_mme_id': 'string',
|
729 |
+
'global_received_mme_user_id': 'string',
|
730 |
+
'global_customer_id': 'string',
|
731 |
+
'global_inventory_type_id': 'string',
|
732 |
+
# Optional: Match with inventory type fields
|
733 |
+
# "created_at": "09/11/2018 07:39am",
|
734 |
+
# "updated_at": "09/12/2018 03:55am",
|
735 |
+
# "external_id": "123425",
|
736 |
+
# "name": "Charlotte's Web Pre-Packs - 3.5gm",
|
737 |
+
# "description": "",
|
738 |
+
# "storage_instructions": "",
|
739 |
+
# "ingredients": "",
|
740 |
+
# "type": "end_product",
|
741 |
+
# "allergens": "",
|
742 |
+
# "contains": "",
|
743 |
+
# "used_butane": 0,
|
744 |
+
# "net_weight": "2",
|
745 |
+
# "packed_qty": null,
|
746 |
+
# "cost": "0.00",
|
747 |
+
# "value": "0.00",
|
748 |
+
# "serving_num": 1,
|
749 |
+
# "serving_size": 0,
|
750 |
+
# "uom": "ea",
|
751 |
+
# "total_marijuana_in_grams": "0.000000",
|
752 |
+
# "total_marijuana_in_mcg": null,
|
753 |
+
# "deleted_at": null,
|
754 |
+
# "intermediate_type": "usable_marijuana",
|
755 |
+
# "global_id": "WAG12.TY3DE",
|
756 |
+
# "global_original_id": null,
|
757 |
+
# "weight_per_unit_in_grams": "0.00"
|
758 |
+
# "global_mme_id": "WASTATE1.MM30",
|
759 |
+
# "global_user_id": "WASTATE1.US1I",
|
760 |
+
# "global_strain_id": null
|
761 |
+
}
|
762 |
+
inventory_transfer_items_date_fields = [
|
763 |
+
'created_at',
|
764 |
+
'updated_at',
|
765 |
+
'received_at',
|
766 |
+
'deleted_at',
|
767 |
+
]
|
768 |
+
|
769 |
+
#------------------------------------------------------------------------------
|
770 |
+
# Inventory Transfers fields.
|
771 |
+
# TODO: Parse InventoryTransfers_0
|
772 |
+
#------------------------------------------------------------------------------
|
773 |
+
|
774 |
+
inventory_transfers_fields = {
|
775 |
+
'number_of_edits': 'int',
|
776 |
+
'external_id': 'string',
|
777 |
+
'void': 'int',
|
778 |
+
'multi_stop': 'int',
|
779 |
+
'route': 'string',
|
780 |
+
'stops': 'string',
|
781 |
+
'vehicle_description': 'string',
|
782 |
+
'vehicle_year': 'string',
|
783 |
+
'vehicle_color': 'string',
|
784 |
+
'vehicle_vin': 'string',
|
785 |
+
'vehicle_license_plate': 'string',
|
786 |
+
'notes': 'string',
|
787 |
+
'transfer_manifest': 'string',
|
788 |
+
'manifest_type': 'string',
|
789 |
+
'status': 'string',
|
790 |
+
'type': 'string',
|
791 |
+
'transfer_type': 'string',
|
792 |
+
'global_id': 'string',
|
793 |
+
'test_for_terpenes': 'int',
|
794 |
+
'transporter_name1': 'string',
|
795 |
+
'transporter_name2': 'string',
|
796 |
+
'global_mme_id': 'string',
|
797 |
+
'global_user_id': 'string',
|
798 |
+
'global_from_mme_id': 'string',
|
799 |
+
'global_to_mme_id': 'string',
|
800 |
+
'global_from_user_id': 'string',
|
801 |
+
'global_to_user_id': 'string',
|
802 |
+
'global_from_customer_id': 'string',
|
803 |
+
'global_to_customer_id': 'string',
|
804 |
+
'global_transporter_user_id': 'string',
|
805 |
+
}
|
806 |
+
inventory_transfers_date_fields = [
|
807 |
+
'created_at',
|
808 |
+
'updated_at',
|
809 |
+
'hold_starts_at',
|
810 |
+
'hold_ends_at',
|
811 |
+
'transferred_at',
|
812 |
+
'est_departed_at',
|
813 |
+
'est_arrival_at',
|
814 |
+
'deleted_at',
|
815 |
+
]
|
816 |
+
|
817 |
+
#------------------------------------------------------------------------------
|
818 |
+
# Disposals fields.
|
819 |
+
# Optional: Parse Disposals_0
|
820 |
+
#------------------------------------------------------------------------------
|
821 |
+
|
822 |
+
disposals_fields = {
|
823 |
+
'external_id': 'string',
|
824 |
+
'whole_plant': 'string',
|
825 |
+
'reason': 'string',
|
826 |
+
'method': 'string',
|
827 |
+
'phase': 'string',
|
828 |
+
'type': 'string',
|
829 |
+
'qty': 'float',
|
830 |
+
'uom': 'string',
|
831 |
+
'source': 'string',
|
832 |
+
'disposal_cert': 'string',
|
833 |
+
'global_id': 'string',
|
834 |
+
'global_mme_id': 'string',
|
835 |
+
'global_user_id': 'string',
|
836 |
+
'global_batch_id': 'string',
|
837 |
+
'global_area_id': 'string',
|
838 |
+
'global_plant_id': 'string',
|
839 |
+
'global_inventory_id': 'string',
|
840 |
+
}
|
841 |
+
disposals_date_fields = [
|
842 |
+
'created_at',
|
843 |
+
'updated_at',
|
844 |
+
'hold_starts_at',
|
845 |
+
'hold_ends_at',
|
846 |
+
'disposal_at',
|
847 |
+
'deleted_at',
|
848 |
+
]
|
849 |
+
|
850 |
+
#------------------------------------------------------------------------------
|
851 |
+
# Inventory Adjustments fields.
|
852 |
+
# Optional: Parse InventoryAdjustments_0, InventoryAdjustments_1, InventoryAdjustments_2
|
853 |
+
#------------------------------------------------------------------------------
|
854 |
+
|
855 |
+
inventory_adjustments_fields = {
|
856 |
+
'external_id': 'string',
|
857 |
+
'qty': 'float',
|
858 |
+
'uom': 'string',
|
859 |
+
'reason': 'string',
|
860 |
+
'memo': 'string',
|
861 |
+
'global_id': 'string',
|
862 |
+
'global_mme_id': 'string',
|
863 |
+
'global_user_id': 'string',
|
864 |
+
'global_inventory_id': 'string',
|
865 |
+
'global_adjusted_by_user_id': 'string',
|
866 |
+
}
|
867 |
+
inventory_adjustments_date_fields = [
|
868 |
+
'created_at',
|
869 |
+
'updated_at',
|
870 |
+
'adjusted_at',
|
871 |
+
'deleted_at',
|
872 |
+
]
|
873 |
+
|
874 |
+
#------------------------------------------------------------------------------
|
875 |
+
# Plants fields.
|
876 |
+
#------------------------------------------------------------------------------
|
877 |
+
|
878 |
+
plants_fields = {
|
879 |
+
'global_id': 'string',
|
880 |
+
'mme_id': 'string',
|
881 |
+
'user_id': 'string',
|
882 |
+
'external_id': 'string',
|
883 |
+
'inventory_id': 'string',
|
884 |
+
'batch_id': 'string',
|
885 |
+
'area_id': 'string',
|
886 |
+
'mother_plant_id': 'string',
|
887 |
+
'is_initial_inventory': 'string',
|
888 |
+
'origin': 'string',
|
889 |
+
'stage': 'string',
|
890 |
+
'strain_id': 'string',
|
891 |
+
'is_mother': 'string',
|
892 |
+
'last_moved_at': 'string',
|
893 |
+
'plant_harvested_end_at': 'string',
|
894 |
+
'legacy_id': 'string',
|
895 |
+
}
|
896 |
+
plants_date_fields = [
|
897 |
+
'created_at',
|
898 |
+
'deleted_at',
|
899 |
+
'updated_at',
|
900 |
+
'plant_created_at',
|
901 |
+
'plant_harvested_at',
|
902 |
+
'plant_harvested_end_at'
|
903 |
+
]
|
algorithms/algorithm_utils.py
ADDED
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Cannabis Tests | Utility Functions
|
3 |
+
Copyright (c) 2021-2022 Cannlytics
|
4 |
+
|
5 |
+
Authors:
|
6 |
+
Keegan Skeate <https://github.com/keeganskeate>
|
7 |
+
Candace O'Sullivan-Sutherland <https://github.com/candy-o>
|
8 |
+
Created: 10/27/2021
|
9 |
+
Updated: 9/16/2022
|
10 |
+
License: CC-BY 4.0 <https://huggingface.co/datasets/cannlytics/cannabis_tests/blob/main/LICENSE>
|
11 |
+
"""
|
12 |
+
# Standard imports.
|
13 |
+
from datetime import datetime
|
14 |
+
import re
|
15 |
+
from typing import Any, List, Optional, Tuple
|
16 |
+
|
17 |
+
# External imports.
|
18 |
+
import pandas as pd
|
19 |
+
from pandas import DataFrame, Series, to_datetime
|
20 |
+
from pandas.tseries.offsets import MonthEnd
|
21 |
+
|
22 |
+
|
23 |
+
def end_of_month(value: datetime) -> str:
|
24 |
+
"""Format a datetime as an ISO formatted date at the end of the month.
|
25 |
+
Args:
|
26 |
+
value (datetime): A datetime value to transform into an ISO date.
|
27 |
+
Returns:
|
28 |
+
(str): An ISO formatted date.
|
29 |
+
"""
|
30 |
+
month = value.month
|
31 |
+
if month < 10:
|
32 |
+
month = f'0{month}'
|
33 |
+
year = value.year
|
34 |
+
day = value + MonthEnd(0)
|
35 |
+
return f'{year}-{month}-{day.day}'
|
36 |
+
|
37 |
+
|
38 |
+
def end_of_year(value: datetime) -> str:
|
39 |
+
"""Format a datetime as an ISO formatted date at the end of the year.
|
40 |
+
Args:
|
41 |
+
value (datetime): A datetime value to transform into an ISO date.
|
42 |
+
Returns:
|
43 |
+
(str): An ISO formatted date.
|
44 |
+
"""
|
45 |
+
return f'{value.year}-12-31'
|
46 |
+
|
47 |
+
|
48 |
+
def end_of_period_timeseries(data: DataFrame, period: Optional[str] = 'M') -> DataFrame:
|
49 |
+
"""Convert a DataFrame from beginning-of-the-period to
|
50 |
+
end-of-the-period timeseries.
|
51 |
+
Args:
|
52 |
+
data (DataFrame): The DataFrame to adjust timestamps.
|
53 |
+
period (str): The period of the time series, monthly "M" by default.
|
54 |
+
Returns:
|
55 |
+
(DataFrame): The adjusted DataFrame, with end-of-the-month timestamps.
|
56 |
+
"""
|
57 |
+
data.index = data.index.to_period(period).to_timestamp(period)
|
58 |
+
return data
|
59 |
+
|
60 |
+
|
61 |
+
# def forecast_arima(
|
62 |
+
# model: Any,
|
63 |
+
# forecast_horizon: Any,
|
64 |
+
# exogenous: Optional[Any] = None,
|
65 |
+
# ) -> Tuple[Any]:
|
66 |
+
# """Format an auto-ARIMA model forecast as a time series.
|
67 |
+
# Args:
|
68 |
+
# model (ARIMA): An pmdarima auto-ARIMA model.
|
69 |
+
# forecast_horizon (DatetimeIndex): A series of dates.
|
70 |
+
# exogenous (DataFrame): Am optional DataFrame of exogenous variables.
|
71 |
+
# Returns:
|
72 |
+
# forecast (Series): The forecast series with forecast horizon index.
|
73 |
+
# conf (Array): A 2xN array of lower and upper confidence bounds.
|
74 |
+
# """
|
75 |
+
# periods = len(forecast_horizon)
|
76 |
+
# forecast, conf = model.predict(
|
77 |
+
# n_periods=periods,
|
78 |
+
# return_conf_int=True,
|
79 |
+
# X=exogenous,
|
80 |
+
# )
|
81 |
+
# forecast = Series(forecast)
|
82 |
+
# forecast.index = forecast_horizon
|
83 |
+
# return forecast, conf
|
84 |
+
|
85 |
+
|
86 |
+
def format_billions(value: float, pos: Optional[int] = None) -> str: #pylint: disable=unused-argument
|
87 |
+
"""The two args are the value and tick position."""
|
88 |
+
return '%1.1fB' % (value * 1e-9)
|
89 |
+
|
90 |
+
|
91 |
+
def format_millions(value: float, pos: Optional[int] = None) -> str: #pylint: disable=unused-argument
|
92 |
+
"""The two args are the value and tick position."""
|
93 |
+
return '%1.1fM' % (value * 1e-6)
|
94 |
+
|
95 |
+
|
96 |
+
def format_thousands(value: float, pos: Optional[int] = None) -> str: #pylint: disable=unused-argument
|
97 |
+
"""The two args are the value and tick position."""
|
98 |
+
return '%1.0fK' % (value * 1e-3)
|
99 |
+
|
100 |
+
|
101 |
+
def get_blocks(files, size=65536):
|
102 |
+
"""Get a block of a file by the given size."""
|
103 |
+
while True:
|
104 |
+
block = files.read(size)
|
105 |
+
if not block: break
|
106 |
+
yield block
|
107 |
+
|
108 |
+
|
109 |
+
def get_number_of_lines(file_name, encoding='utf-16', errors='ignore'):
|
110 |
+
"""
|
111 |
+
Read the number of lines in a large file.
|
112 |
+
Credit: glglgl, SU3 <https://stackoverflow.com/a/9631635/5021266>
|
113 |
+
License: CC BY-SA 3.0 <https://creativecommons.org/licenses/by-sa/3.0/>
|
114 |
+
"""
|
115 |
+
with open(file_name, 'r', encoding=encoding, errors=errors) as f:
|
116 |
+
count = sum(bl.count('\n') for bl in get_blocks(f))
|
117 |
+
print('Number of rows:', count)
|
118 |
+
return count
|
119 |
+
|
120 |
+
|
121 |
+
def reverse_dataframe(data: DataFrame) -> DataFrame:
|
122 |
+
"""Reverse the ordering of a DataFrame.
|
123 |
+
Args:
|
124 |
+
data (DataFrame): A DataFrame to re-order.
|
125 |
+
Returns:
|
126 |
+
(DataFrame): The re-ordered DataFrame.
|
127 |
+
"""
|
128 |
+
return data[::-1].reset_index(drop=True)
|
129 |
+
|
130 |
+
|
131 |
+
def set_training_period(series: Series, date_start: str, date_end: str) -> Series:
|
132 |
+
"""Helper function to restrict a series to the desired
|
133 |
+
training time period.
|
134 |
+
Args:
|
135 |
+
series (Series): The series to clean.
|
136 |
+
date_start (str): An ISO date to mark the beginning of the training period.
|
137 |
+
date_end (str): An ISO date to mark the end of the training period.
|
138 |
+
Returns
|
139 |
+
(Series): The series restricted to the desired time period.
|
140 |
+
"""
|
141 |
+
return series.loc[
|
142 |
+
(series.index >= to_datetime(date_start)) & \
|
143 |
+
(series.index < to_datetime(date_end))
|
144 |
+
]
|
145 |
+
|
146 |
+
|
147 |
+
def sorted_nicely(unsorted_list: List[str]) -> List[str]:
|
148 |
+
"""Sort the given iterable in the way that humans expect.
|
149 |
+
Credit: Mark Byers <https://stackoverflow.com/a/2669120/5021266>
|
150 |
+
License: CC BY-SA 2.5 <https://creativecommons.org/licenses/by-sa/2.5/>
|
151 |
+
"""
|
152 |
+
convert = lambda text: int(text) if text.isdigit() else text
|
153 |
+
alpha = lambda key: [convert(c) for c in re.split('([0-9]+)', key)]
|
154 |
+
return sorted(unsorted_list, key=alpha)
|
155 |
+
|
156 |
+
|
157 |
+
def rmerge(left, right, **kwargs):
|
158 |
+
"""Perform a merge using pandas with optional removal of overlapping
|
159 |
+
column names not associated with the join.
|
160 |
+
|
161 |
+
Though I suspect this does not adhere to the spirit of pandas merge
|
162 |
+
command, I find it useful because re-executing IPython notebook cells
|
163 |
+
containing a merge command does not result in the replacement of existing
|
164 |
+
columns if the name of the resulting DataFrame is the same as one of the
|
165 |
+
two merged DataFrames, i.e. data = pa.merge(data,new_dataframe). I prefer
|
166 |
+
this command over pandas df.combine_first() method because it has more
|
167 |
+
flexible join options.
|
168 |
+
|
169 |
+
The column removal is controlled by the 'replace' flag which is
|
170 |
+
'left' (default) or 'right' to remove overlapping columns in either the
|
171 |
+
left or right DataFrame. If 'replace' is set to None, the default
|
172 |
+
pandas behavior will be used. All other parameters are the same
|
173 |
+
as pandas merge command.
|
174 |
+
|
175 |
+
Author: Michelle Gill
|
176 |
+
Source: https://gist.github.com/mlgill/11334821
|
177 |
+
|
178 |
+
Examples
|
179 |
+
--------
|
180 |
+
>>> left >>> right
|
181 |
+
a b c a c d
|
182 |
+
0 1 4 9 0 1 7 13
|
183 |
+
1 2 5 10 1 2 8 14
|
184 |
+
2 3 6 11 2 3 9 15
|
185 |
+
3 4 7 12
|
186 |
+
|
187 |
+
>>> rmerge(left,right,on='a')
|
188 |
+
a b c d
|
189 |
+
0 1 4 7 13
|
190 |
+
1 2 5 8 14
|
191 |
+
2 3 6 9 15
|
192 |
+
|
193 |
+
>>> rmerge(left,right,on='a',how='left')
|
194 |
+
a b c d
|
195 |
+
0 1 4 7 13
|
196 |
+
1 2 5 8 14
|
197 |
+
2 3 6 9 15
|
198 |
+
3 4 7 NaN NaN
|
199 |
+
|
200 |
+
>>> rmerge(left,right,on='a',how='left',replace='right')
|
201 |
+
a b c d
|
202 |
+
0 1 4 9 13
|
203 |
+
1 2 5 10 14
|
204 |
+
2 3 6 11 15
|
205 |
+
3 4 7 12 NaN
|
206 |
+
|
207 |
+
>>> rmerge(left,right,on='a',how='left',replace=None)
|
208 |
+
a b c_x c_y d
|
209 |
+
0 1 4 9 7 13
|
210 |
+
1 2 5 10 8 14
|
211 |
+
2 3 6 11 9 15
|
212 |
+
3 4 7 12 NaN NaN
|
213 |
+
"""
|
214 |
+
|
215 |
+
# Function to flatten lists from http://rosettacode.org/wiki/Flatten_a_list#Python
|
216 |
+
def flatten(lst):
|
217 |
+
return sum(([x] if not isinstance(x, list) else flatten(x) for x in lst), [])
|
218 |
+
|
219 |
+
# Set default for removing overlapping columns in "left" to be true
|
220 |
+
myargs = {'replace':'left'}
|
221 |
+
myargs.update(kwargs)
|
222 |
+
|
223 |
+
# Remove the replace key from the argument dict to be sent to
|
224 |
+
# pandas merge command
|
225 |
+
kwargs = {k:v for k, v in myargs.items() if k != 'replace'}
|
226 |
+
|
227 |
+
if myargs['replace'] is not None:
|
228 |
+
# Generate a list of overlapping column names not associated with the join
|
229 |
+
skipcols = set(flatten([v for k, v in myargs.items() if k in ['on', 'left_on', 'right_on']]))
|
230 |
+
leftcols = set(left.columns)
|
231 |
+
rightcols = set(right.columns)
|
232 |
+
dropcols = list((leftcols & rightcols).difference(skipcols))
|
233 |
+
|
234 |
+
# Remove the overlapping column names from the appropriate DataFrame
|
235 |
+
if myargs['replace'].lower() == 'left':
|
236 |
+
left = left.copy().drop(dropcols, axis=1)
|
237 |
+
elif myargs['replace'].lower() == 'right':
|
238 |
+
right = right.copy().drop(dropcols, axis=1)
|
239 |
+
|
240 |
+
return pd.merge(left, right, **kwargs)
|
algorithms/get_results_mcrlabs.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Cannabis Tests | Get MCR Labs Test Result Data
|
3 |
+
Copyright (c) 2022-2023 Cannlytics
|
4 |
+
|
5 |
+
Authors:
|
6 |
+
Keegan Skeate <https://github.com/keeganskeate>
|
7 |
+
Candace O'Sullivan-Sutherland <https://github.com/candy-o>
|
8 |
+
Created: 7/13/2022
|
9 |
+
Updated: 2/6/2023
|
10 |
+
License: CC-BY 4.0 <https://huggingface.co/datasets/cannlytics/cannabis_tests/blob/main/LICENSE>
|
11 |
+
|
12 |
+
Description:
|
13 |
+
|
14 |
+
Collect all of MCR Labs' publicly published lab results.
|
15 |
+
|
16 |
+
Data Points: See `cannlytics.data.coas.mcrlabs.py`.
|
17 |
+
|
18 |
+
Data Sources:
|
19 |
+
|
20 |
+
- MCR Labs Test Results
|
21 |
+
URL: <https://reports.mcrlabs.com>
|
22 |
+
|
23 |
+
"""
|
24 |
+
# Standard imports.
|
25 |
+
from datetime import datetime
|
26 |
+
import os
|
27 |
+
|
28 |
+
# External imports.
|
29 |
+
import pandas as pd
|
30 |
+
|
31 |
+
# Internal imports.
|
32 |
+
from cannlytics.data.coas.mcrlabs import get_mcr_labs_test_results
|
33 |
+
from cannlytics.firebase import initialize_firebase, update_documents
|
34 |
+
from cannlytics.utils.utils import to_excel_with_style
|
35 |
+
|
36 |
+
|
37 |
+
# Specify where your data lives.
|
38 |
+
DATA_DIR = '.datasets/lab_results/mcr_labs'
|
39 |
+
|
40 |
+
# Get all of the results!
|
41 |
+
all_results = get_mcr_labs_test_results(
|
42 |
+
starting_page=1,
|
43 |
+
pause=3,
|
44 |
+
)
|
45 |
+
|
46 |
+
# Save the results to Excel.
|
47 |
+
data = pd.DataFrame(all_results)
|
48 |
+
timestamp = datetime.now().isoformat()[:19].replace(':', '-')
|
49 |
+
if not os.path.exists(DATA_DIR): os.makedirs(DATA_DIR)
|
50 |
+
datafile = f'{DATA_DIR}/mcr-lab-results-{timestamp}.xlsx'
|
51 |
+
to_excel_with_style(data, datafile)
|
52 |
+
|
53 |
+
# Prepare the data to upload to Firestore.
|
54 |
+
refs, updates = [], []
|
55 |
+
for index, obs in data.iterrows():
|
56 |
+
sample_id = obs['sample_id']
|
57 |
+
refs.append(f'public/data/lab_results/{sample_id}')
|
58 |
+
updates.append(obs.to_dict())
|
59 |
+
|
60 |
+
# Initialize Firebase and upload the data to Firestore!
|
61 |
+
database = initialize_firebase()
|
62 |
+
update_documents(refs, updates, database=database)
|
63 |
+
print('Added %i lab results to Firestore!' % len(refs))
|
algorithms/get_results_psilabs.py
ADDED
@@ -0,0 +1,714 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Cannabis Tests | Get PSI Labs Test Result Data
|
3 |
+
Copyright (c) 2022 Cannlytics
|
4 |
+
|
5 |
+
Authors:
|
6 |
+
Keegan Skeate <https://github.com/keeganskeate>
|
7 |
+
Candace O'Sullivan-Sutherland <https://github.com/candy-o>
|
8 |
+
Created: July 4th, 2022
|
9 |
+
Updated: 9/16/2022
|
10 |
+
License: CC-BY 4.0 <https://huggingface.co/datasets/cannlytics/cannabis_tests/blob/main/LICENSE>
|
11 |
+
|
12 |
+
Description:
|
13 |
+
|
14 |
+
1. Archive all of the PSI Labs test results.
|
15 |
+
|
16 |
+
2. Analyze all of the PSI Labs test results, separating
|
17 |
+
training and testing data to use for prediction models.
|
18 |
+
|
19 |
+
3. Create and use re-usable prediction models.
|
20 |
+
|
21 |
+
Data Sources:
|
22 |
+
|
23 |
+
- PSI Labs Test Results
|
24 |
+
URL: <https://results.psilabs.org/test-results/>
|
25 |
+
|
26 |
+
Resources:
|
27 |
+
|
28 |
+
- ChromeDriver
|
29 |
+
URL: <https://chromedriver.chromium.org/home>
|
30 |
+
|
31 |
+
- Automation Cartoon
|
32 |
+
URL: https://xkcd.com/1319/
|
33 |
+
|
34 |
+
- Efficiency Cartoon
|
35 |
+
URL: https://xkcd.com/1445/
|
36 |
+
|
37 |
+
- SHA in Python
|
38 |
+
URL: https://www.geeksforgeeks.org/sha-in-python/
|
39 |
+
|
40 |
+
- Split / Explode a column of dictionaries into separate columns with pandas
|
41 |
+
URL: https://stackoverflow.com/questions/38231591/split-explode-a-column-of-dictionaries-into-separate-columns-with-pandas
|
42 |
+
|
43 |
+
- Tidyverse: Wide and Long Data Tables
|
44 |
+
URL: https://rstudio-education.github.io/tidyverse-cookbook/tidy.html
|
45 |
+
|
46 |
+
- Web Scraping using Selenium and Python
|
47 |
+
URL: <https://www.scrapingbee.com/blog/selenium-python/>
|
48 |
+
|
49 |
+
Setup:
|
50 |
+
|
51 |
+
1. Create a data folder `../../.datasets/lab_results/psi_labs/raw_data`.
|
52 |
+
|
53 |
+
2. Download ChromeDriver and put it in your `C:\Python39\Scripts` folder
|
54 |
+
or pass the `executable_path` to the `Service`.
|
55 |
+
|
56 |
+
3. Specify the `PAGES` that you want to collect.
|
57 |
+
|
58 |
+
"""
|
59 |
+
# Standard imports.
|
60 |
+
from ast import literal_eval
|
61 |
+
from datetime import datetime
|
62 |
+
from hashlib import sha256
|
63 |
+
import hmac
|
64 |
+
from time import sleep
|
65 |
+
|
66 |
+
# External imports.
|
67 |
+
from cannlytics.utils.utils import snake_case
|
68 |
+
import pandas as pd
|
69 |
+
|
70 |
+
# Selenium imports.
|
71 |
+
from selenium import webdriver
|
72 |
+
from selenium.webdriver.chrome.options import Options
|
73 |
+
from selenium.webdriver.common.by import By
|
74 |
+
from selenium.webdriver.chrome.service import Service
|
75 |
+
from selenium.common.exceptions import ElementNotInteractableException, TimeoutException
|
76 |
+
from selenium.webdriver.support import expected_conditions as EC
|
77 |
+
from selenium.webdriver.support.ui import WebDriverWait
|
78 |
+
|
79 |
+
|
80 |
+
# Setup.
|
81 |
+
DATA_DIR = '../../.datasets/lab_results/raw_data/psi_labs'
|
82 |
+
TRAINING_DATA = '../../../.datasets/lab_results/training_data'
|
83 |
+
|
84 |
+
# API Constants
|
85 |
+
BASE = 'https://results.psilabs.org/test-results/?page={}'
|
86 |
+
PAGES = range(1, 10) # 4921 total!
|
87 |
+
|
88 |
+
# Desired order for output columns.
|
89 |
+
COLUMNS = [
|
90 |
+
'sample_id',
|
91 |
+
'date_tested',
|
92 |
+
'analyses',
|
93 |
+
'producer',
|
94 |
+
'product_name',
|
95 |
+
'product_type',
|
96 |
+
'results',
|
97 |
+
'coa_urls',
|
98 |
+
'images',
|
99 |
+
'lab_results_url',
|
100 |
+
'date_received',
|
101 |
+
'method',
|
102 |
+
'qr_code',
|
103 |
+
'sample_weight',
|
104 |
+
]
|
105 |
+
|
106 |
+
|
107 |
+
def create_sample_id(private_key, public_key, salt='') -> str:
|
108 |
+
"""Create a hash to be used as a sample ID.
|
109 |
+
The standard is to use:
|
110 |
+
1. `private_key = producer`
|
111 |
+
2. `public_key = product_name`
|
112 |
+
3. `salt = date_tested`
|
113 |
+
Args:
|
114 |
+
private_key (str): A string to be used as the private key.
|
115 |
+
public_key (str): A string to be used as the public key.
|
116 |
+
salt (str): A string to be used as the salt, '' by default (optional).
|
117 |
+
Returns:
|
118 |
+
(str): A sample ID hash.
|
119 |
+
"""
|
120 |
+
secret = bytes(private_key, 'UTF-8')
|
121 |
+
message = snake_case(public_key) + snake_case(salt)
|
122 |
+
sample_id = hmac.new(secret, message.encode(), sha256).hexdigest()
|
123 |
+
return sample_id
|
124 |
+
|
125 |
+
|
126 |
+
#-----------------------------------------------------------------------
|
127 |
+
# Getting ALL the data.
|
128 |
+
#-----------------------------------------------------------------------
|
129 |
+
|
130 |
+
def get_psi_labs_test_results(driver, max_delay=5, reverse=True) -> list:
|
131 |
+
"""Get all test results for PSI labs.
|
132 |
+
Args:
|
133 |
+
driver (WebDriver): A Selenium Chrome WebDiver.
|
134 |
+
max_delay (float): The maximum number of seconds to wait for rendering (optional).
|
135 |
+
reverse (bool): Whether to collect in reverse order, True by default (optional).
|
136 |
+
Returns:
|
137 |
+
(list): A list of dictionaries of sample data.
|
138 |
+
"""
|
139 |
+
|
140 |
+
# Get all the samples on the page.
|
141 |
+
samples = []
|
142 |
+
try:
|
143 |
+
detect = EC.presence_of_element_located((By.TAG_NAME, 'sample-card'))
|
144 |
+
WebDriverWait(driver, max_delay).until(detect)
|
145 |
+
except TimeoutException:
|
146 |
+
print('Failed to load page within %i seconds.' % max_delay)
|
147 |
+
return samples
|
148 |
+
cards = driver.find_elements(by=By.TAG_NAME, value='sample-card')
|
149 |
+
if reverse:
|
150 |
+
cards.reverse()
|
151 |
+
for card in cards:
|
152 |
+
|
153 |
+
# Begin getting sample details from the card.
|
154 |
+
details = card.find_element(by=By.TAG_NAME, value='md-card-title')
|
155 |
+
|
156 |
+
# Get images.
|
157 |
+
image_elements = details.find_elements(by=By.TAG_NAME, value='img')
|
158 |
+
images = []
|
159 |
+
for image in image_elements:
|
160 |
+
src = image.get_attribute('src')
|
161 |
+
filename = src.split('/')[-1]
|
162 |
+
images.append({'url': src, 'filename': filename})
|
163 |
+
|
164 |
+
# Get the product name.
|
165 |
+
product_name = details.find_element(by=By.CLASS_NAME, value='md-title').text
|
166 |
+
|
167 |
+
# Get the producer, date tested, and product type.
|
168 |
+
headers = details.find_elements(by=By.CLASS_NAME, value='md-subhead')
|
169 |
+
producer = headers[0].text
|
170 |
+
try:
|
171 |
+
mm, dd, yy = tuple(headers[1].text.split(': ')[-1].split('/'))
|
172 |
+
date_tested = f'20{yy}-{mm}-{dd}'
|
173 |
+
except ValueError:
|
174 |
+
date_tested = headers[1].text.split(': ')[-1]
|
175 |
+
product_type = headers[2].text.split(' ')[-1]
|
176 |
+
|
177 |
+
# Create a sample ID.
|
178 |
+
private_key = bytes(date_tested, 'UTF-8')
|
179 |
+
public_key = snake_case(product_name)
|
180 |
+
salt = snake_case(producer)
|
181 |
+
sample_id = hmac.new(private_key, (public_key + salt).encode(), sha256).hexdigest()
|
182 |
+
|
183 |
+
# Get the analyses.
|
184 |
+
analyses = []
|
185 |
+
container = details.find_element(by=By.CLASS_NAME, value='layout-row')
|
186 |
+
chips = container.find_elements(by=By.TAG_NAME, value='md-chip')
|
187 |
+
for chip in chips:
|
188 |
+
hidden = chip.get_attribute('aria-hidden')
|
189 |
+
if hidden == 'false':
|
190 |
+
analyses.append(chip.text)
|
191 |
+
|
192 |
+
# Get the lab results URL.
|
193 |
+
links = card.find_elements(by=By.TAG_NAME, value='a')
|
194 |
+
lab_results_url = links[0].get_attribute('href')
|
195 |
+
|
196 |
+
# Aggregate sample data.
|
197 |
+
sample = {
|
198 |
+
'analyses': analyses,
|
199 |
+
'date_tested': date_tested,
|
200 |
+
'images': images,
|
201 |
+
'lab_results_url': lab_results_url,
|
202 |
+
'producer': producer,
|
203 |
+
'product_name': product_name,
|
204 |
+
'product_type': product_type,
|
205 |
+
'sample_id': sample_id,
|
206 |
+
}
|
207 |
+
samples.append(sample)
|
208 |
+
|
209 |
+
return samples
|
210 |
+
|
211 |
+
|
212 |
+
def get_psi_labs_test_result_details(driver, max_delay=5) -> dict:
|
213 |
+
"""Get the test result details for a specific PSI lab result.
|
214 |
+
Args:
|
215 |
+
driver (WebDriver): A Selenium Chrome WebDiver.
|
216 |
+
max_delay (float): The maximum number of seconds to wait for rendering.
|
217 |
+
Returns:
|
218 |
+
(dict): A dictionary of sample details.
|
219 |
+
"""
|
220 |
+
|
221 |
+
# Deemed optional:
|
222 |
+
# Wait for elements to load, after a maximum delay of X seconds.
|
223 |
+
qr_code, coa_urls = None, []
|
224 |
+
# try:
|
225 |
+
|
226 |
+
# # Wait for the QR code to load.
|
227 |
+
# detect = EC.presence_of_element_located((By.CLASS_NAME, 'qrcode-link'))
|
228 |
+
# qr_code_link = WebDriverWait(driver, max_delay).until(detect)
|
229 |
+
|
230 |
+
# # Get the QR code.
|
231 |
+
# qr_code = qr_code_link.get_attribute('href')
|
232 |
+
|
233 |
+
# # Get CoA URLs by finding all links with with `analytics-event="PDF View"`.
|
234 |
+
# actions = driver.find_elements(by=By.TAG_NAME, value='a')
|
235 |
+
# coa_urls = []
|
236 |
+
# for action in actions:
|
237 |
+
# event = action.get_attribute('analytics-event')
|
238 |
+
# if event == 'PDF View':
|
239 |
+
# href = action.get_attribute('href')
|
240 |
+
# coa_urls.append({'filename': action.text, 'url': href})
|
241 |
+
|
242 |
+
# except TimeoutException:
|
243 |
+
# print('QR Code not loaded within %i seconds.' % max_delay)
|
244 |
+
|
245 |
+
|
246 |
+
# Wait for the results to load.
|
247 |
+
try:
|
248 |
+
detect = EC.presence_of_element_located((By.TAG_NAME, 'ng-include'))
|
249 |
+
WebDriverWait(driver, max_delay).until(detect)
|
250 |
+
except TimeoutException:
|
251 |
+
print('Results not loaded within %i seconds.' % max_delay)
|
252 |
+
|
253 |
+
# Get results for each analysis.
|
254 |
+
results = []
|
255 |
+
date_received, sample_weight, method = None, None, None
|
256 |
+
values = ['name', 'value', 'margin_of_error']
|
257 |
+
analysis_cards = driver.find_elements(by=By.TAG_NAME, value='ng-include')
|
258 |
+
for analysis in analysis_cards:
|
259 |
+
try:
|
260 |
+
analysis.click()
|
261 |
+
except ElementNotInteractableException:
|
262 |
+
continue
|
263 |
+
rows = analysis.find_elements(by=By.TAG_NAME, value='tr')
|
264 |
+
if rows:
|
265 |
+
for row in rows:
|
266 |
+
result = {}
|
267 |
+
cells = row.find_elements(by=By.TAG_NAME, value='td')
|
268 |
+
for i, cell in enumerate(cells):
|
269 |
+
key = values[i]
|
270 |
+
result[key] = cell.text
|
271 |
+
if result:
|
272 |
+
results.append(result)
|
273 |
+
|
274 |
+
# Get the last few sample details: method, sample_weight, and received_at
|
275 |
+
if analysis == 'potency':
|
276 |
+
extra = analysis.find_element(by=By.TAG_NAME, value='md-card-content')
|
277 |
+
headings = extra.find_elements(by=By.TAG_NAME, value='h3')
|
278 |
+
mm, dd, yy = tuple(headings[0].text.split('/'))
|
279 |
+
date_received = f'20{yy}-{mm}-{dd}'
|
280 |
+
sample_weight = headings[1].text
|
281 |
+
method = headings[-1].text
|
282 |
+
|
283 |
+
# Aggregate sample details.
|
284 |
+
details = {
|
285 |
+
'coa_urls': coa_urls,
|
286 |
+
'date_received': date_received,
|
287 |
+
'method': method,
|
288 |
+
'qr_code': qr_code,
|
289 |
+
'results': results,
|
290 |
+
'sample_weight': sample_weight,
|
291 |
+
}
|
292 |
+
return details
|
293 |
+
|
294 |
+
|
295 |
+
# FIXME: This function doesn't work well.
|
296 |
+
def get_all_psi_labs_test_results(service, pages, pause=0.125, verbose=True):
|
297 |
+
"""Get ALL of PSI Labs test results.
|
298 |
+
Args:
|
299 |
+
service (ChromeDriver): A ChromeDriver service.
|
300 |
+
pages (iterable): A range of pages to get lab results from.
|
301 |
+
pause (float): A pause between requests to respect PSI Labs' server.
|
302 |
+
verbose (bool): Whether or not to print out progress, True by default (optional).
|
303 |
+
Returns:
|
304 |
+
(list): A list of collected lab results.
|
305 |
+
"""
|
306 |
+
|
307 |
+
# Create a headless Chrome browser.
|
308 |
+
options = Options()
|
309 |
+
options.headless = True
|
310 |
+
options.add_argument('--window-size=1920,1200')
|
311 |
+
driver = webdriver.Chrome(options=options, service=service)
|
312 |
+
|
313 |
+
# Iterate over all of the pages to get all of the samples.
|
314 |
+
test_results = []
|
315 |
+
for page in pages:
|
316 |
+
if verbose:
|
317 |
+
print('Getting samples on page:', page)
|
318 |
+
driver.get(BASE.format(str(page)))
|
319 |
+
results = get_psi_labs_test_results(driver)
|
320 |
+
if results:
|
321 |
+
test_results += results
|
322 |
+
else:
|
323 |
+
print('Failed to find samples on page:', page)
|
324 |
+
sleep(pause)
|
325 |
+
|
326 |
+
# Get the details for each sample.
|
327 |
+
for i, test_result in enumerate(test_results):
|
328 |
+
if verbose:
|
329 |
+
print('Getting details for:', test_result['product_name'])
|
330 |
+
driver.get(test_result['lab_results_url'])
|
331 |
+
details = get_psi_labs_test_result_details(driver)
|
332 |
+
test_results[i] = {**test_result, **details}
|
333 |
+
sleep(pause)
|
334 |
+
|
335 |
+
# Close the browser and return the results.
|
336 |
+
driver.quit()
|
337 |
+
return test_results
|
338 |
+
|
339 |
+
|
340 |
+
#-----------------------------------------------------------------------
|
341 |
+
# Test: Data aggregation with `get_all_psi_labs_test_results`.
|
342 |
+
#-----------------------------------------------------------------------
|
343 |
+
|
344 |
+
# if __name__ == '__main__':
|
345 |
+
|
346 |
+
# # Specify the full-path to your chromedriver.
|
347 |
+
# # You can also put your chromedriver in `C:\Python39\Scripts`.
|
348 |
+
# # DRIVER_PATH = '../assets/tools/chromedriver_win32/chromedriver'
|
349 |
+
# # full_driver_path = os.path.abspath(DRIVER_PATH)
|
350 |
+
# start = datetime.now()
|
351 |
+
# service = Service()
|
352 |
+
|
353 |
+
# # Create a headless Chrome browser.
|
354 |
+
# options = Options()
|
355 |
+
# options.headless = True
|
356 |
+
# options.add_argument('--window-size=1920,1200')
|
357 |
+
# driver = webdriver.Chrome(options=options, service=service)
|
358 |
+
|
359 |
+
# # Iterate over all of the pages to get all of the samples.
|
360 |
+
# errors = []
|
361 |
+
# test_results = []
|
362 |
+
# pages = list(PAGES)
|
363 |
+
# pages.reverse()
|
364 |
+
# for page in pages:
|
365 |
+
# print('Getting samples on page:', page)
|
366 |
+
# driver.get(BASE.format(str(page)))
|
367 |
+
# results = get_psi_labs_test_results(driver)
|
368 |
+
# if results:
|
369 |
+
# test_results += results
|
370 |
+
# else:
|
371 |
+
# print('Failed to find samples on page:', page)
|
372 |
+
# errors.append(page)
|
373 |
+
|
374 |
+
# # Get the details for each sample.
|
375 |
+
# rows = []
|
376 |
+
# samples = pd.DataFrame(test_results)
|
377 |
+
# total = len(samples)
|
378 |
+
# for index, values in samples.iterrows():
|
379 |
+
# percent = round((index + 1) / total * 100, 2)
|
380 |
+
# print('Collecting (%.2f%%) (%i/%i):' % (percent, index + 1, total), values['product_name'])
|
381 |
+
# driver.get(values['lab_results_url'])
|
382 |
+
# details = get_psi_labs_test_result_details(driver)
|
383 |
+
# rows.append({**values.to_dict(), **details})
|
384 |
+
|
385 |
+
# # Save the results.
|
386 |
+
# data = pd.DataFrame(rows)
|
387 |
+
# timestamp = datetime.now().isoformat()[:19].replace(':', '-')
|
388 |
+
# datafile = f'{DATA_DIR}/psi-lab-results-{timestamp}.xlsx'
|
389 |
+
# data.to_excel(datafile, index=False)
|
390 |
+
# end = datetime.now()
|
391 |
+
# print('Runtime took:', end - start)
|
392 |
+
|
393 |
+
# # Close the browser.
|
394 |
+
# driver.quit()
|
395 |
+
|
396 |
+
|
397 |
+
#-----------------------------------------------------------------------
|
398 |
+
# TODO: Preprocessing the Data
|
399 |
+
#-----------------------------------------------------------------------
|
400 |
+
|
401 |
+
ANALYSES = {
|
402 |
+
'cannabinoids': ['potency', 'POT'],
|
403 |
+
'terpenes': ['terpene', 'TERP'],
|
404 |
+
'residual_solvents': ['solvent', 'RST'],
|
405 |
+
'pesticides': ['pesticide', 'PEST'],
|
406 |
+
'microbes': ['microbial', 'MICRO'],
|
407 |
+
'heavy_metals': ['metal', 'MET'],
|
408 |
+
}
|
409 |
+
ANALYTES = {
|
410 |
+
# TODO: Define all of the known analytes from the Cannlytics library.
|
411 |
+
}
|
412 |
+
DECODINGS = {
|
413 |
+
'<LOQ': 0,
|
414 |
+
'<LOD': 0,
|
415 |
+
'ND': 0,
|
416 |
+
}
|
417 |
+
|
418 |
+
|
419 |
+
# Read in the saved results.
|
420 |
+
datafile = f'{DATA_DIR}/aggregated-cannabis-test-results.xlsx'
|
421 |
+
data = pd.read_excel(datafile, sheet_name='psi_labs_raw_data')
|
422 |
+
|
423 |
+
# Optional: Drop rows with no analyses at this point.
|
424 |
+
drop = ['coa_urls', 'date_received', 'method', 'qr_code', 'sample_weight']
|
425 |
+
data.drop(drop, axis=1, inplace=True)
|
426 |
+
|
427 |
+
# Isolate a training sample.
|
428 |
+
sample = data.sample(100, random_state=420)
|
429 |
+
|
430 |
+
|
431 |
+
# Create both wide and long data for ease of use.
|
432 |
+
# See: https://rstudio-education.github.io/tidyverse-cookbook/tidy.html
|
433 |
+
# Normalize and clean the data. In particular, flatten:
|
434 |
+
# β `analyses`
|
435 |
+
# β `results`
|
436 |
+
# - `images`
|
437 |
+
wide_data = pd.DataFrame()
|
438 |
+
long_data = pd.DataFrame()
|
439 |
+
for index, row in sample.iterrows():
|
440 |
+
series = row.copy()
|
441 |
+
analyses = literal_eval(series['analyses'])
|
442 |
+
images = literal_eval(series['images'])
|
443 |
+
results = literal_eval(series['results'])
|
444 |
+
series.drop(['analyses', 'images', 'results'], inplace=True)
|
445 |
+
|
446 |
+
# Code analyses.
|
447 |
+
if not analyses:
|
448 |
+
continue
|
449 |
+
for analysis in analyses:
|
450 |
+
series[analysis] = 1
|
451 |
+
|
452 |
+
# Add to wide data.
|
453 |
+
wide_data = pd.concat([wide_data, pd.DataFrame([series])])
|
454 |
+
|
455 |
+
# Iterate over results, cleaning results and adding columns.
|
456 |
+
# Future work: Augment results with key, limit, and CAS.
|
457 |
+
for result in results:
|
458 |
+
|
459 |
+
# Clean the values.
|
460 |
+
analyte_name = result['name']
|
461 |
+
measurements = result['value'].split(' ')
|
462 |
+
try:
|
463 |
+
measurement = float(measurements[0])
|
464 |
+
except:
|
465 |
+
measurement = None
|
466 |
+
try:
|
467 |
+
units = measurements[1]
|
468 |
+
except:
|
469 |
+
units = None
|
470 |
+
key = snake_case(analyte_name)
|
471 |
+
try:
|
472 |
+
margin_of_error = float(result['margin_of_error'].split(' ')[-1])
|
473 |
+
except:
|
474 |
+
margin_of_error = None
|
475 |
+
|
476 |
+
# Format long data.
|
477 |
+
entry = series.copy()
|
478 |
+
entry['analyte'] = key
|
479 |
+
entry['analyte_name'] = analyte_name
|
480 |
+
entry['result'] = measurement
|
481 |
+
entry['units'] = units
|
482 |
+
entry['margin_of_error'] = margin_of_error
|
483 |
+
|
484 |
+
# Add to long data.
|
485 |
+
long_data = pd.concat([long_data, pd.DataFrame([entry])])
|
486 |
+
|
487 |
+
|
488 |
+
# Fill null observations.
|
489 |
+
wide_data = wide_data.fillna(0)
|
490 |
+
|
491 |
+
# Rename columns
|
492 |
+
analyses = {
|
493 |
+
'POT': 'cannabinoids',
|
494 |
+
'RST': 'residual_solvents',
|
495 |
+
'TERP': 'terpenes',
|
496 |
+
'PEST': 'pesticides',
|
497 |
+
'MICRO': 'micro',
|
498 |
+
'MET': 'heavy_metals',
|
499 |
+
}
|
500 |
+
wide_data.rename(columns=analyses, inplace=True)
|
501 |
+
long_data.rename(columns=analyses, inplace=True)
|
502 |
+
|
503 |
+
|
504 |
+
#------------------------------------------------------------------------------
|
505 |
+
# Processing the data.
|
506 |
+
#------------------------------------------------------------------------------
|
507 |
+
|
508 |
+
# Calculate totals:
|
509 |
+
# - `total_cbd`
|
510 |
+
# - `total_thc`
|
511 |
+
# - `total_terpenes`
|
512 |
+
# - `total_cannabinoids`
|
513 |
+
# - `total_cbg`
|
514 |
+
# - `total_thcv`
|
515 |
+
# - `total_cbc`
|
516 |
+
# - `total_cbdv`
|
517 |
+
|
518 |
+
|
519 |
+
# Optional: Add `status` variables for pass / fail tests.
|
520 |
+
|
521 |
+
|
522 |
+
# TODO: Augment with:
|
523 |
+
# - lab details: lab, lab_url, lab_license_number, etc.
|
524 |
+
# - lab_latitude, lab_longitude
|
525 |
+
|
526 |
+
# Future work: Calculate average results by state, county, and zip code.
|
527 |
+
|
528 |
+
|
529 |
+
#------------------------------------------------------------------------------
|
530 |
+
# Exploring the data.
|
531 |
+
#------------------------------------------------------------------------------
|
532 |
+
|
533 |
+
# Count the number of various tests.
|
534 |
+
terpenes = wide_data.loc[wide_data['terpenes'] == 1]
|
535 |
+
|
536 |
+
# Find all of the analytes.
|
537 |
+
analytes = list(long_data.analyte.unique())
|
538 |
+
|
539 |
+
# Find all of the product types.
|
540 |
+
product_types = list(long_data.product_type.unique())
|
541 |
+
|
542 |
+
# Look at cannabinoid distributions by type.
|
543 |
+
flower = long_data.loc[long_data['product_type'] == 'Flower']
|
544 |
+
flower.loc[flower['analyte'] == '9_thc']['result'].hist(bins=100)
|
545 |
+
|
546 |
+
concentrates = long_data.loc[long_data['product_type'] == 'Concentrate']
|
547 |
+
concentrates.loc[concentrates['analyte'] == '9_thc']['result'].hist(bins=100)
|
548 |
+
|
549 |
+
|
550 |
+
# Look at terpene distributions by type!
|
551 |
+
terpene = flower.loc[flower['analyte'] == 'dlimonene']
|
552 |
+
terpene['result'].hist(bins=100)
|
553 |
+
|
554 |
+
terpene = concentrates.loc[concentrates['analyte'] == 'dlimonene']
|
555 |
+
terpene['result'].hist(bins=100)
|
556 |
+
|
557 |
+
|
558 |
+
# Find the first occurrences of famous strains.
|
559 |
+
gorilla_glue = flower.loc[
|
560 |
+
(flower['product_name'].str.contains('gorilla', case=False)) |
|
561 |
+
(flower['product_name'].str.contains('glu', case=False))
|
562 |
+
]
|
563 |
+
|
564 |
+
# Create strain fingerprints: histograms of dominant terpenes.
|
565 |
+
compound = gorilla_glue.loc[gorilla_glue['analyte'] == '9_thc']
|
566 |
+
compound['result'].hist(bins=100)
|
567 |
+
|
568 |
+
|
569 |
+
#------------------------------------------------------------------------------
|
570 |
+
# Exploring the data.
|
571 |
+
#------------------------------------------------------------------------------
|
572 |
+
|
573 |
+
# Future work: Augment results with key, limit, and CAS.
|
574 |
+
|
575 |
+
# TODO: Save the curated data, both wide and long data.
|
576 |
+
|
577 |
+
|
578 |
+
# TODO: Standardize the `analyte` names! Ideally with a re-usable function.
|
579 |
+
|
580 |
+
|
581 |
+
# TODO: Standardize `analyses`.
|
582 |
+
|
583 |
+
|
584 |
+
# TODO: Standardize the `product_type`.
|
585 |
+
|
586 |
+
|
587 |
+
# TODO: Standardize `strain_name`.
|
588 |
+
|
589 |
+
|
590 |
+
# TODO: Add any new entries to the Cannlypedia:
|
591 |
+
# - New `analyses`
|
592 |
+
# - New `analytes`
|
593 |
+
# - New `strains`
|
594 |
+
# - New `product_types`
|
595 |
+
|
596 |
+
|
597 |
+
# Optional: Create data / CoA NFTs for the lab results!!!
|
598 |
+
|
599 |
+
|
600 |
+
#------------------------------------------------------------------------------
|
601 |
+
# Exploring the data.
|
602 |
+
#------------------------------------------------------------------------------
|
603 |
+
|
604 |
+
# TODO: Count the number of lab results scraped!
|
605 |
+
|
606 |
+
|
607 |
+
# TODO: Count the number of unique data points scraped!
|
608 |
+
|
609 |
+
|
610 |
+
# TODO: Look at cannabinoid concentrations over time.
|
611 |
+
|
612 |
+
|
613 |
+
# TODO: Look at cannabinoid distributions by type.
|
614 |
+
|
615 |
+
|
616 |
+
# TODO: Look at terpene distributions by type!
|
617 |
+
|
618 |
+
|
619 |
+
#-----------------------------------------------------------------------
|
620 |
+
# Modeling the data.
|
621 |
+
#-----------------------------------------------------------------------
|
622 |
+
|
623 |
+
# TODO: Given a lab result, predict if it's in the Xth percentile.
|
624 |
+
|
625 |
+
|
626 |
+
# TODO: Use in ARIMA model to approach the question:
|
627 |
+
# Are terpene or cannabinoid concentrations increasing over time by sample type?
|
628 |
+
# - total_terpenes
|
629 |
+
# - D-limonene
|
630 |
+
# - beta-pinene
|
631 |
+
# - myrcene
|
632 |
+
# - caryophyllene
|
633 |
+
# - linalool
|
634 |
+
# - cbg
|
635 |
+
# - thcv
|
636 |
+
# - total_thc
|
637 |
+
# - total_cbd
|
638 |
+
# - total_cannabinoids
|
639 |
+
|
640 |
+
|
641 |
+
# Calculate THC to CBD ratio.
|
642 |
+
|
643 |
+
|
644 |
+
# Calculate average terpene ratios by strain:
|
645 |
+
# - beta-pinene to d-limonene ratio
|
646 |
+
# - humulene to caryophyllene
|
647 |
+
# - linalool and myrcene? (Research these!)
|
648 |
+
|
649 |
+
|
650 |
+
# Future work: Add description of why the ratio is meaningful.
|
651 |
+
|
652 |
+
|
653 |
+
# Future work: Calculator to determine the number of mg's of each
|
654 |
+
# compound are in a given unit of weight.
|
655 |
+
# E.g. How much total THC in mg is in an eighth given that it tests X%.
|
656 |
+
# mg = percent * 10 * grams
|
657 |
+
# mg_per_serving = percent * 10 * grams_per_serving (0.33 suggested?)
|
658 |
+
|
659 |
+
|
660 |
+
# TODO: Find parents and crosses of particular strains.
|
661 |
+
# E.g. Find all Jack crosses.
|
662 |
+
|
663 |
+
|
664 |
+
#-----------------------------------------------------------------------
|
665 |
+
# Training and testing the model.
|
666 |
+
#-----------------------------------------------------------------------
|
667 |
+
|
668 |
+
# TODO: Separate results after 2020 as test data.
|
669 |
+
|
670 |
+
|
671 |
+
# TODO: Estimate a large number of ARIMA models on the training data,
|
672 |
+
# use the models to predict the test data, and measure the accuracies.
|
673 |
+
|
674 |
+
|
675 |
+
# TODO: Pick the model that predicts the test data the best.
|
676 |
+
|
677 |
+
|
678 |
+
#-----------------------------------------------------------------------
|
679 |
+
# Evaluating the model.
|
680 |
+
#-----------------------------------------------------------------------
|
681 |
+
|
682 |
+
# TODO: Re-estimate the model with the entire dataset.
|
683 |
+
|
684 |
+
|
685 |
+
# TODO: Predict if cannabinoid and terpene concentrations are trending
|
686 |
+
# up or down and to what degree if so.
|
687 |
+
|
688 |
+
|
689 |
+
# TODO: Take away an insight: Is there statistical evidence that
|
690 |
+
# cannabis cultivated in Michigan is successfully being bred to, on average,
|
691 |
+
# have higher levels of cannabinoids or terpenes? If so, which compounds?
|
692 |
+
|
693 |
+
|
694 |
+
# TODO: Forecast: If the trend continues, what would cannabis look like
|
695 |
+
# in 10 years? What average cannabinoid and terpene concentration can
|
696 |
+
# we expect to see in Michigan in 2025 and 2030?
|
697 |
+
|
698 |
+
|
699 |
+
|
700 |
+
#-----------------------------------------------------------------------
|
701 |
+
# Saving the data, statistics, and model.
|
702 |
+
#-----------------------------------------------------------------------
|
703 |
+
# Note: The data, statistics, and model are only useful if we can get
|
704 |
+
# them # in front of people's eyeballs. Therefore, saving the data and
|
705 |
+
# making them available to people is arguably the most important step.
|
706 |
+
#-----------------------------------------------------------------------
|
707 |
+
|
708 |
+
# TODO: Upload the data to Firestore.
|
709 |
+
|
710 |
+
|
711 |
+
# TODO: Test getting the data and statistics through the Cannlytics API.
|
712 |
+
|
713 |
+
|
714 |
+
# TODO: Test using the statistical model through the Cannlytics API.
|
algorithms/{get_all_rawgarden_data.py β get_results_rawgarden.py}
RENAMED
@@ -1,13 +1,13 @@
|
|
1 |
"""
|
2 |
-
Get Raw Garden Test Result Data
|
3 |
Copyright (c) 2022 Cannlytics
|
4 |
|
5 |
Authors:
|
6 |
Keegan Skeate <https://github.com/keeganskeate>
|
7 |
Candace O'Sullivan-Sutherland <https://github.com/candy-o>
|
8 |
Created: 8/23/2022
|
9 |
-
Updated: 9/
|
10 |
-
License: <https://
|
11 |
|
12 |
Description:
|
13 |
|
@@ -56,13 +56,13 @@ from cannlytics.utils.constants import DEFAULT_HEADERS
|
|
56 |
# Specify where your data lives.
|
57 |
BUCKET_NAME = 'cannlytics-company.appspot.com'
|
58 |
COLLECTION = 'public/data/lab_results'
|
59 |
-
STORAGE_REF = 'data/lab_results/
|
60 |
|
61 |
# Create directories if they don't already exist.
|
62 |
# TODO: Edit `ENV_FILE` and `DATA_DIR` as needed for your desired setup.
|
63 |
ENV_FILE = '../.env'
|
64 |
-
DATA_DIR = '
|
65 |
-
COA_DATA_DIR = f'{DATA_DIR}/
|
66 |
COA_PDF_DIR = f'{COA_DATA_DIR}/pdfs'
|
67 |
TEMP_PATH = f'{COA_DATA_DIR}/tmp'
|
68 |
if not os.path.exists(DATA_DIR): os.makedirs(DATA_DIR)
|
@@ -141,6 +141,7 @@ def get_rawgarden_products(
|
|
141 |
def download_rawgarden_coas(
|
142 |
items: pd.DataFrame,
|
143 |
pause: Optional[float] = 0.24,
|
|
|
144 |
verbose: Optional[bool] = True,
|
145 |
) -> None:
|
146 |
"""Download Raw Garden product COAs to `product_subtype` folders.
|
@@ -149,6 +150,8 @@ def download_rawgarden_coas(
|
|
149 |
and `lab_results_url` to download.
|
150 |
pause (float): A pause to respect the server serving the PDFs,
|
151 |
`0.24` seconds by default (optional).
|
|
|
|
|
152 |
verbose (bool): Whether or not to print status, `True` by
|
153 |
default (optional).
|
154 |
"""
|
@@ -172,6 +175,8 @@ def download_rawgarden_coas(
|
|
172 |
filename = url.split('/')[-1]
|
173 |
folder = kebab_case(subtype)
|
174 |
outfile = os.path.join(COA_PDF_DIR, folder, filename)
|
|
|
|
|
175 |
response = requests.get(url, headers=DEFAULT_HEADERS)
|
176 |
with open(outfile, 'wb') as pdf:
|
177 |
pdf.write(response.content)
|
@@ -263,6 +268,8 @@ def parse_rawgarden_coas(
|
|
263 |
if verbose:
|
264 |
print('Parsed:', filename)
|
265 |
|
|
|
|
|
266 |
return parsed, unidentified
|
267 |
|
268 |
|
@@ -311,7 +318,7 @@ def upload_lab_results(
|
|
311 |
#
|
312 |
# 1. Finding products and their COA URLS.
|
313 |
# 2. Downloading COA PDFs from their URLs.
|
314 |
-
# 3. Using CoADoc to parse the COA PDFs (with OCR).
|
315 |
# 4. Saving the data to datafiles, Firebase Storage, and Firestore.
|
316 |
#
|
317 |
#-----------------------------------------------------------------------
|
@@ -331,7 +338,7 @@ if __name__ == '__main__':
|
|
331 |
args = {}
|
332 |
|
333 |
# Specify collection period.
|
334 |
-
DAYS_AGO = args.get('days_ago',
|
335 |
GET_ALL = args.get('get_all', True)
|
336 |
|
337 |
# === Data Collection ===
|
@@ -357,6 +364,7 @@ if __name__ == '__main__':
|
|
357 |
)
|
358 |
|
359 |
# Merge the `products`'s `product_subtype` with the COA data.
|
|
|
360 |
coa_df = rmerge(
|
361 |
pd.DataFrame(coa_data),
|
362 |
products,
|
@@ -398,20 +406,20 @@ if __name__ == '__main__':
|
|
398 |
# === Firebase Database and Storage ===
|
399 |
|
400 |
# Optional: Initialize Firebase.
|
401 |
-
initialize_firebase(ENV_FILE)
|
402 |
|
403 |
-
# Optional: Upload the lab results to Firestore.
|
404 |
-
upload_lab_results(
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
)
|
409 |
|
410 |
-
# Optional: Upload datafiles to Firebase Storage.
|
411 |
-
storage_datafile = '/'.join([STORAGE_REF, datafile.split('/')[-1]])
|
412 |
-
storage_error_file = '/'.join([STORAGE_REF, error_file.split('/')[-1]])
|
413 |
-
upload_file(storage_datafile, datafile, bucket_name=BUCKET_NAME)
|
414 |
-
upload_file(storage_error_file, error_file, bucket_name=BUCKET_NAME)
|
415 |
|
416 |
# == Data Aggregation ===
|
417 |
|
@@ -422,7 +430,6 @@ if __name__ == '__main__':
|
|
422 |
# datafiles = [
|
423 |
# f'{COA_DATA_DIR}/d7815fd2a097d06b719aadcc00233026f86076a680db63c532a11b67d7c8bc70.xlsx',
|
424 |
# f'{COA_DATA_DIR}/01880e30f092cf5739f9f2b58de705fc4c245d6859c00b50505a3a802ff7c2b2.xlsx',
|
425 |
-
# f'{COA_DATA_DIR}/154de9b1992a1bfd9a07d2e52c702e8437596923f34bee43f62f3e24f042b81c.xlsx',
|
426 |
# ]
|
427 |
|
428 |
# # Create custom column order.
|
|
|
1 |
"""
|
2 |
+
Cannabis Tests | Get Raw Garden Test Result Data
|
3 |
Copyright (c) 2022 Cannlytics
|
4 |
|
5 |
Authors:
|
6 |
Keegan Skeate <https://github.com/keeganskeate>
|
7 |
Candace O'Sullivan-Sutherland <https://github.com/candy-o>
|
8 |
Created: 8/23/2022
|
9 |
+
Updated: 9/22/2022
|
10 |
+
License: CC-BY 4.0 <https://huggingface.co/datasets/cannlytics/cannabis_tests/blob/main/LICENSE>
|
11 |
|
12 |
Description:
|
13 |
|
|
|
56 |
# Specify where your data lives.
|
57 |
BUCKET_NAME = 'cannlytics-company.appspot.com'
|
58 |
COLLECTION = 'public/data/lab_results'
|
59 |
+
STORAGE_REF = 'data/lab_results/rawgarden'
|
60 |
|
61 |
# Create directories if they don't already exist.
|
62 |
# TODO: Edit `ENV_FILE` and `DATA_DIR` as needed for your desired setup.
|
63 |
ENV_FILE = '../.env'
|
64 |
+
DATA_DIR = '../'
|
65 |
+
COA_DATA_DIR = f'{DATA_DIR}/rawgarden'
|
66 |
COA_PDF_DIR = f'{COA_DATA_DIR}/pdfs'
|
67 |
TEMP_PATH = f'{COA_DATA_DIR}/tmp'
|
68 |
if not os.path.exists(DATA_DIR): os.makedirs(DATA_DIR)
|
|
|
141 |
def download_rawgarden_coas(
|
142 |
items: pd.DataFrame,
|
143 |
pause: Optional[float] = 0.24,
|
144 |
+
replace: Optional[bool] = False,
|
145 |
verbose: Optional[bool] = True,
|
146 |
) -> None:
|
147 |
"""Download Raw Garden product COAs to `product_subtype` folders.
|
|
|
150 |
and `lab_results_url` to download.
|
151 |
pause (float): A pause to respect the server serving the PDFs,
|
152 |
`0.24` seconds by default (optional).
|
153 |
+
replace (bool): Whether or not to replace any existing PDFs,
|
154 |
+
`False` by default (optional).
|
155 |
verbose (bool): Whether or not to print status, `True` by
|
156 |
default (optional).
|
157 |
"""
|
|
|
175 |
filename = url.split('/')[-1]
|
176 |
folder = kebab_case(subtype)
|
177 |
outfile = os.path.join(COA_PDF_DIR, folder, filename)
|
178 |
+
if os.path.isfile(outfile):
|
179 |
+
continue
|
180 |
response = requests.get(url, headers=DEFAULT_HEADERS)
|
181 |
with open(outfile, 'wb') as pdf:
|
182 |
pdf.write(response.content)
|
|
|
268 |
if verbose:
|
269 |
print('Parsed:', filename)
|
270 |
|
271 |
+
# TODO: Save intermittently?
|
272 |
+
|
273 |
return parsed, unidentified
|
274 |
|
275 |
|
|
|
318 |
#
|
319 |
# 1. Finding products and their COA URLS.
|
320 |
# 2. Downloading COA PDFs from their URLs.
|
321 |
+
# 3. Using CoADoc to parse the COA PDFs (with OCR as needed).
|
322 |
# 4. Saving the data to datafiles, Firebase Storage, and Firestore.
|
323 |
#
|
324 |
#-----------------------------------------------------------------------
|
|
|
338 |
args = {}
|
339 |
|
340 |
# Specify collection period.
|
341 |
+
DAYS_AGO = args.get('days_ago', 365)
|
342 |
GET_ALL = args.get('get_all', True)
|
343 |
|
344 |
# === Data Collection ===
|
|
|
364 |
)
|
365 |
|
366 |
# Merge the `products`'s `product_subtype` with the COA data.
|
367 |
+
# FIXME: Keep the URL (`lab_results_url`)!
|
368 |
coa_df = rmerge(
|
369 |
pd.DataFrame(coa_data),
|
370 |
products,
|
|
|
406 |
# === Firebase Database and Storage ===
|
407 |
|
408 |
# Optional: Initialize Firebase.
|
409 |
+
# initialize_firebase(ENV_FILE)
|
410 |
|
411 |
+
# # Optional: Upload the lab results to Firestore.
|
412 |
+
# upload_lab_results(
|
413 |
+
# coa_df.to_dict(orient='records'),
|
414 |
+
# update=True,
|
415 |
+
# verbose=True
|
416 |
+
# )
|
417 |
|
418 |
+
# # Optional: Upload datafiles to Firebase Storage.
|
419 |
+
# storage_datafile = '/'.join([STORAGE_REF, datafile.split('/')[-1]])
|
420 |
+
# storage_error_file = '/'.join([STORAGE_REF, error_file.split('/')[-1]])
|
421 |
+
# upload_file(storage_datafile, datafile, bucket_name=BUCKET_NAME)
|
422 |
+
# upload_file(storage_error_file, error_file, bucket_name=BUCKET_NAME)
|
423 |
|
424 |
# == Data Aggregation ===
|
425 |
|
|
|
430 |
# datafiles = [
|
431 |
# f'{COA_DATA_DIR}/d7815fd2a097d06b719aadcc00233026f86076a680db63c532a11b67d7c8bc70.xlsx',
|
432 |
# f'{COA_DATA_DIR}/01880e30f092cf5739f9f2b58de705fc4c245d6859c00b50505a3a802ff7c2b2.xlsx',
|
|
|
433 |
# ]
|
434 |
|
435 |
# # Create custom column order.
|
algorithms/get_results_sclabs.py
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Cannabis Tests | Get SC Labs Test Result Data
|
3 |
+
Copyright (c) 2022-2023 Cannlytics
|
4 |
+
|
5 |
+
Authors:
|
6 |
+
Keegan Skeate <https://github.com/keeganskeate>
|
7 |
+
Candace O'Sullivan-Sutherland <https://github.com/candy-o>
|
8 |
+
Created: 7/8/2022
|
9 |
+
Updated: 2/6/2023
|
10 |
+
License: CC-BY 4.0 <https://huggingface.co/datasets/cannlytics/cannabis_tests/blob/main/LICENSE>
|
11 |
+
|
12 |
+
Description:
|
13 |
+
|
14 |
+
Collect all of SC Labs' publicly published lab results.
|
15 |
+
|
16 |
+
Algorithm:
|
17 |
+
|
18 |
+
1. Discover all SC Labs public clients by scanning:
|
19 |
+
|
20 |
+
https://client.sclabs.com/client/{client}/
|
21 |
+
|
22 |
+
2. Iterate over pages for each client, collecting samples until
|
23 |
+
the 1st sample and active page are the same:
|
24 |
+
|
25 |
+
https://client.sclabs.com/client/{client}/?page={page}
|
26 |
+
|
27 |
+
3. (a) Get the sample details for each sample found.
|
28 |
+
(b) Save the sample details.
|
29 |
+
|
30 |
+
Data Sources:
|
31 |
+
|
32 |
+
- SC Labs Test Results
|
33 |
+
URL: <https://client.sclabs.com/>
|
34 |
+
|
35 |
+
"""
|
36 |
+
# Standard imports.
|
37 |
+
from datetime import datetime
|
38 |
+
import math
|
39 |
+
import os
|
40 |
+
from time import sleep
|
41 |
+
|
42 |
+
# External imports.
|
43 |
+
import pandas as pd
|
44 |
+
|
45 |
+
# Internal imports.
|
46 |
+
from cannlytics.data.coas.sclabs import (
|
47 |
+
get_sc_labs_sample_details,
|
48 |
+
get_sc_labs_test_results,
|
49 |
+
)
|
50 |
+
from cannlytics.firebase import initialize_firebase, update_documents
|
51 |
+
|
52 |
+
# Specify where your data lives.
|
53 |
+
RAW_DATA = '../../../.datasets/lab_results/raw_data/sc_labs'
|
54 |
+
|
55 |
+
# Future work: Figure out a more efficient way to find all producer IDs.
|
56 |
+
PAGES = range(1, 12_000)
|
57 |
+
PRODUCER_IDS = list(PAGES)
|
58 |
+
PRODUCER_IDS.reverse()
|
59 |
+
|
60 |
+
# Alternatively, uncomment to read in the known producer IDs.
|
61 |
+
# from algorithm_constants import SC_LABS_PRODUCER_IDS as PRODUCER_IDS
|
62 |
+
|
63 |
+
# Iterate over potential client pages and client sample pages.
|
64 |
+
start = datetime.now()
|
65 |
+
clients = []
|
66 |
+
errors = []
|
67 |
+
test_results = []
|
68 |
+
for _id in PRODUCER_IDS:
|
69 |
+
results = get_sc_labs_test_results(_id)
|
70 |
+
if results:
|
71 |
+
test_results += results
|
72 |
+
print('Found all samples for producer:', _id)
|
73 |
+
clients.append(_id)
|
74 |
+
sleep(3)
|
75 |
+
|
76 |
+
# Save the results, just in case.
|
77 |
+
data = pd.DataFrame(test_results)
|
78 |
+
timestamp = datetime.now().isoformat()[:19].replace(':', '-')
|
79 |
+
if not os.path.exists(RAW_DATA): os.makedirs(RAW_DATA)
|
80 |
+
datafile = f'{RAW_DATA}/sc-lab-results-{timestamp}.xlsx'
|
81 |
+
data.to_excel(datafile, index=False)
|
82 |
+
end = datetime.now()
|
83 |
+
print('Sample collection took:', end - start)
|
84 |
+
|
85 |
+
# Read in the saved test results (useful for debugging).
|
86 |
+
start = datetime.now()
|
87 |
+
data = pd.read_excel(datafile)
|
88 |
+
|
89 |
+
# Get the sample details for each sample found.
|
90 |
+
errors = []
|
91 |
+
rows = []
|
92 |
+
subset = data.loc[data['results'].isnull()]
|
93 |
+
total = len(subset)
|
94 |
+
for index, values in subset.iterrows():
|
95 |
+
if not math.isnan(values['results']):
|
96 |
+
continue
|
97 |
+
percent = round((index + 1) * 100 / total, 2)
|
98 |
+
sample = values['lab_results_url'].split('/')[-2]
|
99 |
+
details = get_sc_labs_sample_details(sample)
|
100 |
+
rows.append({**values.to_dict(), **details})
|
101 |
+
if details['results']:
|
102 |
+
print('Results found (%.2f%%) (%i/%i):' % (percent, index + 1, total), sample)
|
103 |
+
else:
|
104 |
+
print('No results found (%.2f%%) (%i/%i):' % (percent, index + 1, total), sample)
|
105 |
+
sleep(3)
|
106 |
+
|
107 |
+
# Save every 500 samples just in case.
|
108 |
+
if index % 500 == 0 and index != 0:
|
109 |
+
data = pd.DataFrame(rows)
|
110 |
+
timestamp = datetime.now().isoformat()[:19].replace(':', '-')
|
111 |
+
datafile = f'{RAW_DATA}/sc-lab-results-{timestamp}.xlsx'
|
112 |
+
data.to_excel(datafile, index=False)
|
113 |
+
print('Saved data:', datafile)
|
114 |
+
|
115 |
+
# Save the final results.
|
116 |
+
data = pd.DataFrame(rows)
|
117 |
+
timestamp = datetime.now().isoformat()[:19].replace(':', '-')
|
118 |
+
datafile = f'{RAW_DATA}/sc-lab-results-{timestamp}.xlsx'
|
119 |
+
data.to_excel(datafile, index=False)
|
120 |
+
end = datetime.now()
|
121 |
+
print('Detail collection took:', end - start)
|
122 |
+
|
123 |
+
# Prepare the data to upload to Firestore.
|
124 |
+
refs, updates = [], []
|
125 |
+
for index, obs in data.iterrows():
|
126 |
+
sample_id = obs['sample_id']
|
127 |
+
refs.append(f'public/data/lab_results/{sample_id}')
|
128 |
+
updates.append(obs.to_dict())
|
129 |
+
|
130 |
+
# Initialize Firebase and upload the data to Firestore!
|
131 |
+
database = initialize_firebase()
|
132 |
+
update_documents(refs, updates, database=database)
|
133 |
+
print('Added %i lab results to Firestore!' % len(refs))
|
algorithms/get_results_sdpharmlabs.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Cannabis Tests | Get SDPharmLabs Test Result Data
|
3 |
+
Copyright (c) 2022 Cannlytics
|
4 |
+
|
5 |
+
Authors:
|
6 |
+
Keegan Skeate <https://github.com/keeganskeate>
|
7 |
+
Candace O'Sullivan-Sutherland <https://github.com/candy-o>
|
8 |
+
Created: 8/23/2022
|
9 |
+
Updated: 9/20/2022
|
10 |
+
License: CC-BY 4.0 <https://huggingface.co/datasets/cannlytics/cannabis_tests/blob/main/LICENSE>
|
11 |
+
|
12 |
+
Description:
|
13 |
+
|
14 |
+
Curate SDPharmLabs' publicly published lab results by:
|
15 |
+
|
16 |
+
1. Finding products and their COA URLS on SDPharmLabs' website.
|
17 |
+
2. Downloading COA PDFs from their URLs.
|
18 |
+
3. Using CoADoc to parse the COA PDFs (with OCR if needed).
|
19 |
+
4. Archiving the COA data in Firestore.
|
20 |
+
|
21 |
+
Data Source:
|
22 |
+
|
23 |
+
- SDPharmLabs
|
24 |
+
URL: <https://sandiego.pharmlabscannabistesting.com/>
|
25 |
+
|
26 |
+
"""
|
27 |
+
|
28 |
+
base = 'https://sandiego.pharmlabscannabistesting.com/results'
|
algorithms/get_results_washington_ccrs.py
ADDED
@@ -0,0 +1,471 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Cannabis Tests | Washington State
|
3 |
+
Copyright (c) 2022 Cannlytics
|
4 |
+
|
5 |
+
Authors: Keegan Skeate <https://github.com/keeganskeate>
|
6 |
+
Created: 9/23/2022
|
7 |
+
Updated: 9/27/2022
|
8 |
+
License: <https://github.com/cannlytics/cannlytics/blob/main/LICENSE>
|
9 |
+
|
10 |
+
Description: This script augments lab result data with pertinent
|
11 |
+
licensee, inventory, inventory type, product, and strain data.
|
12 |
+
|
13 |
+
Data sources:
|
14 |
+
|
15 |
+
- WA State Traceability Data Dec. 2021 to Aug. 2022
|
16 |
+
URL: <https://lcb.app.box.com/s/gosuk65m5iinuaqxx2ef7uis9ccnzb20/folder/170118338288>
|
17 |
+
|
18 |
+
"""
|
19 |
+
# Standard imports.
|
20 |
+
import gc
|
21 |
+
import json
|
22 |
+
import os
|
23 |
+
|
24 |
+
# External imports.
|
25 |
+
from dotenv import dotenv_values
|
26 |
+
import matplotlib.pyplot as plt
|
27 |
+
import pandas as pd
|
28 |
+
|
29 |
+
# Internal imports.
|
30 |
+
# from cannlytics.data.ccrs.utils import get_number_of_lines
|
31 |
+
from cannlytics.data.ccrs import CCRS
|
32 |
+
from cannlytics.data.ccrs.utils import unzip_files
|
33 |
+
from cannlytics.utils import (
|
34 |
+
camel_to_snake,
|
35 |
+
get_number_of_lines,
|
36 |
+
snake_case,
|
37 |
+
sorted_nicely,
|
38 |
+
)
|
39 |
+
|
40 |
+
|
41 |
+
DATA_DIR = 'D:\\data\\washington\\ccrs-2022-08-18'
|
42 |
+
SUB_DIR = 'CCRS PRR (8-18-22)'
|
43 |
+
ENV_FILE = '.env'
|
44 |
+
|
45 |
+
|
46 |
+
#-----------------------------------------------------------------------
|
47 |
+
# Get the data.
|
48 |
+
#-----------------------------------------------------------------------
|
49 |
+
|
50 |
+
# Extract all files.
|
51 |
+
unzip_files(DATA_DIR, extension='.zip')
|
52 |
+
|
53 |
+
|
54 |
+
#-----------------------------------------------------------------------
|
55 |
+
# Curate the data.
|
56 |
+
#-----------------------------------------------------------------------
|
57 |
+
|
58 |
+
# Get all of the datafiles.
|
59 |
+
subsets = {}
|
60 |
+
datafiles = []
|
61 |
+
for path, _, files in os.walk(DATA_DIR):
|
62 |
+
for f in files:
|
63 |
+
abs_path = os.path.join(path, f)
|
64 |
+
if f.endswith('.csv'):
|
65 |
+
datafiles.append(abs_path)
|
66 |
+
|
67 |
+
# Count the number of observations in each file.
|
68 |
+
print('| Subset | Observations |')
|
69 |
+
print('|--------|--------------|')
|
70 |
+
for f in sorted_nicely(datafiles):
|
71 |
+
datafile = f.split('\\')[-1]
|
72 |
+
name = datafile.replace('.csv', '').split('_')[0]
|
73 |
+
subset = subsets.get(name, {
|
74 |
+
'observations': 0,
|
75 |
+
'datafiles': [],
|
76 |
+
})
|
77 |
+
abs_path = os.path.join(DATA_DIR, f)
|
78 |
+
file_name = os.path.abspath(abs_path)
|
79 |
+
number = get_number_of_lines(file_name)
|
80 |
+
subset['observations'] += number
|
81 |
+
subset['datafiles'].append(datafile)
|
82 |
+
print(f'| `{datafile}` | `{number:,}` |')
|
83 |
+
subsets[name] = subset
|
84 |
+
|
85 |
+
# Print the total number of observations.
|
86 |
+
for key, values in subsets.items():
|
87 |
+
print(f'{key}: {values["observations"]:,}', 'observations.')
|
88 |
+
|
89 |
+
# Get the columns for each subset.
|
90 |
+
for key, values in subsets.items():
|
91 |
+
datafile = values['datafiles'][0]
|
92 |
+
name = datafile.replace('.csv', '').split('_')[0]
|
93 |
+
folder = datafile.replace('.csv', '')
|
94 |
+
abs_path = os.path.join(DATA_DIR, SUB_DIR, folder, datafile)
|
95 |
+
file_name = os.path.abspath(abs_path)
|
96 |
+
df = pd.read_csv(
|
97 |
+
file_name,
|
98 |
+
sep='\t',
|
99 |
+
encoding='utf-16',
|
100 |
+
nrows=2,
|
101 |
+
index_col=False,
|
102 |
+
low_memory=False,
|
103 |
+
)
|
104 |
+
subsets[name]['columns'] = list(df.columns)
|
105 |
+
|
106 |
+
# Count the number of data points for each subset.
|
107 |
+
for key, values in subsets.items():
|
108 |
+
number_of_cols = len(values['columns'])
|
109 |
+
data_points = values['observations'] * number_of_cols
|
110 |
+
print(f'{key}: {data_points:,}', 'data points.')
|
111 |
+
|
112 |
+
|
113 |
+
#-----------------------------------------------------------------------
|
114 |
+
# Augment license data.
|
115 |
+
#-----------------------------------------------------------------------
|
116 |
+
|
117 |
+
# Read licensee data.
|
118 |
+
# licensees = ccrs.read_licensees()
|
119 |
+
licensees = pd.read_csv(
|
120 |
+
f'{DATA_DIR}/{SUB_DIR}/Licensee_0/Licensee_0.csv',
|
121 |
+
sep='\t',
|
122 |
+
encoding='utf-16',
|
123 |
+
index_col=False,
|
124 |
+
low_memory=False,
|
125 |
+
)
|
126 |
+
licensees.columns = [camel_to_snake(x) for x in licensees.columns]
|
127 |
+
|
128 |
+
# Restrict to active licensees.
|
129 |
+
licensees = licensees.loc[licensees['license_status'] == 'Active']
|
130 |
+
|
131 |
+
# TODO: Geocode licensees.
|
132 |
+
|
133 |
+
# TODO: Figure out `license_type`.
|
134 |
+
|
135 |
+
# TODO: Save augmented licensees.
|
136 |
+
|
137 |
+
|
138 |
+
#-----------------------------------------------------------------------
|
139 |
+
# Augment strain data.
|
140 |
+
#-----------------------------------------------------------------------
|
141 |
+
|
142 |
+
# Read strain data.
|
143 |
+
strains = pd.read_csv(
|
144 |
+
f'{DATA_DIR}/{SUB_DIR}/Strains_0/Strains_0.csv',
|
145 |
+
sep='\t',
|
146 |
+
# sep=',',
|
147 |
+
encoding='utf-16',
|
148 |
+
index_col=False,
|
149 |
+
# skiprows=range(2, 901),
|
150 |
+
engine='python',
|
151 |
+
quotechar='"',
|
152 |
+
nrows=2000,
|
153 |
+
error_bad_lines=False,
|
154 |
+
)
|
155 |
+
strains.columns = [camel_to_snake(x) for x in strains.columns]
|
156 |
+
|
157 |
+
# FIXME: First 899 rows are misaligned.
|
158 |
+
strains = strains.iloc[900:]
|
159 |
+
|
160 |
+
|
161 |
+
#------------------------------------------------------------------------------
|
162 |
+
# Manage lab result data.
|
163 |
+
#------------------------------------------------------------------------------
|
164 |
+
|
165 |
+
# # Read lab results.
|
166 |
+
# lab_results = ccrs.read_lab_results()
|
167 |
+
|
168 |
+
# # Note: Sometimes "Not Tested" is a `test_value`.
|
169 |
+
# lab_results['test_value'] = pd.to_numeric(lab_results['test_value'], errors='coerce')
|
170 |
+
|
171 |
+
# # Remove lab results with `created_date` in the past.
|
172 |
+
# lab_results = lab_results.loc[lab_results['created_date'] >= pd.to_datetime(START)]
|
173 |
+
|
174 |
+
# # Identify all of the labs.
|
175 |
+
# lab_ids = list(lab_results['lab_licensee_id'].unique())
|
176 |
+
|
177 |
+
# # Trend analytes by day by lab.
|
178 |
+
# group = [pd.Grouper(key='created_date', freq='M'), 'test_name', 'lab_licensee_id']
|
179 |
+
# trending = lab_results.groupby(group, as_index=True)['test_value'].mean()
|
180 |
+
|
181 |
+
# # Visualize all analytes!!!
|
182 |
+
# tested_analytes = list(trending.index.get_level_values(1).unique())
|
183 |
+
# for analyte in tested_analytes:
|
184 |
+
# fig, ax = plt.subplots(figsize=(8, 5))
|
185 |
+
# idx = pd.IndexSlice
|
186 |
+
# for lab_id in lab_ids:
|
187 |
+
# try:
|
188 |
+
# lab_samples = trending.loc[idx[:, analyte, lab_id]]
|
189 |
+
# if len(lab_samples) > 0:
|
190 |
+
# lab_samples.plot(
|
191 |
+
# ax=ax,
|
192 |
+
# label=lab_id,
|
193 |
+
# )
|
194 |
+
# except KeyError:
|
195 |
+
# pass
|
196 |
+
# plt.legend(title='Lab ID', loc='upper right')
|
197 |
+
# plt.title(f'Average {analyte} by Lab in Washington')
|
198 |
+
# plt.show()
|
199 |
+
|
200 |
+
# # TODO: Save trending!
|
201 |
+
|
202 |
+
# # Calculate failure rate by lab.
|
203 |
+
|
204 |
+
# # TODO: Calculate failure rate by licensee.
|
205 |
+
# # fail = lab_results.loc[lab_results['LabTestStatus'] == 'Fail']
|
206 |
+
|
207 |
+
# # Get lab prices.
|
208 |
+
|
209 |
+
# # Estimate laboratory revenue.
|
210 |
+
|
211 |
+
# # Estimate laboratory market share.
|
212 |
+
|
213 |
+
# # TODO: Estimate amount spent on lab testing by licensee.
|
214 |
+
|
215 |
+
|
216 |
+
#-----------------------------------------------------------------------
|
217 |
+
# CCRS data exploration.
|
218 |
+
#-----------------------------------------------------------------------
|
219 |
+
|
220 |
+
# # Initialize a CCRS client.
|
221 |
+
# config = dotenv_values(ENV_FILE)
|
222 |
+
# os.environ['CANNLYTICS_API_KEY'] = config['CANNLYTICS_API_KEY']
|
223 |
+
# os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = config['GOOGLE_APPLICATION_CREDENTIALS']
|
224 |
+
# ccrs = CCRS(data_dir=DATA_DIR)
|
225 |
+
|
226 |
+
# # Read licensee data.
|
227 |
+
# licensees = ccrs.read_licensees()
|
228 |
+
|
229 |
+
# # Read areas data.
|
230 |
+
# areas = ccrs.read_areas()
|
231 |
+
|
232 |
+
# # Read inventory data.
|
233 |
+
# inventory = ccrs.read_inventory(limit=100_000)
|
234 |
+
|
235 |
+
# # Wishlist: Augment with licensee data with licensee_id
|
236 |
+
|
237 |
+
# # Wishlist: Augment with strain data with strain_id
|
238 |
+
|
239 |
+
# # Wishlist Augment product data with product_id
|
240 |
+
|
241 |
+
# # Optional: Explore interesting fields:
|
242 |
+
# # - quantity_on_hand
|
243 |
+
# # - total_cost
|
244 |
+
# # - created_date
|
245 |
+
|
246 |
+
# # Optional: Count inventory items by date for each licensee?
|
247 |
+
|
248 |
+
# # Estimate Cost of Goods Sold (CoGS) (Poor data for this metric).
|
249 |
+
# cogs = (inventory.initial_quantity - inventory.quantity_on_hand) * inventory.total_cost
|
250 |
+
|
251 |
+
# # Read inventory adjustment data.
|
252 |
+
# adjustments = ccrs.read_inventory_adjustments()
|
253 |
+
|
254 |
+
# # Wishlist: Merge inventory details
|
255 |
+
# # inventory_adjustments = pd.merge()
|
256 |
+
|
257 |
+
# # Highlight imperfect system.
|
258 |
+
# lost = adjustments.loc[adjustments.inventory_adjustment_reason == 'Lost']
|
259 |
+
# theft = adjustments.loc[adjustments.inventory_adjustment_reason == 'Theft']
|
260 |
+
# seized = adjustments.loc[adjustments.inventory_adjustment_reason == 'Seizure']
|
261 |
+
# other = adjustments.loc[adjustments.inventory_adjustment_reason == 'Other']
|
262 |
+
# not_found = lost.loc[lost['adjustment_detail'].astype(str).str.contains('not found', case=False)]
|
263 |
+
|
264 |
+
# # Read plant data.
|
265 |
+
# plants = ccrs.read_plants()
|
266 |
+
|
267 |
+
# # Wishlist: Augment with strain data.
|
268 |
+
# # StrainId is missing from strain data! And all plant StrainIds are 1...
|
269 |
+
# strains = ccrs.read_strains()
|
270 |
+
|
271 |
+
# # Wishlist: Augment with area data.
|
272 |
+
# # Area data is missing AreaId.
|
273 |
+
|
274 |
+
# # Wishlist: Augment with licensee data.
|
275 |
+
# # Licensee data is missing LicenseeId
|
276 |
+
|
277 |
+
# # TODO: Calculate number of plants by type by day, week, month, year
|
278 |
+
# # for each licensee.
|
279 |
+
# # This may have to be done by looking at created_date and harvest_date.
|
280 |
+
|
281 |
+
# # TODO: Estimate wholesale sales by licensee_id
|
282 |
+
|
283 |
+
# # Estimate growing period.
|
284 |
+
# final_states = ['Harvested', 'Drying', 'Sold']
|
285 |
+
# harvested = plants.loc[plants.plant_state.isin(final_states)]
|
286 |
+
# grow_days = (harvested.harvest_date - harvested.created_date).dt.days
|
287 |
+
# grow_days = grow_days.loc[(grow_days > 30) & (grow_days < 365)]
|
288 |
+
# grow_days.describe()
|
289 |
+
# grow_days.hist(bins=100)
|
290 |
+
# plt.show()
|
291 |
+
|
292 |
+
# # TODO: Estimate a production function (yield per plant).
|
293 |
+
|
294 |
+
# # # Optional: See who is transferring plants to who.
|
295 |
+
# # # InventoryPlantTransfer_0
|
296 |
+
# # # FromLicenseeId, ToLicenseeId, FromInventoryId, ToInventoryId, TransferDate
|
297 |
+
|
298 |
+
# # Read plant destruction data.
|
299 |
+
# destructions = ccrs.read_plant_destructions()
|
300 |
+
|
301 |
+
# # Look at the reasons for destruction.
|
302 |
+
# destructions['destruction_reason'].value_counts().plot(kind='pie')
|
303 |
+
|
304 |
+
# # Look at contaminants
|
305 |
+
# mites = destructions.loc[destructions.destruction_reason == 'Mites']
|
306 |
+
# contaminated = destructions.loc[destructions.destruction_reason == 'Contamination']
|
307 |
+
|
308 |
+
# # Plot plants destroyed by mites per day.
|
309 |
+
# mites_by_day = mites.groupby('destruction_date')['plant_id'].count()
|
310 |
+
# mites_by_day.plot()
|
311 |
+
# plt.title('Number of Plants Destroyed by Mites in Washington')
|
312 |
+
# plt.show()
|
313 |
+
|
314 |
+
# # Plot plants destroyed by contamination per day.
|
315 |
+
# contaminated_by_day = contaminated.groupby('destruction_date')['plant_id'].count()
|
316 |
+
# contaminated_by_day.plot()
|
317 |
+
# plt.title('Number of Contaminated Plants in Washington')
|
318 |
+
# plt.show()
|
319 |
+
|
320 |
+
# # # TODO: Calculate daily risk of plant death.
|
321 |
+
# # destructions_by_day = destructions.groupby('destruction_date')['plant_id'].count()
|
322 |
+
# # # plants_by_day =
|
323 |
+
# # # plant_risk =
|
324 |
+
|
325 |
+
# # Saturday Morning Statistics teaser:
|
326 |
+
# # Capital asset pricing model (CAPM) or...
|
327 |
+
# # Plant liability asset net total model (PLANTM) ;)
|
328 |
+
|
329 |
+
|
330 |
+
#------------------------------------------------------------------------------
|
331 |
+
# Manage product data.
|
332 |
+
#------------------------------------------------------------------------------
|
333 |
+
|
334 |
+
# # Read product data.
|
335 |
+
# products = ccrs.read_products(limit=100_000)
|
336 |
+
|
337 |
+
# # Look at products by day by licensee.
|
338 |
+
# products_by_day = products.groupby(['licensee_id', 'created_date'])['name'].count()
|
339 |
+
|
340 |
+
# # Wishlist: There is a reference to InventoryTypeId but not inventory type data.
|
341 |
+
|
342 |
+
# # Wishlist: Match with licensee data with licensee_id
|
343 |
+
|
344 |
+
|
345 |
+
#------------------------------------------------------------------------------
|
346 |
+
# Manage sales data.
|
347 |
+
#------------------------------------------------------------------------------
|
348 |
+
|
349 |
+
# # Read sale header data.
|
350 |
+
# sale_headers = ccrs.read_sale_headers()
|
351 |
+
|
352 |
+
# # Read sale detail data.
|
353 |
+
# sale_details = ccrs.read_sale_details()
|
354 |
+
|
355 |
+
# # Calculate total price and total tax.
|
356 |
+
# sale_details['total_tax'] = sale_details['sales_tax'] + sale_details['other_tax']
|
357 |
+
# sale_details['total_price'] = sale_details['unit_price'] - abs(sale_details['discount']) + sale_details['total_tax']
|
358 |
+
|
359 |
+
# sale_details = pd.merge(
|
360 |
+
# sale_details,
|
361 |
+
# sale_headers,
|
362 |
+
# left_on='sale_header_id',
|
363 |
+
# right_on='sale_header_id',
|
364 |
+
# how='left',
|
365 |
+
# validate='m:1',
|
366 |
+
# suffixes=(None, '_header'),
|
367 |
+
# )
|
368 |
+
|
369 |
+
# # Calculate total transactions, average transaction, and total sales by retailer.
|
370 |
+
# transactions = sale_details.groupby(['sale_header_id', 'licensee_id'], as_index=False)
|
371 |
+
# transaction_amount = transactions['total_price'].sum()
|
372 |
+
# avg_transaction_amount = transaction_amount.groupby('licensee_id')['total_price'].mean()
|
373 |
+
|
374 |
+
# # Calculate transactions and sales by day.
|
375 |
+
# daily = sale_details.groupby(['sale_date', 'licensee_id'], as_index=False)
|
376 |
+
# daily_sales = daily['total_price'].sum()
|
377 |
+
# daily_transactions = daily['total_price'].count()
|
378 |
+
# group = ['sale_date', 'licensee_id', 'sale_header_id']
|
379 |
+
# daily_avg_transaction_amount = sale_details.groupby(group, as_index=False)['total_price'].mean()
|
380 |
+
|
381 |
+
# # TODO: Aggregate statistics by daily and licensee.
|
382 |
+
|
383 |
+
# # TODO: Calculate year-to-date statistics for each licensee.
|
384 |
+
|
385 |
+
# # FIXME: Figure out how to connect sale_headers.licensee_id with licensees.license_number?
|
386 |
+
|
387 |
+
# # TODO: Break down by sale type:
|
388 |
+
# # 'RecreationalRetail', 'RecreationalMedical', 'Wholesale'
|
389 |
+
|
390 |
+
# # TODO: Try to match sale_items.inventory_id to other details?
|
391 |
+
|
392 |
+
|
393 |
+
#------------------------------------------------------------------------------
|
394 |
+
# Manage transfer data.
|
395 |
+
#------------------------------------------------------------------------------
|
396 |
+
|
397 |
+
# # Read transfer data.
|
398 |
+
# transfers = ccrs.read_transfers()
|
399 |
+
|
400 |
+
# # TODO: Get list of license numbers / addresses from transers.
|
401 |
+
|
402 |
+
# # Future work: Look at number of items, etc. for each transfer.
|
403 |
+
|
404 |
+
|
405 |
+
#------------------------------------------------------------------------------
|
406 |
+
# Future work: Augment the data.
|
407 |
+
#------------------------------------------------------------------------------
|
408 |
+
|
409 |
+
# Get Fed FRED data pertinent to geographic area.
|
410 |
+
|
411 |
+
# Get Census data pertinent to geographic area.
|
412 |
+
|
413 |
+
|
414 |
+
#------------------------------------------------------------------------------
|
415 |
+
# Future work: Estimate ARIMAX for every variable.
|
416 |
+
#------------------------------------------------------------------------------
|
417 |
+
|
418 |
+
# Estimate each variable by licensee in 2022 by day, month, week, and year-end:
|
419 |
+
# - total sales
|
420 |
+
# - number of transactions (Poisson model)
|
421 |
+
# - average transaction amount
|
422 |
+
# - Number of failures (Poisson model)
|
423 |
+
|
424 |
+
|
425 |
+
#------------------------------------------------------------------------------
|
426 |
+
# Save the data and statistics, making the data available for future use.
|
427 |
+
#------------------------------------------------------------------------------
|
428 |
+
|
429 |
+
# # Save all the statistics and forecasts to local data archive.
|
430 |
+
# ccrs.save(lab_results, 'D:\\data\\washington\\stats\\daily_sales.xlsx')
|
431 |
+
|
432 |
+
# # Upload all the statistics and forecasts to make available through the API.
|
433 |
+
# # through the Cannlytics API and Cannlytics Website.
|
434 |
+
# ccrs.upload(lab_results, 'lab_results', id_field='lab_result_id')
|
435 |
+
|
436 |
+
# # Get all data and statistics from the API!
|
437 |
+
# base = 'http://127.0.0.1:8000/api'
|
438 |
+
# ccrs.get('lab_results', limit=100, base=base)
|
439 |
+
|
440 |
+
|
441 |
+
#-----------------------------------------------------------------------
|
442 |
+
# Read lab results data.
|
443 |
+
#-----------------------------------------------------------------------
|
444 |
+
|
445 |
+
# 1. Read Leaf lab results.
|
446 |
+
# 2. Sort the data, removing null observations.
|
447 |
+
# 3. Define a lab ID for each observation and remove attested lab results.
|
448 |
+
|
449 |
+
#-----------------------------------------------------------------------
|
450 |
+
# Augment lab result data with inventory data.
|
451 |
+
#-----------------------------------------------------------------------
|
452 |
+
|
453 |
+
|
454 |
+
#-----------------------------------------------------------------------
|
455 |
+
# Augment lab result data with inventory type data.
|
456 |
+
#-----------------------------------------------------------------------
|
457 |
+
|
458 |
+
|
459 |
+
#-----------------------------------------------------------------------
|
460 |
+
# Augment lab result data with strain data.
|
461 |
+
#-----------------------------------------------------------------------
|
462 |
+
|
463 |
+
|
464 |
+
#-----------------------------------------------------------------------
|
465 |
+
# Augment lab result data with GIS data.
|
466 |
+
#-----------------------------------------------------------------------
|
467 |
+
|
468 |
+
|
469 |
+
#-----------------------------------------------------------------------
|
470 |
+
# Augment lab result data with the labs' licensee data.
|
471 |
+
#-----------------------------------------------------------------------
|
algorithms/get_results_washington_leaf.py
ADDED
@@ -0,0 +1,490 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Cannabis Tests | Get Washington Test Result Data
|
3 |
+
Copyright (c) 2022 Cannlytics
|
4 |
+
|
5 |
+
Authors:
|
6 |
+
Keegan Skeate <https://github.com/keeganskeate>
|
7 |
+
Created: 1/11/2022
|
8 |
+
Updated: 9/16/2022
|
9 |
+
License: CC-BY 4.0 <https://huggingface.co/datasets/cannlytics/cannabis_tests/blob/main/LICENSE>
|
10 |
+
|
11 |
+
Description: This script combines relevant fields from the licensees, inventories,
|
12 |
+
inventory types, and strains datasets with the lab results data. Lab results are
|
13 |
+
augmented with licensees, inventories, inventory types, and strains data.
|
14 |
+
|
15 |
+
Data sources:
|
16 |
+
|
17 |
+
- WA State Traceability Data January 2018 - November 2021
|
18 |
+
https://lcb.app.box.com/s/e89t59s0yb558tjoncjsid710oirqbgd?page=1
|
19 |
+
https://lcb.app.box.com/s/e89t59s0yb558tjoncjsid710oirqbgd?page=2
|
20 |
+
|
21 |
+
Data Guide:
|
22 |
+
|
23 |
+
- Washington State Leaf Data Systems Guide
|
24 |
+
https://lcb.wa.gov/sites/default/files/publications/Marijuana/traceability/WALeafDataSystems_UserManual_v1.37.5_AddendumC_LicenseeUser.pdf
|
25 |
+
|
26 |
+
Data available at:
|
27 |
+
|
28 |
+
- https://cannlytics.com/data/market/augmented-washington-state-lab-results
|
29 |
+
- https://cannlytics.com/data/market/augmented-washington-state-licensees
|
30 |
+
|
31 |
+
"""
|
32 |
+
# Standard imports.
|
33 |
+
import gc
|
34 |
+
import json
|
35 |
+
|
36 |
+
# External imports.
|
37 |
+
import pandas as pd
|
38 |
+
|
39 |
+
# Internal imports.
|
40 |
+
from utils import get_number_of_lines
|
41 |
+
|
42 |
+
#------------------------------------------------------------------------------
|
43 |
+
# Read lab results data.
|
44 |
+
#------------------------------------------------------------------------------
|
45 |
+
|
46 |
+
def read_lab_results(
|
47 |
+
columns=None,
|
48 |
+
fields=None,
|
49 |
+
date_columns=None,
|
50 |
+
nrows=None,
|
51 |
+
data_dir='../.datasets',
|
52 |
+
):
|
53 |
+
"""
|
54 |
+
1. Read Leaf lab results.
|
55 |
+
2. Sort the data, removing null observations.
|
56 |
+
3. Define a lab ID for each observation and remove attested lab results.
|
57 |
+
"""
|
58 |
+
shards = []
|
59 |
+
lab_datasets = ['LabResults_0', 'LabResults_1', 'LabResults_2']
|
60 |
+
for dataset in lab_datasets:
|
61 |
+
lab_data = pd.read_csv(
|
62 |
+
f'{data_dir}/{dataset}.csv',
|
63 |
+
sep='\t',
|
64 |
+
encoding='utf-16',
|
65 |
+
usecols=columns,
|
66 |
+
dtype=fields,
|
67 |
+
parse_dates=date_columns,
|
68 |
+
nrows=nrows,
|
69 |
+
)
|
70 |
+
shards.append(lab_data)
|
71 |
+
del lab_data
|
72 |
+
gc.collect()
|
73 |
+
data = pd.concat(shards)
|
74 |
+
del shards
|
75 |
+
gc.collect()
|
76 |
+
data.dropna(subset=['global_id'], inplace=True)
|
77 |
+
# data.set_index('global_id', inplace=True)
|
78 |
+
data.sort_index(inplace=True)
|
79 |
+
data['lab_id'] = data['global_id'].map(lambda x: x[x.find('WAL'):x.find('.')])
|
80 |
+
data = data.loc[data.lab_id != '']
|
81 |
+
return data
|
82 |
+
|
83 |
+
|
84 |
+
#------------------------------------------------------------------------------
|
85 |
+
# Combine lab result data with inventory data.
|
86 |
+
#------------------------------------------------------------------------------
|
87 |
+
|
88 |
+
# Define necessary lab result fields.
|
89 |
+
lab_result_fields = {
|
90 |
+
'global_id' : 'string',
|
91 |
+
'global_for_inventory_id': 'string'
|
92 |
+
}
|
93 |
+
|
94 |
+
# Read lab result fields necessary to connect with inventory data.
|
95 |
+
lab_results = read_lab_results(
|
96 |
+
columns=list(lab_result_fields.keys()),
|
97 |
+
fields=lab_result_fields,
|
98 |
+
)
|
99 |
+
|
100 |
+
# Save initial enhanced lab results.
|
101 |
+
lab_results.to_csv('../.datasets/augmented_lab_results.csv')
|
102 |
+
|
103 |
+
# Define inventory fields.
|
104 |
+
inventory_fields = {
|
105 |
+
'global_id' : 'string',
|
106 |
+
'inventory_type_id': 'string',
|
107 |
+
'strain_id': 'string',
|
108 |
+
}
|
109 |
+
inventory_columns = list(inventory_fields.keys())
|
110 |
+
|
111 |
+
# Define chunking parameters.
|
112 |
+
# inventory_type_rows = get_number_of_lines('../.datasets/Inventories_0.csv')
|
113 |
+
inventory_row_count = 129_920_072
|
114 |
+
chunk_size = 30_000_000
|
115 |
+
read_rows = 0
|
116 |
+
skiprows = None
|
117 |
+
datatypes = {
|
118 |
+
'global_id' : 'string',
|
119 |
+
'global_for_inventory_id': 'string',
|
120 |
+
'lab_id': 'string',
|
121 |
+
'inventory_type_id': 'string',
|
122 |
+
'strain_id': 'string',
|
123 |
+
}
|
124 |
+
|
125 |
+
# Read in a chunk at a time, match with lab results, and save the data.
|
126 |
+
while read_rows < inventory_row_count:
|
127 |
+
|
128 |
+
# Define the chunk size.
|
129 |
+
if read_rows:
|
130 |
+
skiprows = [i for i in range(1, read_rows)]
|
131 |
+
|
132 |
+
# 1. Open enhanced lab results.
|
133 |
+
lab_results = pd.read_csv(
|
134 |
+
'../.datasets/lab_results_with_ids.csv',
|
135 |
+
# index_col='global_id',
|
136 |
+
dtype=datatypes
|
137 |
+
)
|
138 |
+
|
139 |
+
# 2. Read chunk of inventories.
|
140 |
+
inventories = pd.read_csv(
|
141 |
+
'../.datasets/Inventories_0.csv',
|
142 |
+
sep='\t',
|
143 |
+
encoding='utf-16',
|
144 |
+
usecols=inventory_columns,
|
145 |
+
dtype=inventory_fields,
|
146 |
+
skiprows=skiprows,
|
147 |
+
nrows=chunk_size,
|
148 |
+
)
|
149 |
+
|
150 |
+
# 3. Merge inventories with enhanced lab results.
|
151 |
+
inventories.rename(columns={'global_id': 'inventory_id'}, inplace=True)
|
152 |
+
lab_results = pd.merge(
|
153 |
+
left=lab_results,
|
154 |
+
right=inventories,
|
155 |
+
how='left',
|
156 |
+
left_on='global_for_inventory_id',
|
157 |
+
right_on='inventory_id',
|
158 |
+
)
|
159 |
+
|
160 |
+
# Remove overlapping columns
|
161 |
+
try:
|
162 |
+
new_entries = lab_results[['inventory_type_id_y', 'strain_id_x']]
|
163 |
+
lab_results = lab_results.combine_first(new_entries)
|
164 |
+
lab_results.rename(columns={
|
165 |
+
'inventory_type_id_x': 'inventory_type_id',
|
166 |
+
'strain_id_x': 'strain_id',
|
167 |
+
}, inplace=True)
|
168 |
+
except KeyError:
|
169 |
+
pass
|
170 |
+
extra_columns = ['inventory_id', 'Unnamed: 0', 'inventory_type_id_y',
|
171 |
+
'strain_id_y']
|
172 |
+
lab_results.drop(extra_columns, axis=1, inplace=True, errors='ignore')
|
173 |
+
|
174 |
+
# 4. Save lab results enhanced with IDs.
|
175 |
+
lab_results.to_csv('../.datasets/lab_results_with_ids.csv')
|
176 |
+
read_rows += chunk_size
|
177 |
+
print('Read:', read_rows)
|
178 |
+
|
179 |
+
del new_entries
|
180 |
+
del inventories
|
181 |
+
gc.collect()
|
182 |
+
|
183 |
+
|
184 |
+
#------------------------------------------------------------------------------
|
185 |
+
# Combine lab result data with inventory type data.
|
186 |
+
#------------------------------------------------------------------------------
|
187 |
+
|
188 |
+
results_with_ids = pd.read_csv('../.datasets/lab_results_with_ids.csv')
|
189 |
+
|
190 |
+
# Uncomment if you do not already have inventory_type_names.csv:
|
191 |
+
|
192 |
+
# Get only the inventory names from the inventory types data.
|
193 |
+
# from augment_inventory_types import augment_inventory_types
|
194 |
+
# augment_inventory_types()
|
195 |
+
|
196 |
+
# Get only the results with
|
197 |
+
results_with_ids = results_with_ids[~results_with_ids['inventory_type_id'].isna()]
|
198 |
+
|
199 |
+
# Read in inventory type names.
|
200 |
+
inventory_type_names = pd.read_csv(
|
201 |
+
'../.datasets/inventory_type_names.csv',
|
202 |
+
# index_col='global_id',
|
203 |
+
dtype={
|
204 |
+
'global_id' : 'string',
|
205 |
+
'inventory_name': 'string',
|
206 |
+
}
|
207 |
+
)
|
208 |
+
|
209 |
+
# Merge enhanced lab results with inventory type names.
|
210 |
+
results_with_ids = pd.merge(
|
211 |
+
left=results_with_ids,
|
212 |
+
right=inventory_type_names,
|
213 |
+
how='left',
|
214 |
+
left_on='inventory_type_id',
|
215 |
+
right_on='global_id',
|
216 |
+
)
|
217 |
+
results_with_ids.rename(columns={'global_id_x': 'global_id'}, inplace=True)
|
218 |
+
results_with_ids.drop(['global_id_y'], axis=1, inplace=True, errors='ignore')
|
219 |
+
|
220 |
+
# Save the lab results enhanced with inventory names.
|
221 |
+
results_with_ids.to_csv('../.datasets/lab_results_with_inventory_names.csv')
|
222 |
+
|
223 |
+
|
224 |
+
#------------------------------------------------------------------------------
|
225 |
+
# Combine lab result data with strain data.
|
226 |
+
#------------------------------------------------------------------------------
|
227 |
+
|
228 |
+
# Define strain fields.
|
229 |
+
strain_fields = {
|
230 |
+
'global_id': 'string',
|
231 |
+
'name': 'string',
|
232 |
+
}
|
233 |
+
strain_columns = list(strain_fields.keys())
|
234 |
+
|
235 |
+
# Read in strain data.
|
236 |
+
strains = pd.read_csv(
|
237 |
+
'../.datasets/Strains_0.csv',
|
238 |
+
sep='\t',
|
239 |
+
encoding='utf-16',
|
240 |
+
dtype=strain_fields,
|
241 |
+
usecols=strain_columns,
|
242 |
+
)
|
243 |
+
|
244 |
+
# Merge enhanced lab results with strain data.
|
245 |
+
strains.rename(columns={
|
246 |
+
'global_id': 'strain_id',
|
247 |
+
'name': 'strain_name',
|
248 |
+
}, inplace=True)
|
249 |
+
results_with_ids = pd.merge(
|
250 |
+
left=results_with_ids,
|
251 |
+
right=strains,
|
252 |
+
how='left',
|
253 |
+
left_on='strain_id',
|
254 |
+
right_on='strain_id',
|
255 |
+
)
|
256 |
+
results_with_ids.rename(columns={'global_id_x': 'global_id'}, inplace=True)
|
257 |
+
results_with_ids.drop(['global_id_y'], axis=1, inplace=True, errors='ignore')
|
258 |
+
|
259 |
+
# Save the extra lab results fields.
|
260 |
+
results_with_ids.to_csv('../.datasets/lab_results_with_strain_names.csv')
|
261 |
+
|
262 |
+
#------------------------------------------------------------------------------
|
263 |
+
# Combine lab result data with geocoded licensee data.
|
264 |
+
#------------------------------------------------------------------------------
|
265 |
+
|
266 |
+
# Add code variable to lab results with IDs.
|
267 |
+
results_with_ids['code'] = results_with_ids['global_for_inventory_id'].map(
|
268 |
+
lambda x: x[x.find('WA'):x.find('.')]
|
269 |
+
).str.replace('WA', '')
|
270 |
+
|
271 |
+
# Specify the licensee fields.
|
272 |
+
licensee_fields = {
|
273 |
+
'global_id' : 'string',
|
274 |
+
'code': 'string',
|
275 |
+
'name': 'string',
|
276 |
+
'type': 'string',
|
277 |
+
'address1': 'string',
|
278 |
+
'address2': 'string',
|
279 |
+
'city': 'string',
|
280 |
+
'state_code': 'string',
|
281 |
+
'postal_code': 'string',
|
282 |
+
}
|
283 |
+
licensee_date_fields = [
|
284 |
+
'created_at', # No records if issued before 2018-02-21.
|
285 |
+
]
|
286 |
+
licensee_columns = list(licensee_fields.keys()) + licensee_date_fields
|
287 |
+
|
288 |
+
# # Read in the licensee data.
|
289 |
+
licensees = pd.read_csv(
|
290 |
+
# '../.datasets/Licensees_0.csv',
|
291 |
+
'../.datasets/geocoded_licensee_data.csv',
|
292 |
+
# sep='\t',
|
293 |
+
# encoding='utf-16',
|
294 |
+
usecols=licensee_columns,
|
295 |
+
dtype=licensee_fields,
|
296 |
+
parse_dates=licensee_date_fields,
|
297 |
+
)
|
298 |
+
|
299 |
+
# Format the licensees data.
|
300 |
+
licensees.rename(columns={
|
301 |
+
'global_id': 'mme_id',
|
302 |
+
'created_at': 'license_created_at',
|
303 |
+
'type': 'license_type',
|
304 |
+
}, inplace=True)
|
305 |
+
|
306 |
+
# Combine the data sets.
|
307 |
+
results_with_ids = pd.merge(
|
308 |
+
left=results_with_ids,
|
309 |
+
right=licensees,
|
310 |
+
how='left',
|
311 |
+
left_on='code',
|
312 |
+
right_on='code'
|
313 |
+
)
|
314 |
+
results_with_ids.rename(columns={'global_id_x': 'global_id'}, inplace=True)
|
315 |
+
results_with_ids.drop(['global_id_y'], axis=1, inplace=True, errors='ignore')
|
316 |
+
|
317 |
+
# Save lab results enhanced with additional fields.
|
318 |
+
results_with_ids.to_csv('../.datasets/lab_results_with_licensee_data.csv')
|
319 |
+
|
320 |
+
|
321 |
+
#------------------------------------------------------------------------------
|
322 |
+
# TODO: Combine lab result data with the labs' licensee data.
|
323 |
+
#------------------------------------------------------------------------------
|
324 |
+
|
325 |
+
# Read enhanced lab results.
|
326 |
+
results_with_ids = pd.read_csv('../.datasets/lab_results_with_licensee_data.csv')
|
327 |
+
|
328 |
+
# TODO: Combine each lab's licensee data.
|
329 |
+
# lab_name
|
330 |
+
# lab_address1
|
331 |
+
# lab_address2
|
332 |
+
# lab_ciy
|
333 |
+
# lab_postal_code
|
334 |
+
# lab_phone
|
335 |
+
# lab_certificate_number
|
336 |
+
# lab_global_id
|
337 |
+
# lab_code
|
338 |
+
# lab_created_at
|
339 |
+
|
340 |
+
|
341 |
+
# TODO: Save the data enhanced with the lab's licensee data.
|
342 |
+
|
343 |
+
#------------------------------------------------------------------------------
|
344 |
+
# Combine lab result data with enhanced lab results data.
|
345 |
+
#------------------------------------------------------------------------------
|
346 |
+
|
347 |
+
# Read in results with IDs.
|
348 |
+
results_with_ids = pd.read_csv(
|
349 |
+
'../.datasets/lab_results_with_licensee_data.csv',
|
350 |
+
dtype = {
|
351 |
+
'global_id': 'string',
|
352 |
+
'global_for_inventory_id': 'string',
|
353 |
+
'lab_result_id': 'string',
|
354 |
+
'inventory_type_id': 'string',
|
355 |
+
'lab_id': 'string',
|
356 |
+
'strain_id': 'string',
|
357 |
+
'inventory_name': 'string',
|
358 |
+
'strain_name': 'string',
|
359 |
+
'code': 'string',
|
360 |
+
'mme_id': 'string',
|
361 |
+
'license_created_at': 'string',
|
362 |
+
'name': 'string',
|
363 |
+
'address1': 'string',
|
364 |
+
'address2': 'string',
|
365 |
+
'city': 'string',
|
366 |
+
'state_code': 'string',
|
367 |
+
'postal_code': 'string',
|
368 |
+
'license_type': 'string',
|
369 |
+
# TODO: Re-run with latitude and longitude
|
370 |
+
'latitude': 'float',
|
371 |
+
'longitude': 'float',
|
372 |
+
},
|
373 |
+
)
|
374 |
+
|
375 |
+
# Read all lab results fields with any valuable data.
|
376 |
+
lab_result_fields = {
|
377 |
+
'global_id' : 'string',
|
378 |
+
'intermediate_type' : 'category',
|
379 |
+
'status' : 'category',
|
380 |
+
'cannabinoid_status' : 'category',
|
381 |
+
'cannabinoid_cbc_percent' : 'float16',
|
382 |
+
'cannabinoid_cbc_mg_g' : 'float16',
|
383 |
+
'cannabinoid_cbd_percent' : 'float16',
|
384 |
+
'cannabinoid_cbd_mg_g' : 'float16',
|
385 |
+
'cannabinoid_cbda_percent' : 'float16',
|
386 |
+
'cannabinoid_cbda_mg_g' : 'float16',
|
387 |
+
'cannabinoid_cbdv_percent' : 'float16',
|
388 |
+
'cannabinoid_cbg_percent' : 'float16',
|
389 |
+
'cannabinoid_cbg_mg_g' : 'float16',
|
390 |
+
'cannabinoid_cbga_percent' : 'float16',
|
391 |
+
'cannabinoid_cbga_mg_g' : 'float16',
|
392 |
+
'cannabinoid_cbn_percent' : 'float16',
|
393 |
+
'cannabinoid_cbn_mg_g' : 'float16',
|
394 |
+
'cannabinoid_d8_thc_percent' : 'float16',
|
395 |
+
'cannabinoid_d8_thc_mg_g' : 'float16',
|
396 |
+
'cannabinoid_d9_thca_percent': 'float16',
|
397 |
+
'cannabinoid_d9_thca_mg_g' : 'float16',
|
398 |
+
'cannabinoid_d9_thc_percent' : 'float16',
|
399 |
+
'cannabinoid_d9_thc_mg_g' : 'float16',
|
400 |
+
'cannabinoid_thcv_percent' : 'float16',
|
401 |
+
'cannabinoid_thcv_mg_g' : 'float16',
|
402 |
+
'solvent_status' : 'category',
|
403 |
+
'solvent_acetone_ppm' : 'float16',
|
404 |
+
'solvent_benzene_ppm' : 'float16',
|
405 |
+
'solvent_butanes_ppm' : 'float16',
|
406 |
+
'solvent_chloroform_ppm' : 'float16',
|
407 |
+
'solvent_cyclohexane_ppm' : 'float16',
|
408 |
+
'solvent_dichloromethane_ppm' : 'float16',
|
409 |
+
'solvent_ethyl_acetate_ppm' : 'float16',
|
410 |
+
'solvent_heptane_ppm' : 'float16',
|
411 |
+
'solvent_hexanes_ppm' : 'float16',
|
412 |
+
'solvent_isopropanol_ppm' : 'float16',
|
413 |
+
'solvent_methanol_ppm' : 'float16',
|
414 |
+
'solvent_pentanes_ppm' : 'float16',
|
415 |
+
'solvent_propane_ppm' : 'float16',
|
416 |
+
'solvent_toluene_ppm' : 'float16',
|
417 |
+
'solvent_xylene_ppm' : 'float16',
|
418 |
+
'foreign_matter' : 'bool',
|
419 |
+
'foreign_matter_stems': 'float16',
|
420 |
+
'foreign_matter_seeds': 'float16',
|
421 |
+
'microbial_status' : 'category',
|
422 |
+
'microbial_bile_tolerant_cfu_g' : 'float16',
|
423 |
+
'microbial_pathogenic_e_coli_cfu_g' : 'float16',
|
424 |
+
'microbial_salmonella_cfu_g' : 'float16',
|
425 |
+
'moisture_content_percent' : 'float16',
|
426 |
+
'moisture_content_water_activity_rate' : 'float16',
|
427 |
+
'mycotoxin_status' : 'category',
|
428 |
+
'mycotoxin_aflatoxins_ppb' : 'float16',
|
429 |
+
'mycotoxin_ochratoxin_ppb' : 'float16',
|
430 |
+
'thc_percent' : 'float16',
|
431 |
+
'notes' : 'float32',
|
432 |
+
'testing_status' : 'category',
|
433 |
+
'type' : 'category',
|
434 |
+
'external_id' : 'string',
|
435 |
+
}
|
436 |
+
lab_result_date_columns = ['created_at', 'updated_at', 'received_at',]
|
437 |
+
lab_result_columns = list(lab_result_fields.keys()) + lab_result_date_columns
|
438 |
+
complete_lab_results = read_lab_results(
|
439 |
+
columns=lab_result_columns,
|
440 |
+
fields=lab_result_fields,
|
441 |
+
date_columns=None,
|
442 |
+
)
|
443 |
+
|
444 |
+
# Merge lab results with the complete lab results data.
|
445 |
+
complete_lab_results.rename(columns={
|
446 |
+
'global_id': 'lab_result_id',
|
447 |
+
'type': 'sample_type',
|
448 |
+
}, inplace=True)
|
449 |
+
results_with_ids = pd.merge(
|
450 |
+
left=results_with_ids,
|
451 |
+
right=complete_lab_results,
|
452 |
+
how='left',
|
453 |
+
left_on='global_id',
|
454 |
+
right_on='lab_result_id',
|
455 |
+
)
|
456 |
+
results_with_ids.rename(columns={'lab_id_x': 'lab_id'}, inplace=True)
|
457 |
+
results_with_ids.drop([
|
458 |
+
'Unnamed: 0',
|
459 |
+
'Unnamed: 0.1',
|
460 |
+
'global_id',
|
461 |
+
'lab_id_y',
|
462 |
+
], axis=1, inplace=True, errors='ignore')
|
463 |
+
|
464 |
+
# TODO: Fill missing cannabinoid percent or mg/g.
|
465 |
+
|
466 |
+
# FIXME: Are missing values posing a problem?
|
467 |
+
# Calculate total cannabinoids.
|
468 |
+
cannabinoids_wa = [
|
469 |
+
'cannabinoid_d9_thca_percent',
|
470 |
+
'cannabinoid_d9_thc_percent',
|
471 |
+
'cannabinoid_d8_thc_percent',
|
472 |
+
'cannabinoid_thcv_percent',
|
473 |
+
'cannabinoid_cbd_percent',
|
474 |
+
'cannabinoid_cbda_percent',
|
475 |
+
'cannabinoid_cbdv_percent',
|
476 |
+
'cannabinoid_cbg_percent',
|
477 |
+
'cannabinoid_cbga_percent',
|
478 |
+
'cannabinoid_cbc_percent',
|
479 |
+
'cannabinoid_cbn_percent',
|
480 |
+
]
|
481 |
+
results_with_ids['total_cannabinoids'] = results_with_ids[cannabinoids_wa].sum(axis=1)
|
482 |
+
|
483 |
+
# Save the complete lab results data to csv, xlsx, and json.
|
484 |
+
results_with_ids.to_excel('../.datasets/lab_results_complete.xlsx')
|
485 |
+
results_with_ids.to_csv('../.datasets/lab_results_complete.csv')
|
486 |
+
# FIXME: NAType is not JSON serializable
|
487 |
+
# with open('../.datasets/lab_results_complete.json', 'w') as outfile:
|
488 |
+
# data = results_with_ids.where(pd.notnull(results_with_ids), '')
|
489 |
+
# data = json.loads(json.dumps(list(data.T.to_dict().values())))
|
490 |
+
# json.dump(data, outfile)
|
algorithms/main.py
ADDED
@@ -0,0 +1,370 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Get Cannabis Tests Data
|
3 |
+
Copyright (c) 2022 Cannlytics
|
4 |
+
|
5 |
+
Authors:
|
6 |
+
Keegan Skeate <https://github.com/keeganskeate>
|
7 |
+
Candace O'Sullivan-Sutherland <https://github.com/candy-o>
|
8 |
+
Created: 8/23/2022
|
9 |
+
Updated: 9/15/2022
|
10 |
+
License: MIT License <https://github.com/cannlytics/cannlytics/blob/main/LICENSE>
|
11 |
+
|
12 |
+
Description:
|
13 |
+
|
14 |
+
Periodically curate publicly published lab results by:
|
15 |
+
|
16 |
+
1. Finding products and their COA URLS on the web.
|
17 |
+
2. Downloading COA PDFs from their URLs.
|
18 |
+
3. Using CoADoc to parse the COA PDFs (with OCR).
|
19 |
+
4. Archiving the COA data in Firebase Firestore and Storage.
|
20 |
+
|
21 |
+
Data Sources:
|
22 |
+
|
23 |
+
- Raw Garden Lab Results
|
24 |
+
URL: <https://rawgarden.farm/lab-results/>
|
25 |
+
|
26 |
+
"""
|
27 |
+
# # Standard imports.
|
28 |
+
# import base64
|
29 |
+
# from datetime import datetime, timedelta
|
30 |
+
# import os
|
31 |
+
# from time import sleep
|
32 |
+
# from typing import Any, List, Optional, Tuple
|
33 |
+
|
34 |
+
# # External imports.
|
35 |
+
# from bs4 import BeautifulSoup
|
36 |
+
# from firebase_admin import firestore, initialize_app
|
37 |
+
# import pandas as pd
|
38 |
+
# import requests
|
39 |
+
|
40 |
+
# # Internal imports.
|
41 |
+
# from cannlytics.data.coas import CoADoc
|
42 |
+
# from cannlytics.firebase import (
|
43 |
+
# get_document,
|
44 |
+
# initialize_firebase,
|
45 |
+
# update_documents,
|
46 |
+
# upload_file,
|
47 |
+
# )
|
48 |
+
# from cannlytics.utils import kebab_case, rmerge
|
49 |
+
# from cannlytics.utils.constants import DEFAULT_HEADERS
|
50 |
+
|
51 |
+
# # Specify where your data lives.
|
52 |
+
# BUCKET_NAME = 'cannlytics-company.appspot.com'
|
53 |
+
# COLLECTION = 'public/data/lab_results'
|
54 |
+
# STORAGE_REF = 'data/lab_results/raw_garden'
|
55 |
+
|
56 |
+
# # Create temporary directories.
|
57 |
+
# DATA_DIR = '/tmp'
|
58 |
+
# COA_DATA_DIR = f'{DATA_DIR}/lab_results/raw_garden'
|
59 |
+
# COA_PDF_DIR = f'{COA_DATA_DIR}/pdfs'
|
60 |
+
# TEMP_PATH = f'{COA_DATA_DIR}/tmp'
|
61 |
+
# if not os.path.exists(DATA_DIR): os.makedirs(DATA_DIR)
|
62 |
+
# if not os.path.exists(COA_DATA_DIR): os.makedirs(COA_DATA_DIR)
|
63 |
+
# if not os.path.exists(COA_PDF_DIR): os.makedirs(COA_PDF_DIR)
|
64 |
+
# if not os.path.exists(TEMP_PATH): os.makedirs(TEMP_PATH)
|
65 |
+
|
66 |
+
# # Define constants.
|
67 |
+
# BASE = 'https://rawgarden.farm/lab-results/'
|
68 |
+
|
69 |
+
|
70 |
+
# def get_rawgarden_products(
|
71 |
+
# start: Optional[Any] = None,
|
72 |
+
# end: Optional[Any] = None,
|
73 |
+
# ) -> pd.DataFrame:
|
74 |
+
# """Get Raw Garden's lab results page. Then get all of the product
|
75 |
+
# categories. Finally, get all product data, including: `coa_pdf`,
|
76 |
+
# `lab_results_url`, `product_name`, `product_subtype`, `date_retail`.
|
77 |
+
# Args:
|
78 |
+
# start (str or datetime): A point in time to begin restricting
|
79 |
+
# the product list by `date_retail` (optional).
|
80 |
+
# end (str or datetime): A point in time to end restricting
|
81 |
+
# the product list by `date_retail` (optional).
|
82 |
+
# Returns:
|
83 |
+
# (DataFrame): Returns a DataFrame of product data.
|
84 |
+
# """
|
85 |
+
|
86 |
+
# # Get the website.
|
87 |
+
# response = requests.get(BASE, headers=DEFAULT_HEADERS)
|
88 |
+
# soup = BeautifulSoup(response.content, 'html.parser')
|
89 |
+
|
90 |
+
# # Get all product data listed on the website.
|
91 |
+
# observations = []
|
92 |
+
# categories = soup.find_all('div', attrs={'class': 'category-content'})
|
93 |
+
# for category in categories:
|
94 |
+
# subtype = category.find('h3').text
|
95 |
+
# dates = category.findAll('h5', attrs={'class': 'result-date'})
|
96 |
+
# names = category.findAll('h5')
|
97 |
+
# names = [div for div in names if div.get('class') is None]
|
98 |
+
# links = category.findAll('a')
|
99 |
+
# for i, link in enumerate(links):
|
100 |
+
# try:
|
101 |
+
# href = link.get('href')
|
102 |
+
# date = pd.to_datetime(dates[i].text)
|
103 |
+
# name = names[i].text
|
104 |
+
# if href.endswith('.pdf'):
|
105 |
+
# observations.append({
|
106 |
+
# 'coa_pdf': href.split('/')[-1],
|
107 |
+
# 'lab_results_url': href,
|
108 |
+
# 'product_name': name,
|
109 |
+
# 'product_subtype': subtype,
|
110 |
+
# 'date_retail': date,
|
111 |
+
# })
|
112 |
+
# except AttributeError:
|
113 |
+
# continue
|
114 |
+
|
115 |
+
# # Restrict the observations to the desired time frame.
|
116 |
+
# results = pd.DataFrame(observations)
|
117 |
+
# dates = results['date_retail']
|
118 |
+
# if start:
|
119 |
+
# if isinstance(start, str):
|
120 |
+
# latest = pd.to_datetime(start)
|
121 |
+
# else:
|
122 |
+
# latest = start
|
123 |
+
# results = results.loc[dates >= latest]
|
124 |
+
# if end:
|
125 |
+
# if isinstance(end, str):
|
126 |
+
# earliest = pd.to_datetime(end)
|
127 |
+
# else:
|
128 |
+
# earliest = end
|
129 |
+
# results = results.loc[dates <= earliest]
|
130 |
+
# results['date_retail'] = dates.apply(lambda x: x.isoformat()[:19])
|
131 |
+
# return results
|
132 |
+
|
133 |
+
|
134 |
+
# def download_rawgarden_coas(
|
135 |
+
# items: pd.DataFrame,
|
136 |
+
# pause: Optional[float] = 0.24,
|
137 |
+
# verbose: Optional[bool] = True,
|
138 |
+
# ) -> None:
|
139 |
+
# """Download Raw Garden product COAs to `product_subtype` folders.
|
140 |
+
# Args:
|
141 |
+
# items: (DataFrame): A DataFrame of products with `product_subtype`
|
142 |
+
# and `lab_results_url` to download.
|
143 |
+
# pause (float): A pause to respect the server serving the PDFs,
|
144 |
+
# `0.24` seconds by default (optional).
|
145 |
+
# verbose (bool): Whether or not to print status, `True` by
|
146 |
+
# default (optional).
|
147 |
+
# """
|
148 |
+
# if verbose:
|
149 |
+
# total = len(items)
|
150 |
+
# print('Downloading %i PDFs, ETA > %.2fs' % (total, total * pause))
|
151 |
+
|
152 |
+
# # Create a folder of each of the subtypes.
|
153 |
+
# subtypes = list(items['product_subtype'].unique())
|
154 |
+
# for subtype in subtypes:
|
155 |
+
# folder = kebab_case(subtype)
|
156 |
+
# subtype_folder = f'{COA_PDF_DIR}/{folder}'
|
157 |
+
# if not os.path.exists(subtype_folder):
|
158 |
+
# os.makedirs(subtype_folder)
|
159 |
+
|
160 |
+
# # Download each COA PDF from its URL to a `product_subtype` folder.
|
161 |
+
# for i, row in enumerate(items.iterrows()):
|
162 |
+
# item = row[1]
|
163 |
+
# url = item['lab_results_url']
|
164 |
+
# subtype = item['product_subtype']
|
165 |
+
# filename = url.split('/')[-1]
|
166 |
+
# folder = kebab_case(subtype)
|
167 |
+
# outfile = os.path.join(COA_PDF_DIR, folder, filename)
|
168 |
+
# response = requests.get(url, headers=DEFAULT_HEADERS)
|
169 |
+
# with open(outfile, 'wb') as pdf:
|
170 |
+
# pdf.write(response.content)
|
171 |
+
# if verbose:
|
172 |
+
# message = 'Downloaded {}/{} | {}/{}'
|
173 |
+
# message = message.format(str(i + 1), str(total), folder, filename)
|
174 |
+
# print(message)
|
175 |
+
# sleep(pause)
|
176 |
+
|
177 |
+
|
178 |
+
# def parse_rawgarden_coas(
|
179 |
+
# directory: str,
|
180 |
+
# filenames: Optional[list] = None,
|
181 |
+
# temp_path: Optional[str] = '/tmp',
|
182 |
+
# verbose: Optional[bool] = True,
|
183 |
+
# **kwargs,
|
184 |
+
# ) -> Tuple[list]:
|
185 |
+
# """Parse Raw Garden lab results with CoADoc.
|
186 |
+
# Args:
|
187 |
+
# directory (str): The directory of files to parse.
|
188 |
+
# filenames (list): A list of files to parse (optional).
|
189 |
+
# temp_path (str): A temporary directory to use for any OCR (optional).
|
190 |
+
# verbose (bool): Whether or not to print status, `True` by
|
191 |
+
# default (optional).
|
192 |
+
# Returns:
|
193 |
+
# (tuple): Returns both a list of parsed and unidentified COA data.
|
194 |
+
# """
|
195 |
+
# parser = CoADoc()
|
196 |
+
# parsed, unidentified = [], []
|
197 |
+
# started = False
|
198 |
+
# for path, _, files in os.walk(directory):
|
199 |
+
# if verbose and not started:
|
200 |
+
# started = True
|
201 |
+
# if filenames:
|
202 |
+
# total = len(filenames)
|
203 |
+
# else:
|
204 |
+
# total = len(files)
|
205 |
+
# print('Parsing %i COAs, ETA > %.2fm' % (total, total * 25 / 60))
|
206 |
+
# for filename in files:
|
207 |
+
# if not filename.endswith('.pdf'):
|
208 |
+
# continue
|
209 |
+
# if filenames is not None:
|
210 |
+
# if filename not in filenames:
|
211 |
+
# continue
|
212 |
+
# doc = os.path.join(path, filename)
|
213 |
+
# try:
|
214 |
+
# # FIXME: Make API request to Cannlytics? Tesseract, etc.
|
215 |
+
# # are going to be too heavy for a cloud function.
|
216 |
+
# coa = parser.parse(doc, temp_path=temp_path, **kwargs)
|
217 |
+
# subtype = path.split('\\')[-1]
|
218 |
+
# coa[0]['product_subtype'] = subtype
|
219 |
+
# parsed.extend(coa)
|
220 |
+
# if verbose:
|
221 |
+
# print('Parsed:', filename)
|
222 |
+
# except Exception as e:
|
223 |
+
# unidentified.append({'coa_pdf': filename})
|
224 |
+
# if verbose:
|
225 |
+
# print('Error:', filename)
|
226 |
+
# print(e)
|
227 |
+
# pass
|
228 |
+
# return parsed, unidentified
|
229 |
+
|
230 |
+
|
231 |
+
# def upload_lab_results(
|
232 |
+
# observations: List[dict],
|
233 |
+
# collection: Optional[str] = None,
|
234 |
+
# database: Optional[Any] = None,
|
235 |
+
# update: Optional[bool] = True,
|
236 |
+
# verbose: Optional[bool] = True,
|
237 |
+
# ) -> None:
|
238 |
+
# """Upload lab results to Firestore.
|
239 |
+
# Args:
|
240 |
+
# observations (list): A list of lab results to upload.
|
241 |
+
# collection (str): The Firestore collection where lab results live,
|
242 |
+
# `'public/data/lab_results'` by default (optional).
|
243 |
+
# database (Client): A Firestore database instance (optional).
|
244 |
+
# update (bool): Whether or not to update existing entries, `True`
|
245 |
+
# by default (optional).
|
246 |
+
# verbose (bool): Whether or not to print status, `True` by
|
247 |
+
# default (optional).
|
248 |
+
# """
|
249 |
+
# if collection is None:
|
250 |
+
# collection = COLLECTION
|
251 |
+
# if database is None:
|
252 |
+
# database = initialize_firebase()
|
253 |
+
# refs, updates = [], []
|
254 |
+
# for obs in observations:
|
255 |
+
# sample_id = obs['sample_id']
|
256 |
+
# ref = f'{collection}/{sample_id}'
|
257 |
+
# if not update:
|
258 |
+
# doc = get_document(ref)
|
259 |
+
# if doc is not None:
|
260 |
+
# continue
|
261 |
+
# refs.append(ref)
|
262 |
+
# updates.append(obs)
|
263 |
+
# if updates:
|
264 |
+
# if verbose:
|
265 |
+
# print('Uploading %i lab results.' % len(refs))
|
266 |
+
# update_documents(refs, updates, database=database)
|
267 |
+
# if verbose:
|
268 |
+
# print('Uploaded %i lab results.' % len(refs))
|
269 |
+
|
270 |
+
|
271 |
+
def main(event, context):
|
272 |
+
"""Archive Raw Garden data on a periodic basis.
|
273 |
+
Triggered from a message on a Cloud Pub/Sub topic.
|
274 |
+
Args:
|
275 |
+
event (dict): Event payload.
|
276 |
+
context (google.cloud.functions.Context): Metadata for the event.
|
277 |
+
"""
|
278 |
+
raise NotImplementedError
|
279 |
+
|
280 |
+
# # Check that the PubSub message is valid.
|
281 |
+
# pubsub_message = base64.b64decode(event['data']).decode('utf-8')
|
282 |
+
# if pubsub_message != 'success':
|
283 |
+
# return
|
284 |
+
|
285 |
+
# # Get the most recent Raw Garden products.
|
286 |
+
# DAYS_AGO = 1
|
287 |
+
# start = datetime.now() - timedelta(days=DAYS_AGO)
|
288 |
+
# products = get_rawgarden_products(start=start)
|
289 |
+
|
290 |
+
# # Download Raw Garden product COAs to `product_subtype` folders.
|
291 |
+
# download_rawgarden_coas(products, pause=0.24, verbose=True)
|
292 |
+
|
293 |
+
# # Parse COA PDFs with CoADoc.
|
294 |
+
# coa_data, unidentified_coas = parse_rawgarden_coas(
|
295 |
+
# COA_PDF_DIR,
|
296 |
+
# filenames=products['coa_pdf'].to_list(),
|
297 |
+
# temp_path=TEMP_PATH,
|
298 |
+
# verbose=True,
|
299 |
+
# )
|
300 |
+
|
301 |
+
# # Merge the `products`'s `product_subtype` with the COA data.
|
302 |
+
# coa_dataframe = rmerge(
|
303 |
+
# pd.DataFrame(coa_data),
|
304 |
+
# products,
|
305 |
+
# on='coa_pdf',
|
306 |
+
# how='left',
|
307 |
+
# replace='right',
|
308 |
+
# )
|
309 |
+
|
310 |
+
# # Optional: Save the COA data to a workbook.
|
311 |
+
# parser = CoADoc()
|
312 |
+
# timestamp = datetime.now().isoformat()[:19].replace(':', '-')
|
313 |
+
# datafile = f'{COA_DATA_DIR}/rawgarden-coa-data-{timestamp}.xlsx'
|
314 |
+
# parser.save(coa_dataframe, datafile)
|
315 |
+
|
316 |
+
# # Optional: Save the unidentified COA data.
|
317 |
+
# errors = [x['coa_pdf'] for x in unidentified_coas]
|
318 |
+
# error_file = f'{COA_DATA_DIR}/rawgarden-unidentified-coas-{timestamp}.xlsx'
|
319 |
+
# products.loc[products['coa_pdf'].isin(errors)].to_excel(error_file)
|
320 |
+
|
321 |
+
# # Initialize Firebase.
|
322 |
+
# # FIXME: Ideally use the internal initialization.
|
323 |
+
# try:
|
324 |
+
# initialize_app()
|
325 |
+
# except ValueError:
|
326 |
+
# pass
|
327 |
+
# database = firestore.client()
|
328 |
+
|
329 |
+
# # Optional: Upload the lab results to Firestore.
|
330 |
+
# upload_lab_results(
|
331 |
+
# coa_dataframe.to_dict(orient='records'),
|
332 |
+
# database=database,
|
333 |
+
# update=False,
|
334 |
+
# verbose=False
|
335 |
+
# )
|
336 |
+
|
337 |
+
# # Optional: Upload datafiles to Firebase Storage.
|
338 |
+
# storage_error_file = '/'.join([STORAGE_REF, error_file.split('/')[-1]])
|
339 |
+
# upload_file(storage_error_file, error_file, bucket_name=BUCKET_NAME)
|
340 |
+
|
341 |
+
|
342 |
+
# === Test ===
|
343 |
+
if __name__ == '__main__':
|
344 |
+
|
345 |
+
from cannlytics.utils import encode_pdf
|
346 |
+
from cannlytics.utils.constants import DEFAULT_HEADERS
|
347 |
+
import requests
|
348 |
+
|
349 |
+
# [β] TEST: Mock the Google Cloud Function scheduled routine.
|
350 |
+
# event = {'data': base64.b64encode('success'.encode())}
|
351 |
+
# get_rawgarden_data(event, context={})
|
352 |
+
|
353 |
+
# # [ ] Test: Post a PDF to the Cannlytics API for parsing.
|
354 |
+
# # FIXME:
|
355 |
+
# coa_doc_api = 'https://cannlytics.com/api/data/coas'
|
356 |
+
# folder = 'tests/assets/coas/'
|
357 |
+
# filename = f'{folder}/210000525-Citrus-Slurm-Diamonds.pdf'
|
358 |
+
# # files = {'upload_file': open(filename, 'rb')}
|
359 |
+
# # values = {'lims': 'Cannalysis'}
|
360 |
+
# # response = requests.post(base, files=files, data=values)
|
361 |
+
# with open(filename, 'rb') as f:
|
362 |
+
# response = requests.post(
|
363 |
+
# coa_doc_api,
|
364 |
+
# headers=DEFAULT_HEADERS,
|
365 |
+
# files={'file': f}
|
366 |
+
# )
|
367 |
+
# print(response.status_code)
|
368 |
+
|
369 |
+
# # Optional: Also allow for encoding of PDFs.
|
370 |
+
# encoded_pdf = encode_pdf(filename)
|
cannabis_tests.py
CHANGED
@@ -6,7 +6,7 @@ Authors:
|
|
6 |
Keegan Skeate <https://github.com/keeganskeate>
|
7 |
Candace O'Sullivan-Sutherland <https://github.com/candy-o>
|
8 |
Created: 9/10/2022
|
9 |
-
Updated: 9/
|
10 |
License: <https://github.com/cannlytics/cannlytics/blob/main/LICENSE>
|
11 |
"""
|
12 |
import datasets
|
@@ -15,11 +15,11 @@ import pandas as pd
|
|
15 |
|
16 |
# === Constants. ===
|
17 |
|
18 |
-
_VERSION = '1.0.
|
19 |
_HOMEPAGE = 'https://huggingface.co/datasets/cannlytics/cannabis_tests'
|
20 |
_LICENSE = "https://opendatacommons.org/licenses/by/4-0/"
|
21 |
_DESCRIPTION = """\
|
22 |
-
Cannabis lab test results (https://cannlytics.com/data/
|
23 |
dataset of curated cannabis lab test results.
|
24 |
"""
|
25 |
_CITATION = """\
|
|
|
6 |
Keegan Skeate <https://github.com/keeganskeate>
|
7 |
Candace O'Sullivan-Sutherland <https://github.com/candy-o>
|
8 |
Created: 9/10/2022
|
9 |
+
Updated: 9/16/2022
|
10 |
License: <https://github.com/cannlytics/cannlytics/blob/main/LICENSE>
|
11 |
"""
|
12 |
import datasets
|
|
|
15 |
|
16 |
# === Constants. ===
|
17 |
|
18 |
+
_VERSION = '1.0.2'
|
19 |
_HOMEPAGE = 'https://huggingface.co/datasets/cannlytics/cannabis_tests'
|
20 |
_LICENSE = "https://opendatacommons.org/licenses/by/4-0/"
|
21 |
_DESCRIPTION = """\
|
22 |
+
Cannabis lab test results (https://cannlytics.com/data/results) is a
|
23 |
dataset of curated cannabis lab test results.
|
24 |
"""
|
25 |
_CITATION = """\
|
{rawgarden β data/rawgarden}/details.csv
RENAMED
File without changes
|
{rawgarden β data/rawgarden}/results.csv
RENAMED
File without changes
|
{rawgarden β data/rawgarden}/values.csv
RENAMED
File without changes
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Cannabis Tests | Python Requirements
|
2 |
+
# Created: 9/15/2022
|
3 |
+
# Updated: 9/15/2022
|
4 |
+
beautifulsoup4==4.11.1
|
5 |
+
cannlytics==0.0.12
|
6 |
+
firebase_admin==5.3.0
|
7 |
+
pandas==1.4.4
|
test.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Test Cannabis Tests Dataset
|
3 |
+
Copyright (c) 2022 Cannlytics
|
4 |
+
|
5 |
+
Authors: Keegan Skeate <https://github.com/keeganskeate>
|
6 |
+
Created: 9/16/2022
|
7 |
+
Updated: 9/16/2022
|
8 |
+
License: CC-BY 4.0 <https://huggingface.co/datasets/cannlytics/cannabis_tests/blob/main/LICENSE>
|
9 |
+
"""
|
10 |
+
from cannlytics.data.coas import CoADoc
|
11 |
+
from datasets import load_dataset
|
12 |
+
import pandas as pd
|
13 |
+
|
14 |
+
# Download Raw Garden lab result details.
|
15 |
+
repo = 'cannlytics/cannabis_tests'
|
16 |
+
dataset = load_dataset(repo, 'rawgarden')
|
17 |
+
details = dataset['details']
|
18 |
+
|
19 |
+
# Save the data locally with "Details", "Results", and "Values" worksheets.
|
20 |
+
outfile = 'rawgarden.xlsx'
|
21 |
+
parser = CoADoc()
|
22 |
+
parser.save(details.to_pandas(), outfile)
|
23 |
+
|
24 |
+
# Read the values.
|
25 |
+
values = pd.read_excel(outfile, sheet_name='Values')
|
26 |
+
|
27 |
+
# Read the results.
|
28 |
+
results = pd.read_excel(outfile, sheet_name='Results')
|