cannabis_licenses / cannabis_licenses.py
keeganskeate's picture
cannabis-licenses-2023-09-30 (#6)
5c9e80e
raw
history blame
5.64 kB
"""
Cannabis Licenses
Copyright (c) 2022-2023 Cannlytics
Authors:
Keegan Skeate <https://github.com/keeganskeate>
Candace O'Sullivan-Sutherland <https://github.com/candy-o>
Created: 9/29/2022
Updated: 9/30/2023
License: <https://huggingface.co/datasets/cannlytics/cannabis_licenses/blob/main/LICENSE>
"""
# External imports:
import datasets
import pandas as pd
# Constants.
_SCRIPT = 'cannabis_licenses.py'
_VERSION = '1.0.2'
_HOMEPAGE = 'https://huggingface.co/datasets/cannlytics/cannabis_licenses'
_LICENSE = "https://opendatacommons.org/licenses/by/4-0/"
_DESCRIPTION = """\
Cannabis Licenses is a dataset of curated cannabis license data. The dataset consists of sub-datasets for each state with permitted adult-use cannabis, as well as a sub-dataset that includes all licenses.
"""
_CITATION = """\
@inproceedings{cannlytics2023cannabis_licenses,
author = {Skeate, Keegan and O'Sullivan-Sutherland, Candace},
title = {Cannabis Licenses},
booktitle = {Cannabis Data Science},
month = {August},
year = {2023},
address = {United States of America},
publisher = {Cannlytics}
}
"""
# Define subsets.
SUBSETS = [
'all',
'ak',
'az',
'ca',
'co',
'ct',
'il',
'ma',
'md',
'me',
'mi',
'mo',
'mt',
'nj',
'nm',
'ny',
'nv',
'or',
'ri',
'vt',
'wa',
]
# Dataset fields.
FIELDS = datasets.Features({
'id': datasets.Value(dtype='string'),
'license_number': datasets.Value(dtype='string'),
'license_status': datasets.Value(dtype='string'),
'license_status_date': datasets.Value(dtype='string'),
'license_term': datasets.Value(dtype='string'),
'license_type': datasets.Value(dtype='string'),
'license_designation': datasets.Value(dtype='string'),
'issue_date': datasets.Value(dtype='string'),
'expiration_date': datasets.Value(dtype='string'),
'licensing_authority_id': datasets.Value(dtype='string'),
'licensing_authority': datasets.Value(dtype='string'),
'business_legal_name': datasets.Value(dtype='string'),
'business_dba_name': datasets.Value(dtype='string'),
'business_image_url': datasets.Value(dtype='string'),
'business_owner_name': datasets.Value(dtype='string'),
'business_structure': datasets.Value(dtype='string'),
'business_website': datasets.Value(dtype='string'),
'activity': datasets.Value(dtype='string'),
'premise_street_address': datasets.Value(dtype='string'),
'premise_city': datasets.Value(dtype='string'),
'premise_state': datasets.Value(dtype='string'),
'premise_county': datasets.Value(dtype='string'),
'premise_zip_code': datasets.Value(dtype='string'),
'business_email': datasets.Value(dtype='string'),
'business_phone': datasets.Value(dtype='string'),
'parcel_number': datasets.Value(dtype='string'),
'premise_latitude': datasets.Value(dtype='string'),
'premise_longitude': datasets.Value(dtype='string'),
'data_refreshed_date': datasets.Value(dtype='string'),
})
class CannabisLicensesConfig(datasets.BuilderConfig):
"""BuilderConfig for Cannabis Licenses."""
def __init__(self, name, **kwargs):
"""BuilderConfig for Cannabis Licenses.
Args:
name (str): Configuration name that determines setup.
**kwargs: Keyword arguments forwarded to super.
"""
description = _DESCRIPTION
description += f'This configuration is for the `{name}` subset.'
super().__init__(
data_dir='data',
description=description,
name=name,
**kwargs,
)
class CannabisLicenses(datasets.GeneratorBasedBuilder):
"""The Cannabis Licenses dataset."""
VERSION = datasets.Version(_VERSION)
BUILDER_CONFIG_CLASS = CannabisLicensesConfig
BUILDER_CONFIGS = [CannabisLicensesConfig(s) for s in SUBSETS]
DEFAULT_CONFIG_NAME = 'all'
def _info(self):
"""Returns the dataset metadata."""
return datasets.DatasetInfo(
features=FIELDS,
supervised_keys=None,
homepage=_HOMEPAGE,
citation=_CITATION,
description=_DESCRIPTION,
license=_LICENSE,
version=_VERSION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
subset = self.config.name
data_url = f'data/{subset}/licenses-{subset}-latest.csv'
urls = {subset: data_url}
downloaded_files = dl_manager.download_and_extract(urls)
params = {'filepath': downloaded_files[subset]}
return [datasets.SplitGenerator(name='data', gen_kwargs=params)]
def _generate_examples(self, filepath):
"""Returns the examples in raw text form."""
# Read the data.
df = pd.read_csv(filepath)
# Add missing columns.
for col in FIELDS.keys():
if col not in df.columns:
df[col] = ''
# Keep only the feature columns.
df = df[list(FIELDS.keys())]
# Fill missing values.
df.fillna('', inplace=True)
# Return the data as a dictionary.
for index, row in df.iterrows():
obs = row.to_dict()
yield index, obs
# === Test ===
# [✓] Tested: 2023-09-19 by Keegan Skeate <keegan@cannlytics>
if __name__ == '__main__':
from datasets import load_dataset
# Load each dataset subset.
for subset in SUBSETS:
dataset = load_dataset(_SCRIPT, subset)
data = dataset['data']
assert len(data) > 0
print('Read %i %s data points.' % (len(data), subset))