rdiehlmartinez
commited on
Commit
•
3f5de1d
1
Parent(s):
917f59b
v1 of dataset loading script
Browse files
BabyLM.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import datasets
|
2 |
+
|
3 |
+
_DESCRIPTION = """\
|
4 |
+
Dataset for the shared baby language modeling task.
|
5 |
+
The goal is to train a language model from scratch on this data which represents
|
6 |
+
roughly the amount of text and speech data a young child observes.
|
7 |
+
"""
|
8 |
+
|
9 |
+
_HOMEPAGE = "https://babylm.github.io"
|
10 |
+
|
11 |
+
class BabyLM(datasets.GeneratorBasedBuilder):
|
12 |
+
|
13 |
+
BUILDER_CONFIGS = [
|
14 |
+
datasets.BuilderConfig(
|
15 |
+
name="strict_small",
|
16 |
+
description="Small version of the dataset with 10M words",
|
17 |
+
version="1.0.0",
|
18 |
+
data_dir="10M",
|
19 |
+
features=["text"]
|
20 |
+
),
|
21 |
+
datasets.BuilderConfig(
|
22 |
+
name="strict",
|
23 |
+
description="Full version of the dataset with 100M words",
|
24 |
+
version="1.0.0",
|
25 |
+
data_dir="100M",
|
26 |
+
features=["text"]
|
27 |
+
)
|
28 |
+
]
|
29 |
+
|
30 |
+
DEFAULT_CONFIG_NAME = "strict_small"
|
31 |
+
|
32 |
+
def _info(self):
|
33 |
+
features = datasets.Features(
|
34 |
+
{
|
35 |
+
"text": datasets.Value("string"),
|
36 |
+
}
|
37 |
+
)
|
38 |
+
return datasets.DatasetInfo(
|
39 |
+
# This is the description that will appear on the datasets page.
|
40 |
+
description=_DESCRIPTION,
|
41 |
+
features=features, # Here we define them above because they are different between the two configurations
|
42 |
+
homepage=_HOMEPAGE,
|
43 |
+
)
|
44 |
+
|
45 |
+
|
46 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
47 |
+
"""
|
48 |
+
Returns data for different splits
|
49 |
+
"""
|
50 |
+
|
51 |
+
if self.config.name == "strict_small":
|
52 |
+
train_data_dir = "10M"
|
53 |
+
else:
|
54 |
+
train_data_dir = "100M"
|
55 |
+
|
56 |
+
urls_to_download = {
|
57 |
+
"train": f"{train_data_dir}/*.txt",
|
58 |
+
"dev": "dev/*.txt",
|
59 |
+
"test": "test/*.txt"
|
60 |
+
}
|
61 |
+
|
62 |
+
downloaded_files = dl_manager.download_and_extract(urls_to_download)
|
63 |
+
|
64 |
+
return [
|
65 |
+
datasets.SplitGenerator(
|
66 |
+
name=datasets.Split.TRAIN,
|
67 |
+
gen_kwargs={
|
68 |
+
"split": "train",
|
69 |
+
"filepaths": downloaded_files["train"]}
|
70 |
+
),
|
71 |
+
datasets.SplitGenerator(
|
72 |
+
name=datasets.Split.VALIDATION,
|
73 |
+
gen_kwargs={
|
74 |
+
"split": "dev",
|
75 |
+
"filepaths": downloaded_files["dev"]}
|
76 |
+
),
|
77 |
+
datasets.SplitGenerator(
|
78 |
+
name=datasets.Split.TEST,
|
79 |
+
gen_kwargs={
|
80 |
+
"split": "test",
|
81 |
+
"filepaths": downloaded_files["test"]
|
82 |
+
}
|
83 |
+
),
|
84 |
+
]
|
85 |
+
|
86 |
+
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
87 |
+
def _generate_examples(self, split, filepaths):
|
88 |
+
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
|
89 |
+
|
90 |
+
# the filepaths should be a list of filepaths
|
91 |
+
if isinstance(filepaths, str):
|
92 |
+
filepaths = [filepaths]
|
93 |
+
|
94 |
+
global_idx = 0
|
95 |
+
|
96 |
+
for filepath in filepaths:
|
97 |
+
with open(filepath, encoding="utf-8") as f:
|
98 |
+
for row in f:
|
99 |
+
yield global_idx, {"text": row}
|