librivox-indonesia / README.md
cahya's picture
fixed language code
233147f
|
raw
history blame
5.04 kB
---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- ace
- ban
- bug
- id
- min
- jav
- sun
license: cc
multilinguality:
- multilingual
size_categories:
- 1K<n<10K
source_datasets:
- librivox
task_categories:
- automatic-speech-recognition
task_ids: []
pretty_name: LibriVox Indonesia 1.0
---
# Dataset Card for LibriVox Indonesia 1.0
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://huggingface.co/datasets/indonesian-nlp/librivox-indonesia
- **Repository:** https://huggingface.co/datasets/indonesian-nlp/librivox-indonesia
- **Point of Contact:** [Cahya Wirawan](mailto:cahya.wirawan@gmail.com)
### Dataset Summary
The LibriVox Indonesia dataset consists of MP3 audio and a corresponding text file we generated from the public
domain audiobooks [LibriVox](https://librivox.org/). We collected only languages in Indonesia for this dataset.
The original LibriVox audiobooks or sound files' duration varies from a few minutes to a few hours. Each audio
file in the speech dataset now lasts from a few seconds to a maximum of 20 seconds.
We converted the audiobooks to speech datasets using the forced alignment software we developed. It supports
multilingual, including low-resource languages, such as Acehnese, Balinese, or Minangkabau. We can also use it
for other languages without additional work to train the model.
The dataset currently consists of 8 hours in 7 languages from Indonesia. We will add more languages or audio files
as we collect them.
### Languages
```
Acehnese, Balinese, Bugisnese, Indonesian, Minangkabau, Javanese, Sundanese
```
## Dataset Structure
### Data Instances
A typical data point comprises the `path` to the audio file and its `sentence`. Additional fields include
`reader` and `language`.
```python
{
'path': 'librivox-indonesia/sundanese/universal-declaration-of-human-rights/human_rights_un_sun_brc_0000.mp3',
'language': 'sun',
'reader': '3174',
'sentence': 'pernyataan umum ngeunaan hak hak asasi manusa sakabeh manusa',
'audio': {
'path': 'librivox-indonesia/sundanese/universal-declaration-of-human-rights/human_rights_un_sun_brc_0000.mp3',
'array': array([-0.00048828, -0.00018311, -0.00137329, ..., 0.00079346, 0.00091553, 0.00085449], dtype=float32),
'sampling_rate': 44100
},
}
```
### Data Fields
`path` (`string`): The path to the audio file
`language` (`string`): The language of the audio file
`reader` (`string`): The reader Id in LibriVox
`sentence` (`string`): The sentence the user read from the book.
`audio` (`dict`): A dictionary containing the path to the downloaded audio file, the decoded audio array, and the sampling rate. Note that when accessing the audio column: `dataset[0]["audio"]` the audio file is automatically decoded and resampled to `dataset.features["audio"].sampling_rate`. Decoding and resampling of a large number of audio files might take a significant amount of time. Thus it is important to first query the sample index before the `"audio"` column, *i.e.* `dataset[0]["audio"]` should **always** be preferred over `dataset["audio"][0]`.
### Data Splits
The speech material has only train split.
## Dataset Creation
### Curation Rationale
[Needs More Information]
### Source Data
#### Initial Data Collection and Normalization
[Needs More Information]
#### Who are the source language producers?
[Needs More Information]
### Annotations
#### Annotation process
[Needs More Information]
#### Who are the annotators?
[Needs More Information]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
Public Domain, [CC-0](https://creativecommons.org/share-your-work/public-domain/cc0/)
### Citation Information
```
```