Datasets:
ArXiv:
License:
anjalyjayakrishnan
commited on
Commit
•
87ebac7
1
Parent(s):
c3f036f
keeping large csv files as tar and modified script to support them
Browse files- snow-mountain.py +49 -22
snow-mountain.py
CHANGED
@@ -62,8 +62,8 @@ for lang in _LANGUAGES:
|
|
62 |
"train_full": f"data/experiments/{lang}/train_full.csv",
|
63 |
"val_full": f"data/experiments/{lang}/val_full.csv",
|
64 |
"test_common": f"data/experiments/{lang}/test_common.csv",
|
65 |
-
"all_verses": f"data/cleaned/{lang}/all_verses.
|
66 |
-
"short_verses": f"data/cleaned/{lang}/short_verses.
|
67 |
}
|
68 |
_FILES[lang] = file_dic
|
69 |
|
@@ -75,7 +75,8 @@ OT_BOOKS = ['GEN', 'EXO', 'LEV', 'NUM', 'DEU', 'JOS', 'JDG', 'RUT', '1SA', '2SA'
|
|
75 |
|
76 |
BOOKS_DIC = {'hindi':OT_BOOKS, 'bhadrawahi':NT_BOOKS, 'bilaspuri':NT_BOOKS, 'dogri':NT_BOOKS, 'gaddi':
|
77 |
NT_BOOKS, 'haryanvi':NT_BOOKS, 'kangri':NT_BOOKS, 'kulvi':NT_BOOKS, 'kulvi_outer_seraji':NT_BOOKS
|
78 |
-
, 'mandeali':NT_BOOKS, 'pahari_mahasui':NT_BOOKS
|
|
|
79 |
|
80 |
class Test(datasets.GeneratorBasedBuilder):
|
81 |
|
@@ -110,6 +111,7 @@ class Test(datasets.GeneratorBasedBuilder):
|
|
110 |
|
111 |
downloaded_files = dl_manager.download(_FILES[self.config.name])
|
112 |
|
|
|
113 |
audio_data = {}
|
114 |
for book in BOOKS_DIC[self.config.name]:
|
115 |
archive_url = f"data/cleaned/{self.config.name}/{book}.tar.gz"
|
@@ -118,8 +120,7 @@ class Test(datasets.GeneratorBasedBuilder):
|
|
118 |
audio_ = path.split('/')[-1]
|
119 |
if audio_ not in audio_data:
|
120 |
content = file.read()
|
121 |
-
audio_data[audio_] = content
|
122 |
-
|
123 |
|
124 |
data_size = ['500', '1000', '2500', 'short', 'full']
|
125 |
|
@@ -131,6 +132,7 @@ class Test(datasets.GeneratorBasedBuilder):
|
|
131 |
gen_kwargs={
|
132 |
"filepath": downloaded_files[f"train_{size}"],
|
133 |
"audio_data": audio_data,
|
|
|
134 |
},
|
135 |
)
|
136 |
)
|
@@ -140,6 +142,7 @@ class Test(datasets.GeneratorBasedBuilder):
|
|
140 |
gen_kwargs={
|
141 |
"filepath": downloaded_files[f"val_{size}"],
|
142 |
"audio_data": audio_data,
|
|
|
143 |
},
|
144 |
)
|
145 |
)
|
@@ -149,6 +152,7 @@ class Test(datasets.GeneratorBasedBuilder):
|
|
149 |
gen_kwargs={
|
150 |
"filepath": downloaded_files["test_common"],
|
151 |
"audio_data": audio_data,
|
|
|
152 |
},
|
153 |
)
|
154 |
)
|
@@ -158,6 +162,7 @@ class Test(datasets.GeneratorBasedBuilder):
|
|
158 |
gen_kwargs={
|
159 |
"filepath": downloaded_files["all_verses"],
|
160 |
"audio_data": audio_data,
|
|
|
161 |
},
|
162 |
)
|
163 |
)
|
@@ -167,27 +172,49 @@ class Test(datasets.GeneratorBasedBuilder):
|
|
167 |
gen_kwargs={
|
168 |
"filepath": downloaded_files["short_verses"],
|
169 |
"audio_data": audio_data,
|
|
|
170 |
},
|
171 |
)
|
172 |
)
|
173 |
return splits
|
174 |
|
175 |
|
176 |
-
def _generate_examples(self, filepath, audio_data):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
key = 0
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
"audio":{"path": row["path"], "bytes": content}
|
192 |
-
}
|
193 |
-
key+=1
|
|
|
62 |
"train_full": f"data/experiments/{lang}/train_full.csv",
|
63 |
"val_full": f"data/experiments/{lang}/val_full.csv",
|
64 |
"test_common": f"data/experiments/{lang}/test_common.csv",
|
65 |
+
"all_verses": f"data/cleaned/{lang}/all_verses.tar.gz",
|
66 |
+
"short_verses": f"data/cleaned/{lang}/short_verses.tar.gz",
|
67 |
}
|
68 |
_FILES[lang] = file_dic
|
69 |
|
|
|
75 |
|
76 |
BOOKS_DIC = {'hindi':OT_BOOKS, 'bhadrawahi':NT_BOOKS, 'bilaspuri':NT_BOOKS, 'dogri':NT_BOOKS, 'gaddi':
|
77 |
NT_BOOKS, 'haryanvi':NT_BOOKS, 'kangri':NT_BOOKS, 'kulvi':NT_BOOKS, 'kulvi_outer_seraji':NT_BOOKS
|
78 |
+
, 'mandeali':NT_BOOKS, 'pahari_mahasui':NT_BOOKS, 'malayalam':OT_BOOKS+NT_BOOKS, 'tamil':
|
79 |
+
OT_BOOKS+NT_BOOKS, 'kannada': OT_BOOKS+NT_BOOKS, 'telugu': OT_BOOKS+NT_BOOKS}
|
80 |
|
81 |
class Test(datasets.GeneratorBasedBuilder):
|
82 |
|
|
|
111 |
|
112 |
downloaded_files = dl_manager.download(_FILES[self.config.name])
|
113 |
|
114 |
+
'''Downloads full audio here'''
|
115 |
audio_data = {}
|
116 |
for book in BOOKS_DIC[self.config.name]:
|
117 |
archive_url = f"data/cleaned/{self.config.name}/{book}.tar.gz"
|
|
|
120 |
audio_ = path.split('/')[-1]
|
121 |
if audio_ not in audio_data:
|
122 |
content = file.read()
|
123 |
+
audio_data[audio_] = content
|
|
|
124 |
|
125 |
data_size = ['500', '1000', '2500', 'short', 'full']
|
126 |
|
|
|
132 |
gen_kwargs={
|
133 |
"filepath": downloaded_files[f"train_{size}"],
|
134 |
"audio_data": audio_data,
|
135 |
+
"dl_manager":dl_manager,
|
136 |
},
|
137 |
)
|
138 |
)
|
|
|
142 |
gen_kwargs={
|
143 |
"filepath": downloaded_files[f"val_{size}"],
|
144 |
"audio_data": audio_data,
|
145 |
+
"dl_manager":dl_manager,
|
146 |
},
|
147 |
)
|
148 |
)
|
|
|
152 |
gen_kwargs={
|
153 |
"filepath": downloaded_files["test_common"],
|
154 |
"audio_data": audio_data,
|
155 |
+
"dl_manager":dl_manager,
|
156 |
},
|
157 |
)
|
158 |
)
|
|
|
162 |
gen_kwargs={
|
163 |
"filepath": downloaded_files["all_verses"],
|
164 |
"audio_data": audio_data,
|
165 |
+
"dl_manager":dl_manager,
|
166 |
},
|
167 |
)
|
168 |
)
|
|
|
172 |
gen_kwargs={
|
173 |
"filepath": downloaded_files["short_verses"],
|
174 |
"audio_data": audio_data,
|
175 |
+
"dl_manager":dl_manager,
|
176 |
},
|
177 |
)
|
178 |
)
|
179 |
return splits
|
180 |
|
181 |
|
182 |
+
def _generate_examples(self, filepath, audio_data, dl_manager):
|
183 |
+
|
184 |
+
'''Function for parsing large csv archives (all_verses, short_verses)'''
|
185 |
+
def parse_archive(archive):
|
186 |
+
temp_df = pd.DataFrame()
|
187 |
+
for path, file in dl_manager.iter_archive(archive):
|
188 |
+
if path.endswith('_verses.csv'):
|
189 |
+
verses_filepath = file
|
190 |
+
verses_lines = file.readlines()
|
191 |
+
verses_lines = [line.decode("utf-8") for line in verses_lines]
|
192 |
+
column_names = verses_lines[0].strip().split(",")
|
193 |
+
rows = [row.split(',') for row in verses_lines[1:]]
|
194 |
+
rows = [[i[0], i[1], ','.join(i[2:])]for i in rows]
|
195 |
+
temp_df = pd.DataFrame(rows, columns =column_names)
|
196 |
+
break
|
197 |
+
return temp_df
|
198 |
+
|
199 |
+
if filepath.endswith('all_verses.tar.gz'):
|
200 |
+
data_df = parse_archive(filepath)
|
201 |
+
elif filepath.endswith('short_verses.tar.gz'):
|
202 |
+
data_df = parse_archive(filepath)
|
203 |
+
else:
|
204 |
+
with open(filepath) as f:
|
205 |
+
data_df = pd.read_csv(f,sep=',')
|
206 |
+
|
207 |
key = 0
|
208 |
+
for index,row in data_df.iterrows():
|
209 |
+
audio = row['path'].split('/')[-1]
|
210 |
+
content = ''
|
211 |
+
if audio in list(audio_data.keys()):
|
212 |
+
content = audio_data[audio]
|
213 |
+
else:
|
214 |
+
print(f"*********** Couldn't find audio: {audio} **************")
|
215 |
+
yield key, {
|
216 |
+
"sentence": row["sentence"],
|
217 |
+
"path": row["path"],
|
218 |
+
"audio":{"path": row["path"], "bytes": content}
|
219 |
+
}
|
220 |
+
key+=1
|
|
|
|
|
|