hendrycks_math / README.md
brando's picture
Update README.md
a37065f verified
metadata
dataset_info:
  features:
    - name: problem
      dtype: string
    - name: level
      dtype: string
    - name: type
      dtype: string
    - name: solution
      dtype: string
  splits:
    - name: train
      num_bytes: 5984774
      num_examples: 7500
    - name: test
      num_bytes: 3732833
      num_examples: 5000
  download_size: 4856226
  dataset_size: 9717607
configs:
  - config_name: default
    data_files:
      - split: train
        path: data/train-*
      - split: test
        path: data/test-*

Original: https://huggingface.co/datasets/hendrycks/competition_math main difference is this one has the data not as a zip file so no code exec is needed.

Dataset Card for Mathematics Aptitude Test of Heuristics (MATH) dataset

Table of Contents

Dataset Description

Dataset Summary

The Mathematics Aptitude Test of Heuristics (MATH) dataset consists of problems from mathematics competitions, including the AMC 10, AMC 12, AIME, and more. Each problem in MATH has a full step-by-step solution, which can be used to teach models to generate answer derivations and explanations.

Supported Tasks and Leaderboards

[More Information Needed]

Languages

[More Information Needed]

Dataset Structure

Data Instances

A data instance consists of a competition math problem and its step-by-step solution written in LaTeX and natural language. The step-by-step solution contains the final answer enclosed in LaTeX's \boxed tag.

An example from the dataset is:

{'problem': 'A board game spinner is divided into three parts labeled $A$, $B$  and $C$. The probability of the spinner landing on $A$ is $\\frac{1}{3}$ and the probability of the spinner landing on $B$ is $\\frac{5}{12}$.  What is the probability of the spinner landing on $C$? Express your answer as a common fraction.',
 'level': 'Level 1',
 'type': 'Counting & Probability',
 'solution': 'The spinner is guaranteed to land on exactly one of the three regions, so we know that the sum of the probabilities of it landing in each region will be 1. If we let the probability of it landing in region $C$ be $x$, we then have the equation $1 = \\frac{5}{12}+\\frac{1}{3}+x$, from which we have $x=\\boxed{\\frac{1}{4}}$.'}

Data Fields

  • problem: The competition math problem.
  • solution: The step-by-step solution.
  • level: The problem's difficulty level from 'Level 1' to 'Level 5', where a subject's easiest problems for humans are assigned to 'Level 1' and a subject's hardest problems are assigned to 'Level 5'.
  • type: The subject of the problem: Algebra, Counting & Probability, Geometry, Intermediate Algebra, Number Theory, Prealgebra and Precalculus.

Data Splits

  • train: 7,500 examples
  • test: 5,000 examples

Dataset Creation

Curation Rationale

[More Information Needed]

Source Data

Initial Data Collection and Normalization

[More Information Needed]

Who are the source language producers?

[More Information Needed]

Annotations

Annotation process

[More Information Needed]

Who are the annotators?

[More Information Needed]

Personal and Sensitive Information

[More Information Needed]

Considerations for Using the Data

Social Impact of Dataset

[More Information Needed]

Discussion of Biases

[More Information Needed]

Other Known Limitations

[More Information Needed]

Additional Information

Dataset Curators

[More Information Needed]

Licensing Information

https://github.com/hendrycks/math/blob/main/LICENSE

Citation Information

@article{hendrycksmath2021,
    title={Measuring Mathematical Problem Solving With the MATH Dataset},
    author={Dan Hendrycks
    and Collin Burns
    and Saurav Kadavath
    and Akul Arora
    and Steven Basart
    and Eric Tang
    and Dawn Song
    and Jacob Steinhardt},
    journal={arXiv preprint arXiv:2103.03874},
    year={2021}
}

Contributions

Thanks to @hacobe for adding this dataset.