lr-sum / lr-sum.py
Chester Palen-Michel
Change to loading script
6b33a3a
"""LR-Sum summarization dataset"""
import json
import os
import datasets
_CITATION = """\
@inproceedings{palen-michel-lignos-2023-lr,
title = "{LR}-Sum: Summarization for Less-Resourced Languages",
author = "Palen-Michel, Chester and
Lignos, Constantine",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2023",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.findings-acl.427",
doi = "10.18653/v1/2023.findings-acl.427",
pages = "6829--6844",
abstract = "We introduce LR-Sum, a new permissively-licensed dataset created with the goal of enabling further research in automatic summarization for less-resourced languages.LR-Sum contains human-written summaries for 40 languages, many of which are less-resourced. We describe our process for extracting and filtering the dataset from the Multilingual Open Text corpus (Palen-Michel et al., 2022).The source data is public domain newswire collected from from Voice of America websites, and LR-Sum is released under a Creative Commons license (CC BY 4.0), making it one of the most openly-licensed multilingual summarization datasets. We describe abstractive and extractive summarization experiments to establish baselines and discuss the limitations of this dataset.",
}
"""
_DESCRIPTION = """\
We introduce LR-Sum, a new permissively-licensed dataset created with the goal of enabling further research in automatic summarization for less-resourced languages.
LR-Sum contains human-written summaries for 40 languages, many of which are less-resourced.
We describe our process for extracting and filtering the dataset from the Multilingual Open Text corpus (Palen-Michel et al., 2022).
The source data is public domain newswire collected from from Voice of America websites, and LR-Sum is released under a Creative Commons license (CC BY 4.0), making it one of the most openly-licensed multilingual summarization datasets.
We describe abstractive and extractive summarization experiments to establish baselines and discuss the limitations of this dataset.
"""
_HOMEPAGE = "https://github.com/bltlab"
_LICENSE = "Creative Commons Attribution 4.0 International (CC-BY 4.0)"
_URL = "https://huggingface.co/datasets/bltlab/lr-sum/resolve/main/data/{}.tar.bz2"
_LANGUAGES = [
"amh",
"aze",
"ben",
"bod",
"bos",
"ckb",
"cmn_t",
"cmn_s",
"ell",
"eng",
"fas",
"fra",
"hat",
"hau",
"hye",
"ind",
"kat",
"khm",
"kin",
"kor",
"kmr",
"lao",
"mkd",
"mya",
"nde",
"por",
"prs",
"pus",
"rus",
"sna",
"som",
"spa",
"sqi",
"srp",
"swh",
"tha",
"tir",
"tur",
"ukr",
"urd",
"uzb",
"vie",
]
class Lrsum(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="{}".format(lang),
version=datasets.Version("1.0.0")
)
for lang in _LANGUAGES
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"url": datasets.Value("string"),
"title": datasets.Value("string"),
"summary": datasets.Value("string"),
"text": datasets.Value("string"),
}
),
supervised_keys=None,
homepage=_HOMEPAGE,
citation=_CITATION,
license=_LICENSE,
version=self.VERSION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
lang = str(self.config.name)
url = _URL.format(lang)
data_dir = dl_manager.download_and_extract(url)
ret = [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": os.path.join(data_dir, lang, lang + "_test.jsonl"),
},
)
]
if os.path.exists(os.path.join(data_dir, lang, lang + "_train.jsonl")):
ret.append(datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(data_dir, lang, lang + "_train.jsonl"),
},
)
)
if os.path.exists(os.path.join(data_dir, lang, lang + "_val.jsonl")):
ret.append(
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": os.path.join(data_dir, lang, lang + "_val.jsonl"),
},
)
)
return ret
def _generate_examples(self, filepath):
"""Yields examples as (key, example) tuples."""
with open(filepath, encoding="utf-8") as f:
for idx_, row in enumerate(f):
data = json.loads(row)
yield idx_, {
"id": data["id_"],
"url": data["url"],
"title": data["title"],
"summary": data["summary"],
"text": data["text"],
}