Datasets:
metadata
language: en
license: unknown
task_categories:
- image-classification
paperswithcode_id: firerisk
pretty_name: FireRisk
tags:
- remote-sensing
- earth-observation
- geospatial
- aerial-imagery
- land-cover-classification
dataset_info:
features:
- name: image
dtype: image
- name: label
dtype:
class_label:
names:
'0': high
'1': low
'2': moderate
'3': non-burnable
'4': very_high
'5': very_low
'6': water
splits:
- name: train
num_bytes: 11575141474.625
num_examples: 70331
download_size: 11575727336
dataset_size: 11575141474.625
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
FireRisk
The FireRisk dataset is a dataset for remote sensing fire risk classification.
- Paper: https://arxiv.org/abs/2303.07035
- Homepage: https://github.com/CharmonyShen/FireRisk
Description
- Total Number of Images: 91872
- Bands: 3 (RGB)
- Image Size: 320x320
- 101,878 tree annotations
- Image Resolution: 1m
- Land Cover Classes: 7
- Classes: high, low, moderate, non-burnable, very_high, very_low, water
- Source: NAIP Aerial
Usage
To use this dataset, simply use datasets.load_dataset("blanchon/FireRisk")
.
from datasets import load_dataset
FireRisk = load_dataset("blanchon/FireRisk")
Citation
If you use the EuroSAT dataset in your research, please consider citing the following publication:
@article{shen2023firerisk,
title = {FireRisk: A Remote Sensing Dataset for Fire Risk Assessment with Benchmarks Using Supervised and Self-supervised Learning},
author = {Shuchang Shen and Sachith Seneviratne and Xinye Wanyan and Michael Kirley},
year = {2023},
journal = {arXiv preprint arXiv: 2303.07035}
}