metadata
configs:
- config_name: split_20250821_120925
data_files:
- split: train
path: data/split_20250821_120925.parquet
- config_name: split_20250821_122924
data_files:
- split: train
path: data/split_20250821_122924.parquet
- config_name: split_20250821_123925
data_files:
- split: train
path: data/split_20250821_123925.parquet
- config_name: split_20250821_124926
data_files:
- split: train
path: data/split_20250821_124926.parquet
- config_name: split_20250821_130425
data_files:
- split: train
path: data/split_20250821_130425.parquet
- config_name: split_20250821_131426
data_files:
- split: train
path: data/split_20250821_131426.parquet
- config_name: split_20250821_133425
data_files:
- split: train
path: data/split_20250821_133425.parquet
- config_name: split_20250821_134425
data_files:
- split: train
path: data/split_20250821_134425.parquet
- config_name: split_20250821_140445
data_files:
- split: train
path: data/split_20250821_140445.parquet
- config_name: split_20250821_141427
data_files:
- split: train
path: data/split_20250821_141427.parquet
- config_name: split_20250821_142925
data_files:
- split: train
path: data/split_20250821_142925.parquet
- config_name: split_20250821_143429
data_files:
- split: train
path: data/split_20250821_143429.parquet
- config_name: split_20250821_145425
data_files:
- split: train
path: data/split_20250821_145425.parquet
- config_name: split_20250821_150928
data_files:
- split: train
path: data/split_20250821_150928.parquet
- config_name: split_20250821_152925
data_files:
- split: train
path: data/split_20250821_152925.parquet
- config_name: split_20250821_155424
data_files:
- split: train
path: data/split_20250821_155424.parquet
- config_name: split_20250821_161924
data_files:
- split: train
path: data/split_20250821_161924.parquet
- config_name: split_20250821_163927
data_files:
- split: train
path: data/split_20250821_163927.parquet
- config_name: split_20250821_170937
data_files:
- split: train
path: data/split_20250821_170937.parquet
- config_name: split_20250821_173926
data_files:
- split: train
path: data/split_20250821_173926.parquet
- config_name: split_20250821_180425
data_files:
- split: train
path: data/split_20250821_180425.parquet
- config_name: split_20250821_182427
data_files:
- split: train
path: data/split_20250821_182427.parquet
- config_name: split_20250821_184448
data_files:
- split: train
path: data/split_20250821_184448.parquet
- config_name: split_20250821_185537
data_files:
- split: train
path: data/split_20250821_185537.parquet
- config_name: split_20250821_191036
data_files:
- split: train
path: data/split_20250821_191036.parquet
- config_name: split_20250821_192503
data_files:
- split: train
path: data/split_20250821_192503.parquet
- config_name: split_20250821_194436
data_files:
- split: train
path: data/split_20250821_194436.parquet
- config_name: split_20250821_195938
data_files:
- split: train
path: data/split_20250821_195938.parquet
- config_name: split_20250821_200935
data_files:
- split: train
path: data/split_20250821_200935.parquet
- config_name: split_20250821_201430
data_files:
- split: train
path: data/split_20250821_201430.parquet
- config_name: split_20250821_203929
data_files:
- split: train
path: data/split_20250821_203929.parquet
- config_name: split_20250822_081634
data_files:
- split: train
path: data/split_20250822_081634.parquet
- config_name: split_20250823_101844
data_files:
- split: train
path: data/split_20250823_101844.parquet
- config_name: split_20250823_212018
data_files:
- split: train
path: data/split_20250823_212018.parquet
- config_name: split_20250824_091637
data_files:
- split: train
path: data/split_20250824_091637.parquet
- config_name: split_20250825_011818
data_files:
- split: train
path: data/split_20250825_011818.parquet
- config_name: split_20250826_011735
data_files:
- split: train
path: data/split_20250826_011735.parquet
- config_name: split_20250826_201630
data_files:
- split: train
path: data/split_20250826_201630.parquet
- config_name: split_20250827_171634
data_files:
- split: train
path: data/split_20250827_171634.parquet
- config_name: split_20250828_171741
data_files:
- split: train
path: data/split_20250828_171741.parquet
- config_name: split_20250829_152007
data_files:
- split: train
path: data/split_20250829_152007.parquet
- config_name: split_20250830_121729
data_files:
- split: train
path: data/split_20250830_121729.parquet
- config_name: split_20250831_101744
data_files:
- split: train
path: data/split_20250831_101744.parquet
- config_name: split_20250901_051630
data_files:
- split: train
path: data/split_20250901_051630.parquet
- config_name: split_20250901_221746
data_files:
- split: train
path: data/split_20250901_221746.parquet
- config_name: split_20250902_181639
data_files:
- split: train
path: data/split_20250902_181639.parquet
- config_name: split_20250903_171626
data_files:
- split: train
path: data/split_20250903_171626.parquet
- config_name: split_20250904_141819
data_files:
- split: train
path: data/split_20250904_141819.parquet
dataset_info:
features:
- name: media_hash
dtype: string
- name: model_name
dtype: string
- name: label
dtype: int64
- name: timestamp
dtype: int64
- name: file_age_hours
dtype: float32
- name: media_image
dtype: image
BitMind Image Benchmarks
This dataset contains AI-generated image samples.
Dataset Structure
Each config represents a batch upload with:
- Parquet files in
data/
containing image data and metadata
Loading the Dataset
from datasets import load_dataset
# List available configs (timestamps)
configs = ['split_20250821_110436', 'split_20250821_112432', ...]
# Load specific config
dataset = load_dataset('bitmind/bm-image-benchmarks', 'split_20250821_110436')
# Access data
for sample in dataset['train']:
print(f"Model: {sample['model_name']}")
print(f"Label: {sample['label']}")
# sample['media_image'] contains the PIL Image
image = sample['media_image']
image.show() # Display the image
Processing Images
from datasets import load_dataset
from PIL import Image
# Load dataset (images and metadata)
config = 'split_20250821_110436' # Use your desired config
dataset = load_dataset('bitmind/bm-image-benchmarks', config)
# Process images with metadata
for sample in dataset['train']:
image = sample['media_image'] # PIL Image object
print(f"Model: {sample['model_name']}")
print(f"Label: {sample['label']}")
print(f"Hash: {sample['media_hash']}")
# Your image processing code here
# image.save(f"{sample['media_hash']}.png")