parquet-converter commited on
Commit
2c713ba
·
1 Parent(s): 17143b1

Update parquet files

Browse files
.gitattributes DELETED
@@ -1,37 +0,0 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bz2 filter=lfs diff=lfs merge=lfs -text
5
- *.ftz filter=lfs diff=lfs merge=lfs -text
6
- *.gz filter=lfs diff=lfs merge=lfs -text
7
- *.h5 filter=lfs diff=lfs merge=lfs -text
8
- *.joblib filter=lfs diff=lfs merge=lfs -text
9
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
10
- *.model filter=lfs diff=lfs merge=lfs -text
11
- *.msgpack filter=lfs diff=lfs merge=lfs -text
12
- *.onnx filter=lfs diff=lfs merge=lfs -text
13
- *.ot filter=lfs diff=lfs merge=lfs -text
14
- *.parquet filter=lfs diff=lfs merge=lfs -text
15
- *.pb filter=lfs diff=lfs merge=lfs -text
16
- *.pt filter=lfs diff=lfs merge=lfs -text
17
- *.pth filter=lfs diff=lfs merge=lfs -text
18
- *.rar filter=lfs diff=lfs merge=lfs -text
19
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
20
- *.tar.* filter=lfs diff=lfs merge=lfs -text
21
- *.tflite filter=lfs diff=lfs merge=lfs -text
22
- *.tgz filter=lfs diff=lfs merge=lfs -text
23
- *.wasm filter=lfs diff=lfs merge=lfs -text
24
- *.xz filter=lfs diff=lfs merge=lfs -text
25
- *.zip filter=lfs diff=lfs merge=lfs -text
26
- *.zstandard filter=lfs diff=lfs merge=lfs -text
27
- *tfevents* filter=lfs diff=lfs merge=lfs -text
28
- # Audio files - uncompressed
29
- *.pcm filter=lfs diff=lfs merge=lfs -text
30
- *.sam filter=lfs diff=lfs merge=lfs -text
31
- *.raw filter=lfs diff=lfs merge=lfs -text
32
- # Audio files - compressed
33
- *.aac filter=lfs diff=lfs merge=lfs -text
34
- *.flac filter=lfs diff=lfs merge=lfs -text
35
- *.mp3 filter=lfs diff=lfs merge=lfs -text
36
- *.ogg filter=lfs diff=lfs merge=lfs -text
37
- *.wav filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
README.md DELETED
@@ -1,232 +0,0 @@
1
- ---
2
- annotations_creators:
3
- - expert-generated
4
- language: []
5
- language_creators:
6
- - expert-generated
7
- license:
8
- - cc0-1.0
9
- multilinguality:
10
- - other-iconclass-metadata
11
- pretty_name: 'Brill Iconclass AI Test Set '
12
- size_categories:
13
- - 10K<n<100K
14
- source_datasets: []
15
- task_categories:
16
- - image-classification
17
- - image-to-text
18
- task_ids:
19
- - multi-class-image-classification
20
- - multi-label-image-classification
21
- - image-captioning
22
- ---
23
-
24
- # Dataset Card for Brill Iconclass AI Test Set
25
-
26
- ## Table of Contents
27
- - [Table of Contents](#table-of-contents)
28
- - [Dataset Description](#dataset-description)
29
- - [Dataset Summary](#dataset-summary)
30
- - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
31
- - [Languages](#languages)
32
- - [Dataset Structure](#dataset-structure)
33
- - [Data Instances](#data-instances)
34
- - [Data Fields](#data-fields)
35
- - [Data Splits](#data-splits)
36
- - [Dataset Creation](#dataset-creation)
37
- - [Curation Rationale](#curation-rationale)
38
- - [Source Data](#source-data)
39
- - [Annotations](#annotations)
40
- - [Personal and Sensitive Information](#personal-and-sensitive-information)
41
- - [Considerations for Using the Data](#considerations-for-using-the-data)
42
- - [Social Impact of Dataset](#social-impact-of-dataset)
43
- - [Discussion of Biases](#discussion-of-biases)
44
- - [Other Known Limitations](#other-known-limitations)
45
- - [Additional Information](#additional-information)
46
- - [Dataset Curators](#dataset-curators)
47
- - [Licensing Information](#licensing-information)
48
- - [Citation Information](#citation-information)
49
- - [Contributions](#contributions)
50
-
51
- ## Dataset Description
52
-
53
- - **Homepage:** [https://iconclass.org/testset/](https://iconclass.org/testset/)
54
- - **Repository:**[https://iconclass.org/testset/](https://iconclass.org/testset/)
55
- - **Paper:**[https://iconclass.org/testset/ICONCLASS_and_AI.pdf](https://iconclass.org/testset/ICONCLASS_and_AI.pdf)
56
- - **Leaderboard:**
57
- - **Point of Contact:**[info@iconclass.org](mailto:info@iconclass.org)
58
-
59
- ### Dataset Summary
60
-
61
- > A test dataset and challenge to apply machine learning to collections described with the Iconclass classification system.
62
-
63
- This dataset contains `87749` images with [Iconclass](https://iconclass.org/) metadata assigned to the images. The [iconclass](https://iconclass.org/) metadata classification system is intended to provide ['the comprehensive classification system for the content of images.'](https://iconclass.org/).
64
-
65
- > Iconclass was developed in the Netherlands as a standard classification for recording collections, with the idea of assembling huge databases that will allow the retrieval of images featuring particular details, subjects or other common factors. It was developed in the 1970s and was loosely based on the Dewey Decimal System because it was meant to be used in art library card catalogs. [source](https://en.wikipedia.org/wiki/Iconclass)
66
-
67
- The [Iconclass](https://iconclass.org)
68
-
69
- > view of the world is subdivided in 10 main categories...An Iconclass concept consists of an alphanumeric class number (“notation”) and a corresponding content definition (“textual correlate”). An object can be tagged with as many concepts as the user sees fit. [source](https://iconclass.org/)
70
-
71
- These ten divisions are as follows:
72
-
73
- - 0 Abstract, Non-representational Art
74
- - 1 Religion and Magic
75
- - 2 Nature
76
- - 3 Human being, Man in general
77
- - 4 Society, Civilization, Culture
78
- - 5 Abstract Ideas and Concepts
79
- - 6 History
80
- - 7 Bible
81
- - 8 Literature
82
- - 9 Classical Mythology and Ancient History
83
-
84
- Within each of these divisions further subdivision's are possible (9 or 10 subdivisions). For example, under `4 Society, Civilization, Culture`, one can find:
85
-
86
- - 41 · material aspects of daily life
87
- - 42 · family, descendance
88
- - 43 · recreation, amusement
89
- - 44 · state; law; political life
90
- - ...
91
-
92
- See [https://iconclass.org/4](https://iconclass.org/4) for the full list.
93
-
94
-
95
- To illustrate we can look at some example Iconclass classifications.
96
-
97
- `41A12` represents `castle`. This classification is generated via building from the 'base' division `4`, with the following attributes:
98
-
99
- - 4 · Society, Civilization, Culture
100
- - 41 · material aspects of daily life
101
- - 41A · housing
102
- - 41A1 · civic architecture; edifices; dwellings
103
-
104
- [source](https://iconclass.org/41A12)
105
-
106
- The construction of Iconclass of parts makes it particularly interesting (and challenging) to tackle via Machine Learning. Whilst one could tackle this dataset as a (multi) label image classification problem, this is only one way of tackling it. For example in the above label `castle` giving the model the 'freedom' to predict only a partial label could result in the prediction `41A` i.e. housing. Whilst a very particular form of housing this prediction for 'castle' is not 'wrong' so much as it is not as precise as a human cataloguer may provide.
107
-
108
- ### Supported Tasks and Leaderboards
109
-
110
- As discussed above this dataset could be tackled in various ways:
111
-
112
- - as an image classification task
113
- - as a multi-label classification task
114
- - as an image to text task
115
- - as a task whereby a model predicts partial sequences of the label.
116
-
117
- This list is not exhaustive.
118
-
119
- ### Languages
120
-
121
- This dataset doesn't have a natural language. The labels themselves can be treated as a form of language i.e. the label can be thought of as a sequence of tokens that construct a 'sentence'.
122
-
123
-
124
- ## Dataset Structure
125
-
126
- The dataset contains a single configuration.
127
-
128
- ### Data Instances
129
-
130
- An example instance of the dataset is as follows:
131
-
132
- ``` python
133
- {'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=390x500 at 0x7FC7FFBBD2D0>,
134
- 'label': ['31A235', '31A24(+1)', '61B(+54)', '61B:31A2212(+1)', '61B:31D14']}
135
- ```
136
-
137
- ### Data Fields
138
-
139
- The dataset is made up of
140
-
141
- - an image
142
- - a sequence of Iconclass labels
143
-
144
- ### Data Splits
145
-
146
- The dataset doesn't provide any predefined train, validation or test splits.
147
-
148
- ## Dataset Creation
149
-
150
- > To facilitate the creation of better models in the cultural heritage domain, and promote the research on tools and techniques using Iconclass, we are making this dataset freely available. All that we ask is that any use is acknowledged and results be shared so that we can all benefit. The content is sampled from the Arkyves database. [source](https://labs.brill.com/ictestset/)
151
-
152
- [More Information Needed]
153
-
154
- ### Curation Rationale
155
-
156
- [More Information Needed]
157
-
158
- ### Source Data
159
-
160
- #### Initial Data Collection and Normalization
161
-
162
- The images are samples from the [Arkyves database](https://brill.com/view/db/arko?language=en). This collection includes images from
163
-
164
- > from libraries and museums in many countries among them the Rijksmuseum in Amsterdam, the Netherlands Institute for Art History (RKD), the Herzog August Bibliothek in Wolfenbüttel, and the university libraries of Milan, Utrecht and Glasgow . [source](https://brill.com/view/db/arko?language=en)
165
-
166
- [More Information Needed]
167
-
168
- #### Who are the source language producers?
169
-
170
- [More Information Needed]
171
-
172
- ### Annotations
173
-
174
- #### Annotation process
175
-
176
- The annotations are derived from the source dataset see above. It is likely that the majority of the annotations were created by staff with experience with the Iconclass metadata schema.
177
-
178
- [More Information Needed]
179
-
180
- #### Who are the annotators?
181
-
182
- [More Information Needed]
183
-
184
- ### Personal and Sensitive Information
185
-
186
- [More Information Needed]
187
-
188
- ## Considerations for Using the Data
189
-
190
- ### Social Impact of Dataset
191
-
192
- [More Information Needed]
193
-
194
- ### Discussion of Biases
195
-
196
- Iconclass as a metadata standard absorbs biases from the time and place of it's creation (1940's Netherlands). In particular, '32B human races, peoples; nationalities' has been subject to criticism. '32B36 'primitive', 'pre-modern' peoples' is one example of a category which we may not wish to adopt. In general there are components of the subdivsions of `32B` which reflect a belief that race is a scientific category rather than socially constructed.
197
-
198
- These limitations are actively being explored by the Iconclass community, for example, see [Revising Iconclass section 32B human races, peoples; nationalities](https://web.archive.org/web/20210425131753/https://iconclass.org/Updating32B.pdf).
199
-
200
-
201
- One should be aware of these limitations to Iconclass, and in particular, before deploying a model trained on this data in any production settings.
202
-
203
- [More Information Needed]
204
-
205
- ### Other Known Limitations
206
-
207
- [More Information Needed]
208
-
209
- ## Additional Information
210
-
211
- ### Dataset Curators
212
-
213
- Etienne Posthumus
214
-
215
- ### Licensing Information
216
- [CC0 1.0](https://creativecommons.org/publicdomain/zero/1.0/)
217
-
218
- ### Citation Information
219
-
220
- ```
221
- @MISC{iconclass,
222
- title = {Brill Iconclass AI Test Set},
223
- author={Etienne Posthumus},
224
- year={2020}
225
- }
226
-
227
- ```
228
-
229
-
230
- ### Contributions
231
-
232
- Thanks to [@davanstrien](https://github.com/davanstrien) for adding this dataset.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
brill_iconclass.py DELETED
@@ -1,76 +0,0 @@
1
- # Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- """Brill Iconclass AI Test Set data."""
15
-
16
-
17
- import json
18
- import os
19
- from PIL import Image
20
- import datasets
21
-
22
- _CITATION = """\
23
- @MISC{iconclass,
24
- title = {Brill Iconclass AI Test Set},
25
- author={Etienne Posthumus},
26
- year={2020}
27
- }
28
- """
29
-
30
-
31
- _DESCRIPTION = """\
32
- A dataset for applying machine learning to collections described with the Iconclass classification system.
33
- """
34
-
35
- _HOMEPAGE = "https://iconclass.org/testset/"
36
-
37
- _LICENSE = "https://creativecommons.org/publicdomain/zero/1.0/"
38
-
39
- _URL = "https://iconclass.org/testset/779ba2ca9e977c58d818e3823a676973.zip"
40
-
41
- class BrillIconclass(datasets.GeneratorBasedBuilder):
42
- """Brill IconClass AI dataset"""
43
-
44
- VERSION = datasets.Version("1.1.0")
45
-
46
-
47
- def _info(self):
48
- features = datasets.Features(
49
- {
50
- "image": datasets.Image(),
51
- "label": [datasets.Value("string")]
52
- }
53
- )
54
- return datasets.DatasetInfo(
55
- description=_DESCRIPTION,
56
- features=features,
57
- homepage=_HOMEPAGE,
58
- license=_LICENSE,
59
- citation=_CITATION,
60
- )
61
-
62
- def _split_generators(self, dl_manager):
63
- data_dir = dl_manager.download_and_extract(_URL)
64
- return [
65
- datasets.SplitGenerator(
66
- name=datasets.Split.TRAIN,
67
- gen_kwargs={"data_json": os.path.join(data_dir, "data.json"), "data_dir": data_dir},
68
- ),
69
- ]
70
-
71
- def _generate_examples(self, data_json, data_dir):
72
- with open(data_json, encoding="utf-8") as f:
73
- data = json.load(f)
74
- for row, item in enumerate(data.items()):
75
- filepath, labels = item
76
- yield row, {"image": os.path.join(data_dir, filepath), "label": labels}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dataset_infos.json DELETED
@@ -1 +0,0 @@
1
- {"default": {"description": "A dataset for applying machine learning to collections described with the Iconclass classification system.\n", "citation": "@MISC{iconclass,\ntitle = {Brill Iconclass AI Test Set},\nauthor={Etienne Posthumus},\nyear={2020}\n}\n", "homepage": "https://iconclass.org/testset/", "license": "https://creativecommons.org/publicdomain/zero/1.0/", "features": {"image": {"decode": true, "id": null, "_type": "Image"}, "label": [{"dtype": "string", "id": null, "_type": "Value"}]}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "brill_iconclass", "config_name": "default", "version": {"version_str": "1.1.0", "description": null, "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 19925506, "num_examples": 87744, "dataset_name": "brill_iconclass"}}, "download_checksums": {"https://iconclass.org/testset/779ba2ca9e977c58d818e3823a676973.zip": {"num_bytes": 3295276816, "checksum": "96403cd3fdd34c71e4fa97078435350c244c9023af022cc3b8c2500cc13c684a"}}, "download_size": 3295276816, "post_processing_size": null, "dataset_size": 19925506, "size_in_bytes": 3315202322}}
 
 
default/brill_iconclass-train-00000-of-00007.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bee3d21682e07a2cdfcb373b289a50b28d7e54db0c901afa0f3faa039cb97df6
3
+ size 527114094
default/brill_iconclass-train-00001-of-00007.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8c67711011c2496d29bba985a3b64653d6cf9f5c181e9824bac71230ac6887d5
3
+ size 526720372
default/brill_iconclass-train-00002-of-00007.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5f8bd67976754a1e8a6d42fcd64f520f3f2acef850da4ac8cae38e41cde59cb5
3
+ size 528748773
default/brill_iconclass-train-00003-of-00007.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e3fcf61e5add66d6ee88d5a6f22bb2518ab7b447e5868bf1a6684273a4951dfe
3
+ size 527285997
default/brill_iconclass-train-00004-of-00007.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0cce3188b66df2a865bf72855f610d08e1e8af08fb4979fa72ec598b6190ce06
3
+ size 528676394
default/brill_iconclass-train-00005-of-00007.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c32a9e21ef681e6b53adbc6ac8d8fc4fd038e54dbdf254272f7372f7961a8a01
3
+ size 530086614
default/brill_iconclass-train-00006-of-00007.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b83877d9e260f43244817f04a7e74a983992db8444d6bd131f0481de55181430
3
+ size 142259721