loubnabnl HF staff commited on
Commit
145c9f0
·
1 Parent(s): 174ff16

Create dataset_creation.py

Browse files
Files changed (1) hide show
  1. dataset_creation.py +138 -0
dataset_creation.py ADDED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datasets import load_dataset, Dataset
2
+ import pandas as pd
3
+ from collections import defaultdict
4
+ import pygments
5
+
6
+ list_languages = ['ada', 'agda', 'alloy', 'antlr', 'applescript', 'assembly', 'augeas', 'awk', 'batchfile', 'bison',
7
+ 'bluespec', 'c', 'c++', 'c-sharp', 'clojure', 'cmake', 'coffeescript', 'common-lisp', 'css', 'cuda', 'dart', 'dockerfile', 'elixir',
8
+ 'elm', 'emacs-lisp','erlang', 'f-sharp', 'fortran', 'glsl', 'go', 'groovy', 'haskell','html', 'idris', 'isabelle', 'java',
9
+ 'java-server-pages', 'javascript', 'stan', 'julia', 'kotlin', 'lean', 'literate-agda', 'literate-coffeescript', 'literate-haskell',
10
+ 'lua', 'makefile', 'maple', 'markdown', 'mathematica', 'matlab', 'ocaml', 'pascal', 'perl', 'php', 'powershell', 'prolog',
11
+ 'protocol-buffer', 'python', 'r', 'racket', 'restructuredtext', 'rmarkdown', 'ruby', 'rust', 'sas', 'scala', 'scheme',
12
+ 'shell', 'smalltalk', 'solidity', 'sparql', 'sql', 'stan', 'standard-ml', 'stata', 'systemverilog', 'tcl', 'tcsh', 'tex',
13
+ 'thrift', 'typescript', 'verilog', 'vhdl', 'visual-basic', 'xslt', 'yacc', 'zig']
14
+
15
+ lmap = {'c-sharp':'csharp', 'f-sharp':'fsharp', 'standard-ml':'sml', 'batchfile':'batch','java-server-pages':'jsp'}
16
+
17
+ extra_columns = [
18
+ "hexsha",
19
+ "max_stars_repo_path",
20
+ "max_stars_repo_name",
21
+ "max_stars_repo_head_hexsha",
22
+ "max_stars_repo_stars_event_min_datetime",
23
+ "max_stars_repo_stars_event_max_datetime",
24
+ "max_issues_repo_path",
25
+ "max_issues_repo_name",
26
+ "max_issues_repo_head_hexsha",
27
+ "max_issues_repo_licenses",
28
+ "max_issues_count",
29
+ "max_issues_repo_issues_event_min_datetime",
30
+ "max_issues_repo_issues_event_max_datetime",
31
+ "max_forks_repo_path",
32
+ "max_forks_repo_name",
33
+ "max_forks_repo_head_hexsha",
34
+ "max_forks_repo_licenses",
35
+ "max_forks_count",
36
+ "max_forks_repo_forks_event_min_datetime",
37
+ "max_forks_repo_forks_event_max_datetime",
38
+ ]
39
+
40
+ seed = 0
41
+ size = 20_000
42
+ buffer_size = 40_000
43
+ max_data_per_ext = 1000
44
+ df = pd.DataFrame(
45
+ columns=[
46
+ "extension",
47
+ "language",
48
+ "count",
49
+ "low_alphanum_count",
50
+ "long_lines_count",
51
+ "non_lexable_count",
52
+ ]
53
+ )
54
+
55
+ def low_alphanum(example):
56
+ return {"low_alphanum": example["alphanum_fraction"] < 0.25}
57
+
58
+ def long_line(example):
59
+ return {"long_lines": example["max_line_length"] > 1000 or example["avg_line_length"] > 100}
60
+
61
+ def pygments_language_id_to_thestack_language_id(str):
62
+ if str in lmap:
63
+ return lmap[str]
64
+ return str
65
+
66
+ def can_lex_without_errors(lexer, contents: str):
67
+ tokens = pygments.lex(contents, lexer)
68
+ for (tok_type, tok_text) in tokens:
69
+ if tok_type == pygments.token.Token.Error:
70
+ return False
71
+ return True
72
+
73
+ def lexable(example, language):
74
+ try:
75
+ lexer = pygments.lexers.get_lexer_by_name(pygments_language_id_to_thestack_language_id(language))
76
+ except:
77
+ return {"lexable": "notfound"}
78
+ return {"lexable": can_lex_without_errors(lexer, example["content"])}
79
+
80
+
81
+ for language in list_languages:
82
+ thestack = load_dataset(
83
+ "bigcode/the-stack",
84
+ use_auth_token=True,
85
+ split="train",
86
+ streaming=True,
87
+ data_dir=f"data/{language}",
88
+ )
89
+ thestack = thestack.shuffle(seed=seed, buffer_size=buffer_size)
90
+ print(f"subset {language} ready, now selecting {size} samples")
91
+
92
+ # 20k subset of random samples from ds, convert to Datasets
93
+ small_ds = list(thestack.take(size))
94
+ small_ds = Dataset.from_pandas(pd.DataFrame(data=small_ds))
95
+ small_ds = small_ds.remove_columns(extra_columns)
96
+ print(f"Dataset of {size} samples of {language} creaded")
97
+
98
+ # get extension distribution
99
+ dict_extensions = defaultdict(int)
100
+ for extension in small_ds["ext"]:
101
+ dict_extensions[extension] += 1
102
+ dict_extensions = dict(dict_extensions)
103
+ print(f"Initial extension dist: {dict_extensions}")
104
+
105
+ # filter for extension
106
+ for ext in dict_extensions:
107
+ ext_ds = small_ds.filter(lambda x: x["ext"] == ext)
108
+ real_count = min(max_data_per_ext, len(ext_ds))
109
+ ext_ds = ext_ds.select(range(real_count))
110
+
111
+ # let's add extra info
112
+ ext_ds = ext_ds.map(low_alphanum)
113
+ ext_ds = ext_ds.map(long_line)
114
+ ext_ds = ext_ds.map(lambda x: lexable(x, language))
115
+
116
+ low_alphanum_count = sum(
117
+ low_alphanum for low_alphanum in ext_ds["low_alphanum"]
118
+ )
119
+ long_lines_count = sum(long_line for long_line in ext_ds["long_lines"])
120
+ non_lexable_count = sum(not lexable for lexable in ext_ds["lexable"])
121
+
122
+ new_dict = {
123
+ "extension": ext,
124
+ "language": language,
125
+ "count": real_count,
126
+ "low_alphanum_count": low_alphanum_count,
127
+ "long_lines_count": long_lines_count,
128
+ "non_lexable_count": non_lexable_count,
129
+ }
130
+ df = df.append(new_dict, ignore_index=True)
131
+ print(f"New extension count: {new_dict}")
132
+
133
+ path = f"./data/{language}/{ext}/data.json"
134
+ ext_ds.to_json(path)
135
+ print(f"Subset of langugae: {language}, and extension: {ext} saved")
136
+
137
+ # save the dataframe to csv
138
+ df.to_csv("./data/extension_distribution.csv")