markdown
stringlengths 0
1.02M
| code
stringlengths 0
832k
| output
stringlengths 0
1.02M
| license
stringlengths 3
36
| path
stringlengths 6
265
| repo_name
stringlengths 6
127
|
---|---|---|---|---|---|
For more about Numpy, see [http://wiki.scipy.org/Tentative_NumPy_Tutorial](http://wiki.scipy.org/Tentative_NumPy_Tutorial). Read and save filesThere are two kinds of computer files: text files and binary files:> Text file: computer file where the content is structured as a sequence of lines of electronic text. Text files can contain plain text (letters, numbers, and symbols) but they are not limited to such. The type of content in the text file is defined by the Unicode encoding (a computing industry standard for the consistent encoding, representation and handling of text expressed in most of the world's writing systems). >> Binary file: computer file where the content is encoded in binary form, a sequence of integers representing byte values.Let's see how to save and read numeric data stored in a text file:**Using plain Python** | f = open("newfile.txt", "w") # open file for writing
f.write("This is a test\n") # save to file
f.write("And here is another line\n") # save to file
f.close()
f = open('newfile.txt', 'r') # open file for reading
f = f.read() # read from file
print(f)
help(open) | Help on built-in function open in module io:
open(...)
open(file, mode='r', buffering=-1, encoding=None,
errors=None, newline=None, closefd=True, opener=None) -> file object
Open file and return a stream. Raise IOError upon failure.
file is either a text or byte string giving the name (and the path
if the file isn't in the current working directory) of the file to
be opened or an integer file descriptor of the file to be
wrapped. (If a file descriptor is given, it is closed when the
returned I/O object is closed, unless closefd is set to False.)
mode is an optional string that specifies the mode in which the file
is opened. It defaults to 'r' which means open for reading in text
mode. Other common values are 'w' for writing (truncating the file if
it already exists), 'x' for creating and writing to a new file, and
'a' for appending (which on some Unix systems, means that all writes
append to the end of the file regardless of the current seek position).
In text mode, if encoding is not specified the encoding used is platform
dependent: locale.getpreferredencoding(False) is called to get the
current locale encoding. (For reading and writing raw bytes use binary
mode and leave encoding unspecified.) The available modes are:
========= ===============================================================
Character Meaning
--------- ---------------------------------------------------------------
'r' open for reading (default)
'w' open for writing, truncating the file first
'x' create a new file and open it for writing
'a' open for writing, appending to the end of the file if it exists
'b' binary mode
't' text mode (default)
'+' open a disk file for updating (reading and writing)
'U' universal newline mode (deprecated)
========= ===============================================================
The default mode is 'rt' (open for reading text). For binary random
access, the mode 'w+b' opens and truncates the file to 0 bytes, while
'r+b' opens the file without truncation. The 'x' mode implies 'w' and
raises an `FileExistsError` if the file already exists.
Python distinguishes between files opened in binary and text modes,
even when the underlying operating system doesn't. Files opened in
binary mode (appending 'b' to the mode argument) return contents as
bytes objects without any decoding. In text mode (the default, or when
't' is appended to the mode argument), the contents of the file are
returned as strings, the bytes having been first decoded using a
platform-dependent encoding or using the specified encoding if given.
'U' mode is deprecated and will raise an exception in future versions
of Python. It has no effect in Python 3. Use newline to control
universal newlines mode.
buffering is an optional integer used to set the buffering policy.
Pass 0 to switch buffering off (only allowed in binary mode), 1 to select
line buffering (only usable in text mode), and an integer > 1 to indicate
the size of a fixed-size chunk buffer. When no buffering argument is
given, the default buffering policy works as follows:
* Binary files are buffered in fixed-size chunks; the size of the buffer
is chosen using a heuristic trying to determine the underlying device's
"block size" and falling back on `io.DEFAULT_BUFFER_SIZE`.
On many systems, the buffer will typically be 4096 or 8192 bytes long.
* "Interactive" text files (files for which isatty() returns True)
use line buffering. Other text files use the policy described above
for binary files.
encoding is the name of the encoding used to decode or encode the
file. This should only be used in text mode. The default encoding is
platform dependent, but any encoding supported by Python can be
passed. See the codecs module for the list of supported encodings.
errors is an optional string that specifies how encoding errors are to
be handled---this argument should not be used in binary mode. Pass
'strict' to raise a ValueError exception if there is an encoding error
(the default of None has the same effect), or pass 'ignore' to ignore
errors. (Note that ignoring encoding errors can lead to data loss.)
See the documentation for codecs.register or run 'help(codecs.Codec)'
for a list of the permitted encoding error strings.
newline controls how universal newlines works (it only applies to text
mode). It can be None, '', '\n', '\r', and '\r\n'. It works as
follows:
* On input, if newline is None, universal newlines mode is
enabled. Lines in the input can end in '\n', '\r', or '\r\n', and
these are translated into '\n' before being returned to the
caller. If it is '', universal newline mode is enabled, but line
endings are returned to the caller untranslated. If it has any of
the other legal values, input lines are only terminated by the given
string, and the line ending is returned to the caller untranslated.
* On output, if newline is None, any '\n' characters written are
translated to the system default line separator, os.linesep. If
newline is '' or '\n', no translation takes place. If newline is any
of the other legal values, any '\n' characters written are translated
to the given string.
If closefd is False, the underlying file descriptor will be kept open
when the file is closed. This does not work when a file name is given
and must be True in that case.
A custom opener can be used by passing a callable as *opener*. The
underlying file descriptor for the file object is then obtained by
calling *opener* with (*file*, *flags*). *opener* must return an open
file descriptor (passing os.open as *opener* results in functionality
similar to passing None).
open() returns a file object whose type depends on the mode, and
through which the standard file operations such as reading and writing
are performed. When open() is used to open a file in a text mode ('w',
'r', 'wt', 'rt', etc.), it returns a TextIOWrapper. When used to open
a file in a binary mode, the returned class varies: in read binary
mode, it returns a BufferedReader; in write binary and append binary
modes, it returns a BufferedWriter, and in read/write mode, it returns
a BufferedRandom.
It is also possible to use a string or bytearray as a file for both
reading and writing. For strings StringIO can be used like a file
opened in a text mode, and for bytes a BytesIO can be used like a file
opened in a binary mode.
| MIT | notebooks/PythonTutorial.ipynb | jagar2/BMC |
**Using Numpy** | import numpy as np
data = np.random.randn(3,3)
np.savetxt('myfile.txt', data, fmt="%12.6G") # save to file
data = np.genfromtxt('myfile.txt', unpack=True) # read from file
data | _____no_output_____ | MIT | notebooks/PythonTutorial.ipynb | jagar2/BMC |
Ploting with matplotlibMatplotlib is the most-widely used packge for plotting data in Python. Let's see some examples of it. | import matplotlib.pyplot as plt | _____no_output_____ | MIT | notebooks/PythonTutorial.ipynb | jagar2/BMC |
Use the IPython magic `%matplotlib inline` to plot a figure inline in the notebook with the rest of the text: | %matplotlib notebook
import numpy as np
t = np.linspace(0, 0.99, 100)
x = np.sin(2 * np.pi * 2 * t)
n = np.random.randn(100) / 5
plt.Figure(figsize=(12,8))
plt.plot(t, x, label='sine', linewidth=2)
plt.plot(t, x + n, label='noisy sine', linewidth=2)
plt.annotate(s='$sin(4 \pi t)$', xy=(.2, 1), fontsize=20, color=[0, 0, 1])
plt.legend(loc='best', framealpha=.5)
plt.xlabel('Time [s]')
plt.ylabel('Amplitude')
plt.title('Data plotting using matplotlib')
plt.show() | _____no_output_____ | MIT | notebooks/PythonTutorial.ipynb | jagar2/BMC |
Use the IPython magic `%matplotlib qt` to plot a figure in a separate window (from where you will be able to change some of the figure proprerties): | %matplotlib qt
mu, sigma = 10, 2
x = mu + sigma * np.random.randn(1000)
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 4))
ax1.plot(x, 'ro')
ax1.set_title('Data')
ax1.grid()
n, bins, patches = ax2.hist(x, 25, normed=True, facecolor='r') # histogram
ax2.set_xlabel('Bins')
ax2.set_ylabel('Probability')
ax2.set_title('Histogram')
fig.suptitle('Another example using matplotlib', fontsize=18, y=1)
ax2.grid()
plt.tight_layout()
plt.show() | _____no_output_____ | MIT | notebooks/PythonTutorial.ipynb | jagar2/BMC |
And a window with the following figure should appear: | from IPython.display import Image
Image(url="./../images/plot.png") | _____no_output_____ | MIT | notebooks/PythonTutorial.ipynb | jagar2/BMC |
You can switch back and forth between inline and separate figure using the `%matplotlib` magic commands used above. There are plenty more examples with the source code in the [matplotlib gallery](http://matplotlib.org/gallery.html). | # get back the inline plot
%matplotlib inline | _____no_output_____ | MIT | notebooks/PythonTutorial.ipynb | jagar2/BMC |
Signal processing with ScipyThe Scipy package has a lot of functions for signal processing, among them: Integration (scipy.integrate), Optimization (scipy.optimize), Interpolation (scipy.interpolate), Fourier Transforms (scipy.fftpack), Signal Processing (scipy.signal), Linear Algebra (scipy.linalg), and Statistics (scipy.stats). As an example, let's see how to use a low-pass Butterworth filter to attenuate high-frequency noise and how the differentiation process of a signal affects the signal-to-noise content. We will also calculate the Fourier transform of these data to look at their frequencies content. | from scipy.signal import butter, filtfilt
import scipy.fftpack
freq = 100.
t = np.arange(0,1,.01);
w = 2*np.pi*1 # 1 Hz
y = np.sin(w*t)+0.1*np.sin(10*w*t)
# Butterworth filter
b, a = butter(4, (5/(freq/2)), btype = 'low')
y2 = filtfilt(b, a, y)
# 2nd derivative of the data
ydd = np.diff(y,2)*freq*freq # raw data
y2dd = np.diff(y2,2)*freq*freq # filtered data
# frequency content
yfft = np.abs(scipy.fftpack.fft(y))/(y.size/2); # raw data
y2fft = np.abs(scipy.fftpack.fft(y2))/(y.size/2); # filtered data
freqs = scipy.fftpack.fftfreq(y.size, 1./freq)
yddfft = np.abs(scipy.fftpack.fft(ydd))/(ydd.size/2);
y2ddfft = np.abs(scipy.fftpack.fft(y2dd))/(ydd.size/2);
freqs2 = scipy.fftpack.fftfreq(ydd.size, 1./freq) | _____no_output_____ | MIT | notebooks/PythonTutorial.ipynb | jagar2/BMC |
And the plots: | fig, ((ax1,ax2),(ax3,ax4)) = plt.subplots(2, 2, figsize=(10, 4))
ax1.set_title('Temporal domain', fontsize=14)
ax1.plot(t, y, 'r', linewidth=2, label = 'raw data')
ax1.plot(t, y2, 'b', linewidth=2, label = 'filtered @ 5 Hz')
ax1.set_ylabel('f')
ax1.legend(frameon=False, fontsize=12)
ax2.set_title('Frequency domain', fontsize=14)
ax2.plot(freqs[:yfft.size/4], yfft[:yfft.size/4],'r', lw=2,label='raw data')
ax2.plot(freqs[:yfft.size/4],y2fft[:yfft.size/4],'b--',lw=2,label='filtered @ 5 Hz')
ax2.set_ylabel('FFT(f)')
ax2.legend(frameon=False, fontsize=12)
ax3.plot(t[:-2], ydd, 'r', linewidth=2, label = 'raw')
ax3.plot(t[:-2], y2dd, 'b', linewidth=2, label = 'filtered @ 5 Hz')
ax3.set_xlabel('Time [s]'); ax3.set_ylabel("f ''")
ax4.plot(freqs[:yddfft.size/4], yddfft[:yddfft.size/4], 'r', lw=2, label = 'raw')
ax4.plot(freqs[:yddfft.size/4],y2ddfft[:yddfft.size/4],'b--',lw=2, label='filtered @ 5 Hz')
ax4.set_xlabel('Frequency [Hz]'); ax4.set_ylabel("FFT(f '')")
plt.show() | _____no_output_____ | MIT | notebooks/PythonTutorial.ipynb | jagar2/BMC |
For more about Scipy, see [http://docs.scipy.org/doc/scipy/reference/tutorial/](http://docs.scipy.org/doc/scipy/reference/tutorial/). Symbolic mathematics with SympySympy is a package to perform symbolic mathematics in Python. Let's see some of its features: | from IPython.display import display
import sympy as sym
from sympy.interactive import printing
printing.init_printing() | _____no_output_____ | MIT | notebooks/PythonTutorial.ipynb | jagar2/BMC |
Define some symbols and the create a second-order polynomial function (a.k.a., parabola): | x, y = sym.symbols('x y')
y = x**2 - 2*x - 3
y | _____no_output_____ | MIT | notebooks/PythonTutorial.ipynb | jagar2/BMC |
Plot the parabola at some given range: | from sympy.plotting import plot
%matplotlib inline
plot(y, (x, -3, 5)); | _____no_output_____ | MIT | notebooks/PythonTutorial.ipynb | jagar2/BMC |
And the roots of the parabola are given by: | sym.solve(y, x) | _____no_output_____ | MIT | notebooks/PythonTutorial.ipynb | jagar2/BMC |
We can also do symbolic differentiation and integration: | dy = sym.diff(y, x)
dy
sym.integrate(dy, x) | _____no_output_____ | MIT | notebooks/PythonTutorial.ipynb | jagar2/BMC |
For example, let's use Sympy to represent three-dimensional rotations. Consider the problem of a coordinate system xyz rotated in relation to other coordinate system XYZ. The single rotations around each axis are illustrated by: | from IPython.display import Image
Image(url="./../images/rotations.png") | _____no_output_____ | MIT | notebooks/PythonTutorial.ipynb | jagar2/BMC |
The single 3D rotation matrices around Z, Y, and X axes can be expressed in Sympy: | from IPython.core.display import Math
from sympy import symbols, cos, sin, Matrix, latex
a, b, g = symbols('alpha beta gamma')
RX = Matrix([[1, 0, 0], [0, cos(a), -sin(a)], [0, sin(a), cos(a)]])
display(Math(latex('\\mathbf{R_{X}}=') + latex(RX, mat_str = 'matrix')))
RY = Matrix([[cos(b), 0, sin(b)], [0, 1, 0], [-sin(b), 0, cos(b)]])
display(Math(latex('\\mathbf{R_{Y}}=') + latex(RY, mat_str = 'matrix')))
RZ = Matrix([[cos(g), -sin(g), 0], [sin(g), cos(g), 0], [0, 0, 1]])
display(Math(latex('\\mathbf{R_{Z}}=') + latex(RZ, mat_str = 'matrix'))) | _____no_output_____ | MIT | notebooks/PythonTutorial.ipynb | jagar2/BMC |
And using Sympy, a sequence of elementary rotations around X, Y, Z axes is given by: | RXYZ = RZ*RY*RX
display(Math(latex('\\mathbf{R_{XYZ}}=') + latex(RXYZ, mat_str = 'matrix'))) | _____no_output_____ | MIT | notebooks/PythonTutorial.ipynb | jagar2/BMC |
Suppose there is a rotation only around X ($\alpha$) by $\pi/2$; we can get the numerical value of the rotation matrix by substituing the angle values: | r = RXYZ.subs({a: np.pi/2, b: 0, g: 0})
r | _____no_output_____ | MIT | notebooks/PythonTutorial.ipynb | jagar2/BMC |
And we can prettify this result: | display(Math(latex(r'\mathbf{R_{(\alpha=\pi/2)}}=') +
latex(r.n(chop=True, prec=3), mat_str = 'matrix'))) | _____no_output_____ | MIT | notebooks/PythonTutorial.ipynb | jagar2/BMC |
For more about Sympy, see [http://docs.sympy.org/latest/tutorial/](http://docs.sympy.org/latest/tutorial/). Data analysis with pandas> "[pandas](http://pandas.pydata.org/) is a Python package providing fast, flexible, and expressive data structures designed to make working with โrelationalโ or โlabeledโ data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world data analysis in Python."To work with labellled data, pandas has a type called DataFrame (basically, a matrix where columns and rows have may names and may be of different types) and it is also the main type of the software [R](http://www.r-project.org/). Fo ezample: | import pandas as pd
x = 5*['A'] + 5*['B']
x
df = pd.DataFrame(np.random.rand(10,2), columns=['Level 1', 'Level 2'] )
df['Group'] = pd.Series(['A']*5 + ['B']*5)
plot = df.boxplot(by='Group')
from pandas.tools.plotting import scatter_matrix
df = pd.DataFrame(np.random.randn(100, 3), columns=['A', 'B', 'C'])
plot = scatter_matrix(df, alpha=0.5, figsize=(8, 6), diagonal='kde') | _____no_output_____ | MIT | notebooks/PythonTutorial.ipynb | jagar2/BMC |
pandas is aware the data is structured and give you basic statistics considerint that and nicely formatted: | df.describe() | _____no_output_____ | MIT | notebooks/PythonTutorial.ipynb | jagar2/BMC |
Task 4: Largest palindrome product As always, we'll try with the brute force algorithm, that has ~O(n^2) complexity, but still works pretty fast: | import time
start = time.time()
max_palindrome = 0
for i in range(100, 1000):
for j in range(100, 1000):
if str(i*j) == str(i*j)[::-1] and i*j > max_palindrome:
max_palindrome = i*j
finish = time.time() - start
print(max_palindrome)
print("Time in seconds: ", finish) | 906609
Time in seconds: 0.7557618618011475
| Unlicense | python/Problem4.ipynb | ditekunov/ProjectEuler-research |
But we'll try to improve it.Firstly, we'll implement an obvious way to find MAX value, by running the cycle downwards.Let's record the speed to track, that the time improved. | import time
start = time.time()
max_palindrome = 0
for i in range(999, 800, -1):
for j in range(999, 99, -1):
if str(i*j) == str(i*j)[::-1] and i*j > max_palindrome:
max_palindrome = i*j
finish = time.time() - start
print(max_palindrome)
print(finish) | 906609
0.17235779762268066
| Unlicense | python/Problem4.ipynb | ditekunov/ProjectEuler-research |
Note for the interpretation of the curves and definition of the statistical variablesThe quantum state classifier (QSC) error rates $\widehat{r}_i$ in function of the number of experimental shots $n$ were determined for each highly entangled quantum state $\omega_i$ in the $\Omega$ set, with $i=1...m$.The curves seen on the figures represents the mean of the QSC error rate $\widehat{r}_{mean}$ over the $m$ quantum states at each $n$ value.This Monte Carlo simulation allowed to determine a safe shot number $n_s$ such that $\forall i\; \widehat{r}_i\le \epsilon_s$. The value of $\epsilon_s$ was set at 0.001.$\widehat{r}_{max}$ is the maximal value observed among all the $\widehat{r}_i$ values for the determined number of shots $n_s$.Similarly, from the error curves stored in the data file, was computed the safe shot number $n_t$ such that $\widehat{r}_{mean}\le \epsilon_t$. The value of $\epsilon_t$ was set at 0.0005 after verifying that all $\widehat{r}_{mean}$ at $n_s$ were $\le \epsilon_s$ in the different experimental settings. Correspondance between variables names in the text and in the data base:- $\widehat{r}_{mean}$: error_curve- $n_s$: shots- max ($\widehat{r}_i$) at $n_s$: shot_rate- $\widehat{r}_{mean}$ at $n_s$: mns_rate- $n_t$: m_shots- $\widehat{r}_{mean}$ at $n_t$: m_shot_rate | # Calculate shot number 'm_shots' for mean error rate 'm_shot_rates' <= epsilon_t
len_data = len(All_data)
epsilon_t = 0.0005
window = 11
for i in range(len_data):
curve = np.array(All_data[i]['error_curve'])
# filter the curve only for real devices:
if All_data[i]['device']!="ideal_device":
curve = savgol_filter(curve,window,2)
# find the safe shot number:
len_c = len(curve)
n_a = np.argmin(np.flip(curve)<=epsilon_t)+1
if n_a == 1:
n_a = np.nan
m_r = np.nan
else:
m_r = curve[len_c-n_a+1]
All_data[i]['min_r_shots'] = len_c-n_a
All_data[i]['min_r'] = m_r
# find mean error rate at n_s
for i in range(len_data):
i_shot = All_data[i]["shots"]
if not np.isnan(i_shot):
j = int(i_shot)-1
All_data[i]['mns_rate'] = All_data[i]['error_curve'][j]
else:
All_data[i]['mns_rate'] = np.nan
#defining the pandas data frame for statistics excluding from here ibmqx2 data
df_All= pd.DataFrame(All_data,columns=['shot_rates','shots', 'device', 'fidelity',
'mitigation','model','id_gates',
'QV', 'metric','error_curve',
'mns_rate','min_r_shots',
'min_r']).query("device != 'ibmqx2'")
# any shot number >= 488 indicates that the curve calculation
# was ended after reaching n = 500, hence this data correction:
df_All.loc[df_All.shots>=488,"shots"]=np.nan
# add the variable neperian log of safe shot number:
df_All['log_shots'] = np.log(df_All['shots'])
df_All['log_min_r_shots'] = np.log(df_All['min_r_shots']) | _____no_output_____ | Apache-2.0 | 3_2_preliminary_statistics_project_2.ipynb | cnktysz/qiskit-quantum-state-classifier |
Error rates in function of chosen $\epsilon_s$ and $\epsilon_t$ | print("max mean error rate at n_s over all experiments =", round(max(df_All.mns_rate[:-2]),6))
print("min mean error rate at n_t over all experiments =", round(min(df_All.min_r[:-2]),6))
print("max mean error rate at n_t over all experiments =", round(max(df_All.min_r[:-2]),6))
df_All.mns_rate[:-2].plot.hist(alpha=0.5, legend = True)
df_All.min_r[:-2].plot.hist(alpha=0.5, legend = True) | _____no_output_____ | Apache-2.0 | 3_2_preliminary_statistics_project_2.ipynb | cnktysz/qiskit-quantum-state-classifier |
Statistical overviewFor this section, an ordinary linear least square estimation is performed.The dependent variables tested are $ln\;n_s$ (log_shots) and $ln\;n_t$ (log_min_r_shots) | stat_model = ols("log_shots ~ metric",
df_All.query("device != 'ideal_device'")).fit()
print(stat_model.summary())
stat_model = ols("log_min_r_shots ~ metric",
df_All.query("device != 'ideal_device'")).fit()
print(stat_model.summary())
stat_model = ols("log_shots ~ model+mitigation+id_gates+fidelity+QV",
df_All.query("device != 'ideal_device' & metric == 'sqeuclidean'")).fit()
print(stat_model.summary())
stat_model = ols("log_min_r_shots ~ model+mitigation+id_gates+fidelity+QV",
df_All.query("device != 'ideal_device'& metric == 'sqeuclidean'")).fit()
print(stat_model.summary()) | OLS Regression Results
==============================================================================
Dep. Variable: log_min_r_shots R-squared: 0.532
Model: OLS Adj. R-squared: 0.491
Method: Least Squares F-statistic: 13.16
Date: Tue, 02 Mar 2021 Prob (F-statistic): 1.43e-08
Time: 17:22:26 Log-Likelihood: -24.867
No. Observations: 64 AIC: 61.73
Df Residuals: 58 BIC: 74.69
Df Model: 5
Covariance Type: nonrobust
======================================================================================
coef std err t P>|t| [0.025 0.975]
--------------------------------------------------------------------------------------
Intercept 3.5234 1.886 1.868 0.067 -0.252 7.299
model[T.ideal_sim] 0.2831 0.094 3.021 0.004 0.096 0.471
mitigation[T.yes] -0.3990 0.094 -4.258 0.000 -0.587 -0.211
id_gates 0.0022 0.000 5.893 0.000 0.001 0.003
fidelity 0.1449 2.485 0.058 0.954 -4.829 5.119
QV -0.0112 0.013 -0.884 0.380 -0.036 0.014
==============================================================================
Omnibus: 29.956 Durbin-Watson: 1.010
Prob(Omnibus): 0.000 Jarque-Bera (JB): 55.722
Skew: 1.626 Prob(JB): 7.94e-13
Kurtosis: 6.212 Cond. No. 1.21e+04
==============================================================================
Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 1.21e+04. This might indicate that there are
strong multicollinearity or other numerical problems.
| Apache-2.0 | 3_2_preliminary_statistics_project_2.ipynb | cnktysz/qiskit-quantum-state-classifier |
Comments:For the QSC, two different metrics were compared and at the end they gave the same output. For further analysis, the results obtained using the squared euclidean distance between distribution will be illustrated in this notebook, as it is more classical and strictly equivalent to the other classical Hellinger and Bhattacharyya distances. The Jensen-Shannon metric has however the theoretical advantage of being bayesian in nature and is therefore presented as an option for the result analysis.Curves obtained for counts corrected by measurement error mitigation (MEM) are used in this presentation. MEM significantly reduces $n_s$ and $n_t$. However, using counts distribution before MEM is presented as an option because they anticipate how the method could perform in devices with more qubits where obtaining the mitigation filter is a problem. Introducing a delay time $\delta t$ of 256 identity gates between state creation and measurement significantly increased $ln\;n_s$ and $ln\;n_t$ . Detailed statistical analysis Determine the optionsRunning sequentially these cells will end up with the main streaming options | # this for Jensen-Shannon metric
s_metric = 'jensenshannon'
sm = np.array([96+16+16+16]) # added Quito and Lima and Belem
SAD=0
# ! will be unselected by running the next cell
# mainstream option for metric: squared euclidean distance
# skip this cell if you don't want this option
s_metric = 'sqeuclidean'
sm = np.array([97+16+16+16]) # added Quito and Lima and Belem
SAD=2
# this for no mitigation
mit = 'no'
MIT=-4
# ! will be unselected by running the next cell
# mainstream option: this for measurement mitigation
# skip this cell if you don't want this option
mit = 'yes'
MIT=0 | _____no_output_____ | Apache-2.0 | 3_2_preliminary_statistics_project_2.ipynb | cnktysz/qiskit-quantum-state-classifier |
1. Compare distribution models | # select data according to the options
df_mod = df_All[df_All.mitigation == mit][df_All.metric == s_metric] | <ipython-input-20-af347b9ea33a>:2: UserWarning: Boolean Series key will be reindexed to match DataFrame index.
df_mod = df_All[df_All.mitigation == mit][df_All.metric == s_metric]
| Apache-2.0 | 3_2_preliminary_statistics_project_2.ipynb | cnktysz/qiskit-quantum-state-classifier |
A look at $n_s$ and $n_t$ | print("mitigation:",mit," metric:",s_metric )
df_mod.groupby('device')[['shots','min_r_shots']].describe(percentiles=[0.5]) | mitigation: yes metric: sqeuclidean
| Apache-2.0 | 3_2_preliminary_statistics_project_2.ipynb | cnktysz/qiskit-quantum-state-classifier |
Ideal vs empirical model: no state creation - measurements delay | ADD=0+SAD+MIT
#opl.plot_curves(All_data, np.append(sm,ADD+np.array([4,5,12,13,20,21,28,29,36,37,44,45])),
opl.plot_curves(All_data, np.append(sm,ADD+np.array([4,5,12,13,20,21,28,29,36,37,52,53,60,61,68,69])),
"Monte Carlo Simulation: Theoretical PDM vs Empirical PDM - no $\delta_t0$",
["metric","mitigation"],
["device","model"], right_xlimit = 90) | _____no_output_____ | Apache-2.0 | 3_2_preliminary_statistics_project_2.ipynb | cnktysz/qiskit-quantum-state-classifier |
Paired t-test and Wilcoxon test | for depvar in ['log_shots', 'log_min_r_shots']:
#for depvar in ['shots', 'min_r_shots']:
print("mitigation:",mit," metric:",s_metric, "variable:", depvar)
df_dep = df_mod.query("id_gates == 0.0").groupby(['model'])[depvar]
print(df_dep.describe(percentiles=[0.5]),"\n")
# no error rate curve obtained for ibmqx2 with the ideal model, hence this exclusion:
df_emp=df_mod.query("model == 'empirical' & id_gates == 0.0")
df_ide=df_mod.query("model == 'ideal_sim' & id_gates == 0.0") #.reindex_like(df_emp,'nearest')
# back to numpy arrays from pandas:
print("paired data")
print(np.asarray(df_emp[depvar]))
print(np.asarray(df_ide[depvar]),"\n")
print(stats.ttest_rel(np.asarray(df_emp[depvar]),np.asarray(df_ide[depvar])))
print(stats.wilcoxon(np.asarray(df_emp[depvar]),np.asarray(df_ide[depvar])),"\n")
print("mitigation:",mit," metric:",s_metric, "id_gates == 0.0 ")
stat_model = ols("log_shots ~ model + device + fidelity + QV" ,
df_mod.query("id_gates == 0.0 ")).fit()
print(stat_model.summary())
print("mitigation:",mit," metric:",s_metric, "id_gates == 0.0 " )
stat_model = ols("log_min_r_shots ~ model + device + fidelity+QV",
df_mod.query("id_gates == 0.0 ")).fit()
print(stat_model.summary()) | mitigation: yes metric: sqeuclidean id_gates == 0.0
OLS Regression Results
==============================================================================
Dep. Variable: log_min_r_shots R-squared: 0.833
Model: OLS Adj. R-squared: 0.643
Method: Least Squares F-statistic: 4.374
Date: Tue, 02 Mar 2021 Prob (F-statistic): 0.0335
Time: 17:22:28 Log-Likelihood: 13.155
No. Observations: 16 AIC: -8.310
Df Residuals: 7 BIC: -1.357
Df Model: 8
Covariance Type: nonrobust
===========================================================================================
coef std err t P>|t| [0.025 0.975]
-------------------------------------------------------------------------------------------
Intercept 1.5428 0.057 27.265 0.000 1.409 1.677
model[T.ideal_sim] 0.1871 0.080 2.327 0.053 -0.003 0.377
device[T.ibmq_belem] 0.2643 0.111 2.385 0.049 0.002 0.526
device[T.ibmq_lima] 0.4849 0.100 4.851 0.002 0.249 0.721
device[T.ibmq_ourense] 0.4523 0.099 4.565 0.003 0.218 0.687
device[T.ibmq_quito] 0.9195 0.111 8.294 0.000 0.657 1.182
device[T.ibmq_santiago] 0.0100 0.161 0.062 0.952 -0.371 0.391
device[T.ibmq_valencia] 0.3472 0.112 3.109 0.017 0.083 0.611
device[T.ibmq_vigo] 0.1480 0.111 1.335 0.224 -0.114 0.410
fidelity 1.1633 0.042 27.862 0.000 1.065 1.262
QV 0.0144 0.006 2.486 0.042 0.001 0.028
==============================================================================
Omnibus: 1.117 Durbin-Watson: 2.583
Prob(Omnibus): 0.572 Jarque-Bera (JB): 0.092
Skew: 0.000 Prob(JB): 0.955
Kurtosis: 3.372 Cond. No. 5.63e+17
==============================================================================
Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The smallest eigenvalue is 2.02e-32. This might indicate that there are
strong multicollinearity problems or that the design matrix is singular.
| Apache-2.0 | 3_2_preliminary_statistics_project_2.ipynb | cnktysz/qiskit-quantum-state-classifier |
Ideal vs empirical model: with state creation - measurements delay of 256 id gates | ADD=72+SAD+MIT
opl.plot_curves(All_data, np.append(sm,ADD+np.array([4,5,12,13,20,21,28,29,36,37,52,53,60,61,68,69])),
"No noise simulator vs empirical model - $\epsilon=0.001$ - with delay",
["metric","mitigation"],
["device","model"], right_xlimit = 90) | _____no_output_____ | Apache-2.0 | 3_2_preliminary_statistics_project_2.ipynb | cnktysz/qiskit-quantum-state-classifier |
Paired t-test and Wilcoxon test | for depvar in ['log_shots', 'log_min_r_shots']:
print("mitigation:",mit," metric:",s_metric, "variable:", depvar)
df_dep = df_mod.query("id_gates == 256.0 ").groupby(['model'])[depvar]
print(df_dep.describe(percentiles=[0.5]),"\n")
# no error rate curve obtained for ibmqx2 with the ideal model, hence their exclusion:
df_emp=df_mod.query("model == 'empirical' & id_gates == 256.0 ")
df_ide=df_mod.query("model == 'ideal_sim' & id_gates == 256.0") #.reindex_like(df_emp,'nearest')
# back to numpy arrays from pandas:
print("paired data")
print(np.asarray(df_emp[depvar]))
print(np.asarray(df_ide[depvar]),"\n")
print(stats.ttest_rel(np.asarray(df_emp[depvar]),np.asarray(df_ide[depvar])))
print(stats.wilcoxon(np.asarray(df_emp[depvar]),np.asarray(df_ide[depvar])),"\n")
print("mitigation:",mit," metric:",s_metric , "id_gates == 256.0 ")
stat_model = ols("log_shots ~ model + device + fidelity + QV" ,
df_mod.query("id_gates == 256.0 ")).fit()
print(stat_model.summary())
print("mitigation:",mit," metric:",s_metric, "id_gates == 256.0 " )
stat_model = ols("log_min_r_shots ~ model + device +fidelity+QV",
df_mod.query("id_gates == 256.0 ")).fit()
print(stat_model.summary()) | mitigation: yes metric: sqeuclidean id_gates == 256.0
OLS Regression Results
==============================================================================
Dep. Variable: log_min_r_shots R-squared: 0.890
Model: OLS Adj. R-squared: 0.764
Method: Least Squares F-statistic: 7.062
Date: Tue, 02 Mar 2021 Prob (F-statistic): 0.00913
Time: 17:22:30 Log-Likelihood: 8.2449
No. Observations: 16 AIC: 1.510
Df Residuals: 7 BIC: 8.463
Df Model: 8
Covariance Type: nonrobust
===========================================================================================
coef std err t P>|t| [0.025 0.975]
-------------------------------------------------------------------------------------------
Intercept 1.7754 0.077 23.083 0.000 1.594 1.957
model[T.ideal_sim] 0.2943 0.109 2.693 0.031 0.036 0.553
device[T.ibmq_belem] 0.3949 0.151 2.621 0.034 0.039 0.751
device[T.ibmq_lima] 0.9230 0.136 6.793 0.000 0.602 1.244
device[T.ibmq_ourense] 0.2576 0.135 1.913 0.097 -0.061 0.576
device[T.ibmq_quito] 1.2167 0.151 8.074 0.000 0.860 1.573
device[T.ibmq_santiago] -0.2650 0.219 -1.212 0.265 -0.782 0.252
device[T.ibmq_valencia] 0.0412 0.152 0.271 0.794 -0.318 0.400
device[T.ibmq_vigo] 0.1260 0.151 0.836 0.431 -0.230 0.482
fidelity 1.3422 0.057 23.652 0.000 1.208 1.476
QV 0.0187 0.008 2.376 0.049 9.25e-05 0.037
==============================================================================
Omnibus: 3.031 Durbin-Watson: 3.036
Prob(Omnibus): 0.220 Jarque-Bera (JB): 1.026
Skew: 0.000 Prob(JB): 0.599
Kurtosis: 4.241 Cond. No. 5.63e+17
==============================================================================
Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The smallest eigenvalue is 2.02e-32. This might indicate that there are
strong multicollinearity problems or that the design matrix is singular.
| Apache-2.0 | 3_2_preliminary_statistics_project_2.ipynb | cnktysz/qiskit-quantum-state-classifier |
Pooling results obtained in circuit sets with and without creation-measurement delay Paired t-test and Wilcoxon test | #for depvar in ['log_shots', 'log_min_r_shots']:
for depvar in ['log_shots', 'log_min_r_shots']:
print("mitigation:",mit," metric:",s_metric, "variable:", depvar)
df_dep = df_mod.groupby(['model'])[depvar]
print(df_dep.describe(percentiles=[0.5]),"\n")
# no error rate curve obtained for ibmqx2 with the ideal model, hence this exclusion:
df_emp=df_mod.query("model == 'empirical'")
df_ide=df_mod.query("model == 'ideal_sim'") #.reindex_like(df_emp,'nearest')
# back to numpy arrays from pandas:
print("paired data")
print(np.asarray(df_emp[depvar]))
print(np.asarray(df_ide[depvar]),"\n")
print(stats.ttest_rel(np.asarray(df_emp[depvar]),np.asarray(df_ide[depvar])))
print(stats.wilcoxon(np.asarray(df_emp[depvar]),np.asarray(df_ide[depvar])),"\n") | mitigation: yes metric: sqeuclidean variable: log_shots
count mean std min 50% max
model
empirical 16.0 3.580581 0.316850 3.218876 3.510542 4.276666
ideal_sim 16.0 3.834544 0.520834 3.295837 3.701226 5.323010
paired data
[3.29583687 3.4657359 3.21887582 3.21887582 3.40119738 3.66356165
3.36729583 3.21887582 3.8286414 3.80666249 3.4657359 3.61091791
3.55534806 4.27666612 4.11087386 3.78418963]
[3.71357207 3.49650756 3.63758616 3.29583687 3.52636052 4.4543473
3.40119738 3.36729583 3.71357207 3.97029191 3.58351894 3.71357207
3.68887945 5.32300998 4.40671925 4.06044301]
Ttest_relResult(statistic=-3.411743256395652, pvalue=0.0038635533717249343)
WilcoxonResult(statistic=5.0, pvalue=0.00030517578125)
mitigation: yes metric: sqeuclidean variable: log_min_r_shots
count mean std min 50% max
model
empirical 16.0 3.342394 0.323171 2.944439 3.295151 4.077537
ideal_sim 16.0 3.583064 0.533690 3.044522 3.417592 5.056246
paired data
[3.09104245 3.17805383 2.94443898 2.94443898 3.13549422 3.4339872
3.09104245 3.04452244 3.49650756 3.63758616 3.25809654 3.40119738
3.33220451 4.07753744 3.8286414 3.58351894]
[3.21887582 3.13549422 3.33220451 3.04452244 3.17805383 4.09434456
3.17805383 3.17805383 3.4339872 3.8501476 3.40119738 3.55534806
3.52636052 5.05624581 4.2341065 3.91202301]
Ttest_relResult(statistic=-3.593874266151202, pvalue=0.0026588536103780047)
WilcoxonResult(statistic=4.5, pvalue=0.000213623046875)
| Apache-2.0 | 3_2_preliminary_statistics_project_2.ipynb | cnktysz/qiskit-quantum-state-classifier |
Statsmodel Ordinary Least Square (OLS) Analysis | print("mitigation:",mit," metric:",s_metric )
stat_model = ols("log_shots ~ model + id_gates + device + fidelity + QV" ,
df_mod).fit()
print(stat_model.summary())
print("mitigation:",mit," metric:",s_metric )
stat_model = ols("log_min_r_shots ~ model + id_gates + device + fidelity+QV ",
df_mod).fit()
print(stat_model.summary()) | mitigation: yes metric: sqeuclidean
OLS Regression Results
==============================================================================
Dep. Variable: log_min_r_shots R-squared: 0.842
Model: OLS Adj. R-squared: 0.778
Method: Least Squares F-statistic: 13.08
Date: Tue, 02 Mar 2021 Prob (F-statistic): 6.19e-07
Time: 17:22:30 Log-Likelihood: 10.164
No. Observations: 32 AIC: -0.3273
Df Residuals: 22 BIC: 14.33
Df Model: 9
Covariance Type: nonrobust
===========================================================================================
coef std err t P>|t| [0.025 0.975]
-------------------------------------------------------------------------------------------
Intercept 1.5308 0.056 27.340 0.000 1.415 1.647
model[T.ideal_sim] 0.2407 0.075 3.205 0.004 0.085 0.396
device[T.ibmq_belem] 0.3004 0.104 2.899 0.008 0.085 0.515
device[T.ibmq_lima] 0.6567 0.094 7.013 0.000 0.462 0.851
device[T.ibmq_ourense] 0.3122 0.093 3.366 0.003 0.120 0.505
device[T.ibmq_quito] 1.0387 0.104 10.020 0.000 0.824 1.254
device[T.ibmq_santiago] -0.1285 0.150 -0.855 0.402 -0.440 0.183
device[T.ibmq_valencia] 0.1604 0.104 1.536 0.139 -0.056 0.377
device[T.ibmq_vigo] 0.1078 0.104 1.040 0.310 -0.107 0.323
id_gates 0.0020 0.000 6.959 0.000 0.001 0.003
fidelity 1.1563 0.041 27.935 0.000 1.070 1.242
QV 0.0152 0.005 2.796 0.011 0.004 0.026
==============================================================================
Omnibus: 2.598 Durbin-Watson: 1.933
Prob(Omnibus): 0.273 Jarque-Bera (JB): 1.371
Skew: 0.412 Prob(JB): 0.504
Kurtosis: 3.592 Cond. No. 5.00e+18
==============================================================================
Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The smallest eigenvalue is 4.22e-32. This might indicate that there are
strong multicollinearity problems or that the design matrix is singular.
| Apache-2.0 | 3_2_preliminary_statistics_project_2.ipynb | cnktysz/qiskit-quantum-state-classifier |
Continuous Control--- 1. Import the Necessary Packages | from unityagents import UnityEnvironment
import random
import torch
import numpy as np
from collections import deque
import matplotlib.pyplot as plt
%matplotlib inline
from ddpg_agent import Agent | _____no_output_____ | MIT | Projects/p2_continuous-control/.ipynb_checkpoints/DDPG_with_20_Agent-checkpoint.ipynb | Clara-YR/Udacity-DRL |
2. Instantiate the Environment and 20 Agents | # initialize the environment
env = UnityEnvironment(file_name='./Reacher_20.app')
# get the default brain
brain_name = env.brain_names[0]
brain = env.brains[brain_name]
# reset the environment
env_info = env.reset(train_mode=True)[brain_name]
# number of agents
num_agents = len(env_info.agents)
print('Number of agents:', num_agents)
# size of each action
action_size = brain.vector_action_space_size
print('Size of each action:', action_size)
# examine the state space
states = env_info.vector_observations
state_size = states.shape[1]
print('There are {} agents. Each observes a state with length: {}'.format(states.shape[0], state_size))
print('The state for the first agent looks like:', states[0])
# initialize agents
agent = Agent(state_size=33,
action_size=4,
random_seed=2,
num_agents=20) | _____no_output_____ | MIT | Projects/p2_continuous-control/.ipynb_checkpoints/DDPG_with_20_Agent-checkpoint.ipynb | Clara-YR/Udacity-DRL |
3. Train the 20 Agents with DDPGTo amend the `ddpg` code to work for 20 agents instead of 1, here are the modifications I did in `ddpg_agent.py`:- With each step, each agent adds its experience to a replay buffer shared by all agents (line 61-61).- At first, the (local) actor and critic networks are updated 20 times in a row (one for each agent), using 20 different samples from the replay buffer as below:```def step(self, states, actions, rewards, next_states, dones): ... Learn (with each agent), if enough samples are available in memory if len(self.memory) > BATCH_SIZE: for i in range(self.num_agents): experiences = self.memory.sample() self.learn(experiences, GAMMA)``` Then in order to get less aggressive with the number of updates per time step, instead of updating the actor and critic networks __20 times__ at __every timestep__, we amended the code to update the networks __10 times__ after every __20 timesteps__ (line ) | def ddpg(n_episodes=1000, max_t=300, print_every=100,
num_agents=1):
"""
Params
======
n_episodes (int): maximum number of training episodes
max_t (int): maximum number of timesteps per episode
print_every (int): episodes interval to print training scores
num_agents (int): the number of agents
"""
scores_deque = deque(maxlen=print_every)
scores = []
for i_episode in range(1, n_episodes+1):
# reset the environment
env_info = env.reset(train_mode=True)[brain_name]
# get the current state (for each agent)
states = env_info.vector_observations
# initialize the scores (for each agent) of the current episode
scores_i = np.zeros(num_agents)
for t in range(max_t):
# select an action (for each agent)
actions = agent.act(states)
# send action to the environment
env_info = env.step(actions)[brain_name]
# get the next_state, reward, done (for each agent)
next_states = env_info.vector_observations
rewards = env_info.rewards
dones = env_info.local_done
# store experience and train the agent
agent.step(states, actions, rewards, next_states, dones,
update_every=20, update_times=10)
# roll over state to next time step
states = next_states
# update the score
scores_i += rewards
# exit loop if episode finished
if np.any(dones):
break
# save average of the most recent scores
scores_deque.append(scores_i.mean())
scores.append(scores_i.mean())
print('\rEpisode {}\tAverage Score: {:.2f}'.format(i_episode, np.mean(scores_deque)), end="")
torch.save(agent.actor_local.state_dict(), 'd')
torch.save(agent.critic_local.state_dict(), 'checkpoint_critic.pth')
if i_episode % print_every == 0:
print('\rEpisode {}\tAverage Score: {:.2f}'.format(i_episode, np.mean(scores_deque)))
return scores
scores = ddpg(n_episodes=200, max_t=1000, print_every=20, num_agents=20)
fig = plt.figure()
ax = fig.add_subplot(111)
plt.plot(np.arange(1, len(scores)+1), scores)
plt.ylabel('Score')
plt.xlabel('Episode #')
plt.show()
plt.savefig('ddpg_20_agents.png')
#env.close()
# load Actor-Critic policy
agent.actor_local.state_dict() = torch.load('checkpoint_actor.pth')
agent.critic_local.state_dict() = torch.load('checkpoint_critic.pth')
scores = ddpg(n_episodes=100, max_t=300, print_every=10, num_agents=20)
fig = plt.figure()
ax = fig.add_subplot(111)
plt.plot(np.arange(1, len(scores)+1), scores)
plt.ylabel('Score')
plt.xlabel('Episode #')
plt.show()
plt.savefig('ddpg_20_agents_101to200.png') | _____no_output_____ | MIT | Projects/p2_continuous-control/.ipynb_checkpoints/DDPG_with_20_Agent-checkpoint.ipynb | Clara-YR/Udacity-DRL |
**OPTICS Algorithm** Ordering Points to Identify the Clustering Structure (OPTICS) is a Clustering Algorithm which locates region of high density that are seperated from one another by regions of low density. For using this library in Python this comes under Scikit Learn Library. Parameters: **Reachability Distance** -It is defined with respect to another data point q(Let). The Reachability distance between a point p and q is the maximum of the Core Distance of p and the Euclidean Distance(or some other distance metric) between p and q. Note that The Reachability Distance is not defined if q is not a Core point.**Core Distance** โ It is the minimum value of radius required to classify a given point as a core point. If the given point is not a Core point, then itโs Core Distance is undefined. OPTICS Pointers Produces a special order of the database with respect to its density-based clustering structure.This cluster-ordering contains info equivalent to the density-based clustering corresponding to a broad range of parameter settings. Good for both automatic and interactive cluster analysis, including finding intrinsic clustering structure Can be represented graphically or using visualization technique In this file , we will showcase how a basic OPTICS Algorithm works in Python , on a randomly created Dataset. Importing Libraries | import matplotlib.pyplot as plt #Used for plotting graphs
from sklearn.datasets import make_blobs #Used for creating random dataset
from sklearn.cluster import OPTICS #OPTICS is provided under Scikit-Learn Extra
from sklearn.metrics import silhouette_score #silhouette score for checking accuracy
import numpy as np
import pandas as pd | _____no_output_____ | MIT | Datascience_With_Python/Machine Learning/Algorithms/Optics Clustering Algorithm/optics_clustering_algorithm.ipynb | vishnupriya129/winter-of-contributing |
Generating Data | data, clusters = make_blobs(
n_samples=800, centers=4, cluster_std=0.3, random_state=0
)
# Originally created plot with data
plt.scatter(data[:,0], data[:,1])
plt.show() | _____no_output_____ | MIT | Datascience_With_Python/Machine Learning/Algorithms/Optics Clustering Algorithm/optics_clustering_algorithm.ipynb | vishnupriya129/winter-of-contributing |
Model Creation | # Creating OPTICS Model
optics_model = OPTICS(min_samples=50, xi=.05, min_cluster_size=.05)
#min_samples : The number of samples in a neighborhood for a point to be considered as a core point.
#xi : Determines the minimum steepness on the reachability plot that constitutes a cluster boundary
#min_cluster_size : Minimum number of samples in an OPTICS cluster, expressed as an absolute number or a fraction of the number of samples
pred =optics_model.fit(data) #Fitting the data
optics_labels = optics_model.labels_ #storing labels predicted by our model
no_clusters = len(np.unique(optics_labels) ) #determining the no. of unique clusters and noise our model predicted
no_noise = np.sum(np.array(optics_labels) == -1, axis=0) | _____no_output_____ | MIT | Datascience_With_Python/Machine Learning/Algorithms/Optics Clustering Algorithm/optics_clustering_algorithm.ipynb | vishnupriya129/winter-of-contributing |
Plotting our observations | print('Estimated no. of clusters: %d' % no_clusters)
print('Estimated no. of noise points: %d' % no_noise)
colors = list(map(lambda x: '#aa2211' if x == 1 else '#120416', optics_labels))
plt.scatter(data[:,0], data[:,1], c=colors, marker="o", picker=True)
plt.title(f'OPTICS clustering')
plt.xlabel('Axis X[0]')
plt.ylabel('Axis X[1]')
plt.show()
# Generate reachability plot , this helps understand the working of our Model in OPTICS
reachability = optics_model.reachability_[optics_model.ordering_]
plt.plot(reachability)
plt.title('Reachability plot')
plt.show() | _____no_output_____ | MIT | Datascience_With_Python/Machine Learning/Algorithms/Optics Clustering Algorithm/optics_clustering_algorithm.ipynb | vishnupriya129/winter-of-contributing |
Accuracy of OPTICS Clustering | OPTICS_score = silhouette_score(data, optics_labels)
OPTICS_score | _____no_output_____ | MIT | Datascience_With_Python/Machine Learning/Algorithms/Optics Clustering Algorithm/optics_clustering_algorithm.ipynb | vishnupriya129/winter-of-contributing |
My First Square Roots This is my first notebook where I am going to implement the Babylonian square root algorithm in Python.\ | variable = 6
variable
a = q = 1.5
a
1.5**2
1.25**2
u*u=2
u*u = 2
u**2 = 2
s*s=33
q = 1
q
a=[1.5]
for i in range (10):
next = a [i] + 2
a.append(next)
a
2
a[0]
a[2.3]
a[0]
a[5]
a[0:5]
plt.plot(a)
plt.plot(a, 'o')
plt.title("My First Sequence")
b=[1.5]
for i in range (10):
next = b [i] * 2
b.append(next)
plt. plot(b, 'o')
plt.title ("My Second Sequence")
b
plt.plot(a,'--o')
plt.plot(b, '--o')
plt.title ("First and Second Sequence")
a=[3]
a
a=[3]
for i in range (7):
next = a[i]+1
a.append(next)
a=[3]+1
for i in range (7):
next = a[i]/2
a.append(next)
a=[3]
a[0]+1
a
a.append(next)
a
a=[3]
a[0]+1
a.append(next)
a
a=[3]
a=[3]
for i in range(7):
next = a[i]*1/2
a.append(next)
a
plt.plot(a)
plt.title('Sequence a')
plt.xlabel('x')
plt.ylabel('y')
b=[1/2]
for i in range (7)
next=b[i]+ 0.5**i
b.append(next)
b=[1/2]
for i in range(7):
next = b[i]+0.5**i
a.append(next)
b=[1/2]
b
b=[1/2]
for i in range(70):
next = b[i]+0.5**i
b.append(next)
b
plt.plot(b)
plt.title('Sequence b')
plt.xlabel('x')
plt.ylabel('y')
a**2=[2]
a=[2]
root a
a=[2]
sqrt(2)
import math
math.sqrt(x)
sqrt = x**1/2
x=[1.5]
for i in range(10):
next = (x[i]+2/x[i])/2
x.append(next)
x
plt.plot(x)
plt.title('Sequence x')
plt.xlabel('x')
plt.ylabel('y')
x=[10]
for i in range(10):
next = (x[i]+2/x[i])/2
x.append(next)
x
plt.plot(x)
plt.title('Sequence x')
plt.xlabel('x')
plt.ylabel('y') | _____no_output_____ | MIT | square_roots_intro.ipynb | izzetmert/lang_calc_2017 |
Finding ProbabilitiesOver the centuries, there has been considerable philosophical debate about what probabilities are. Some people think that probabilities are relative frequencies; others think they are long run relative frequencies; still others think that probabilities are a subjective measure of their own personal degree of uncertainty.In this course, most probabilities will be relative frequencies, though many will have subjective interpretations. Regardless, the ways in which probabilities are calculated and combined are consistent across the different interpretations.By convention, probabilities are numbers between 0 and 1, or, equivalently, 0% and 100%. Impossible events have probability 0. Events that are certain have probability 1.Math is the main tool for finding probabilities exactly, though computers are useful for this purpose too. Simulation can provide excellent approximations, with high probability. In this section, we will informally develop a few simple rules that govern the calculation of probabilities. In subsequent sections we will return to simulations to approximate probabilities of complex events.We will use the standard notation $P(\mbox{event})$ to denote the probability that "event" happens, and we will use the words "chance" and "probability" interchangeably. When an Event Doesn't HappenIf the chance that event happens is 40%, then the chance that it doesn't happen is 60%. This natural calculation can be described in general as follows:$$P(\mbox{an event doesn't happen}) ~=~ 1 - P(\mbox{the event happens})$$ When All Outcomes are Equally LikelyIf you are rolling an ordinary die, a natural assumption is that all six faces are equally likely. Under this assumption, the probabilities of how one roll comes out can be easily calculated as a ratio. For example, the chance that the die shows an even number is$$\frac{\mbox{number of even faces}}{\mbox{number of all faces}}~=~ \frac{\\{2, 4, 6\}}{\\{1, 2, 3, 4, 5, 6\}}~=~ \frac{3}{6}$$Similarly,$$P(\mbox{die shows a multiple of 3}) ~=~\frac{\\{3, 6\}}{\\{1, 2, 3, 4, 5, 6\}}~=~ \frac{2}{6}$$ In general, **if all outcomes are equally likely**,$$P(\mbox{an event happens}) ~=~\frac{\\{\mbox{outcomes that make the event happen}\}}{\\{\mbox{all outcomes}\}}$$ Not all random phenomena are as simple as one roll of a die. The two main rules of probability, developed below, allow mathematicians to find probabilities even in complex situations. When Two Events Must Both HappenSuppose you have a box that contains three tickets: one red, one blue, and one green. Suppose you draw two tickets at random without replacement; that is, you shuffle the three tickets, draw one, shuffle the remaining two, and draw another from those two. What is the chance you get the green ticket first, followed by the red one?There are six possible pairs of colors: RB, BR, RG, GR, BG, GB (we've abbreviated the names of each color to just its first letter). All of these are equally likely by the sampling scheme, and only one of them (GR) makes the event happen. So$$P(\mbox{green first, then red}) ~=~ \frac{\\{\mbox{GR}\}}{\\{\mbox{RB, BR, RG, GR, BG, GB}\}} ~=~ \frac{1}{6}$$ But there is another way of arriving at the answer, by thinking about the event in two stages. First, the green ticket has to be drawn. That has chance $1/3$, which means that the green ticket is drawn first in about $1/3$ of all repetitions of the experiment. But that doesn't complete the event. *Among the 1/3 of repetitions when green is drawn first*, the red ticket has to be drawn next. That happens in about $1/2$ of those repetitions, and so:$$P(\mbox{green first, then red}) ~=~ \frac{1}{2} ~\mbox{of}~ \frac{1}{3}~=~ \frac{1}{6}$$This calculation is usually written "in chronological order," as follows.$$P(\mbox{green first, then red}) ~=~ \frac{1}{3} ~\times~ \frac{1}{2}~=~ \frac{1}{6}$$ The factor of $1/2$ is called " the conditional chance that the red ticket appears second, given that the green ticket appeared first."In general, we have the **multiplication rule**:$$P(\mbox{two events both happen})~=~ P(\mbox{one event happens}) \times P(\mbox{the other event happens, given that the first one happened})$$Thus, when there are two conditions โ one event must happen, as well as another โ the chance is *a fraction of a fraction*, which is smaller than either of the two component fractions. The more conditions that have to be satisfied, the less likely they are to all be satisfied. When an Event Can Happen in Two Different WaysSuppose instead we want the chance that one of the two tickets is green and the other red. This event doesn't specify the order in which the colors must appear. So they can appear in either order. A good way to tackle problems like this is to *partition* the event so that it can happen in exactly one of several different ways. The natural partition of "one green and one red" is: GR, RG. Each of GR and RG has chance $1/6$ by the calculation above. So you can calculate the chance of "one green and one red" by adding them up.$$P(\mbox{one green and one red}) ~=~ P(\mbox{GR}) + P(\mbox{RG}) ~=~ \frac{1}{6} + \frac{1}{6} ~=~ \frac{2}{6}$$In general, we have the **addition rule**:$$P(\mbox{an event happens}) ~=~P(\mbox{first way it can happen}) + P(\mbox{second way it can happen}) ~~~\mbox{}$$provided the event happens in exactly one of the two ways.Thus, when an event can happen in one of two different ways, the chance that it happens is a sum of chances, and hence bigger than the chance of either of the individual ways. The multiplication rule has a natural extension to more than two events, as we will see below. So also the addition rule has a natural extension to events that can happen in one of several different ways.We end the section with examples that use combinations of all these rules. At Least One SuccessData scientists often work with random samples from populations. A question that sometimes arises is about the likelihood that a particular individual in the population is selected to be in the sample. To work out the chance, that individual is called a "success," and the problem is to find the chance that the sample contains a success.To see how such chances might be calculated, we start with a simpler setting: tossing a coin two times.If you toss a coin twice, there are four equally likely outcomes: HH, HT, TH, and TT. We have abbreviated "Heads" to H and "Tails" to T. The chance of getting at least one head in two tosses is therefore 3/4.Another way of coming up with this answer is to work out what happens if you *don't* get at least one head. That is when both the tosses land tails. So$$P(\mbox{at least one head in two tosses}) ~=~ 1 - P(\mbox{both tails}) ~=~ 1 - \frac{1}{4}~=~ \frac{3}{4}$$Notice also that $$P(\mbox{both tails}) ~=~ \frac{1}{4} ~=~ \frac{1}{2} \cdot \frac{1}{2} ~=~ \left(\frac{1}{2}\right)^2$$by the multiplication rule.These two observations allow us to find the chance of at least one head in any given number of tosses. For example,$$P(\mbox{at least one head in 17 tosses}) ~=~ 1 - P(\mbox{all 17 are tails})~=~ 1 - \left(\frac{1}{2}\right)^{17}$$And now we are in a position to find the chance that the face with six spots comes up at least once in rolls of a die. For example,$$P(\mbox{a single roll is not 6}) ~=~ 1 - P(6)~=~ \frac{5}{6}$$Therefore,$$P(\mbox{at least one 6 in two rolls}) ~=~ 1 - P(\mbox{both rolls are not 6})~=~ 1 - \left(\frac{5}{6}\right)^2$$and$$P(\mbox{at least one 6 in 17 rolls})~=~ 1 - \left(\frac{5}{6}\right)^{17}$$The table below shows these probabilities as the number of rolls increases from 1 to 50. | rolls = np.arange(1, 51, 1)
results = Table().with_columns(
'Rolls', rolls,
'Chance of at least one 6', 1 - (5/6)**rolls
)
results | _____no_output_____ | MIT | Mathematics/Statistics/Statistics and Probability Python Notebooks/Computational and Inferential Thinking - The Foundations of Data Science (book)/Notebooks - by chapter/9. Randomness and Probabiltities/5. Finding_Probabilities.ipynb | okara83/Becoming-a-Data-Scientist |
The chance that a 6 appears at least once rises rapidly as the number of rolls increases. | results.scatter('Rolls') | _____no_output_____ | MIT | Mathematics/Statistics/Statistics and Probability Python Notebooks/Computational and Inferential Thinking - The Foundations of Data Science (book)/Notebooks - by chapter/9. Randomness and Probabiltities/5. Finding_Probabilities.ipynb | okara83/Becoming-a-Data-Scientist |
In 50 rolls, you are almost certain to get at least one 6. | results.where('Rolls', are.equal_to(50)) | _____no_output_____ | MIT | Mathematics/Statistics/Statistics and Probability Python Notebooks/Computational and Inferential Thinking - The Foundations of Data Science (book)/Notebooks - by chapter/9. Randomness and Probabiltities/5. Finding_Probabilities.ipynb | okara83/Becoming-a-Data-Scientist |
Chapter 7 1. What makes dictionaries different from sequence type containers like lists and tuples is the way the data are stored and accessed. 2.Sequence types use numeric keys only (numbered sequentially as indexed offsets from the beginning of the sequence). Mapping types may use most other object types as keys; strings are the most common. 3.Hash tabel: They store each piece of data, called a value, based on an associated data item, called a key. Hash tables generally provide good performance because lookups occur fairly quickly once you have a key. 4. Dictionary is an unordered collection of data.The only kind of ordering you can obtain is by taking either a dictionaryโs set of keys or values. The keys() or values() method returns lists, which are sortable. You can also call items() to get a list of keys and values as tuple pairs and sort that. Dictionaries themselves have no implicit ordering because they are hashes. 5.create dictionaryThe syntax of a dictionary entry is key:value. Also, dictionary entries are enclosed in braces ( { } ). a.dictionary can be created by using {} with K,V pairs | adict={}
bdict={"k":"v"}
bdict | _____no_output_____ | Apache-2.0 | Chapter7.ipynb | yangzhou95/notes |
b. another way to create dictionary is using dict() method (factory fucntion) | fdict = dict((['x', 1], ['y', 2]))
cdict=dict([("k1",2),("k2",3)]) | _____no_output_____ | Apache-2.0 | Chapter7.ipynb | yangzhou95/notes |
c.dictionaries may also be created using a very convenient built-in method for creating a โdefaultโ dictionary whose elements all have the same value (defaulting to None if not given), fromkeys(): | ddict = {}.fromkeys(('x', 'y'), -1)
ddict
ddict={}.fromkeys(('x','y'),(2,3))
ddict | _____no_output_____ | Apache-2.0 | Chapter7.ipynb | yangzhou95/notes |
6.How to Access Values in DictionariesTo traverse a dictionary (normally by key), you only need to cycle through its keys, like this: | dict2 = {'name': 'earth', 'port': 80}
for key in dict2.keys():
print("key=%s,value=%s" %(key,dict2[key])) | key=name,value=earth
key=port,value=80
| Apache-2.0 | Chapter7.ipynb | yangzhou95/notes |
a.Beginning with Python 2.2, you no longer need to use the keys() method to extract a list of keys to loop over. Iterators were created to simplify access- ing of sequence-like objects such as dictionaries and files. Using just the dictionary name itself will cause an iterator over that dictionary to be used in a for loop: | dict2 = {'name': 'earth', 'port': 80}
for key in dict2:
print("key=%s,value=%s" %(key,dict2[key])) | key=name,value=earth
key=port,value=80
| Apache-2.0 | Chapter7.ipynb | yangzhou95/notes |
b.To access individual dictionary elements, you use the familiar square brackets along with the key to obtain its value: | dict2['name'] | _____no_output_____ | Apache-2.0 | Chapter7.ipynb | yangzhou95/notes |
b. If we attempt to access a data item with a key that is not part of the dictio- nary, we get an error: | dict['service'] | _____no_output_____ | Apache-2.0 | Chapter7.ipynb | yangzhou95/notes |
c. The best way to check if a dic- tionary has a specific key is to use the in or not in operators | 'service' in dict2 | _____no_output_____ | Apache-2.0 | Chapter7.ipynb | yangzhou95/notes |
d. number can be the keys for dictionary | dict3 = {3.2: 'xyz', 1: 'abc', '1': 3.14159} | _____no_output_____ | Apache-2.0 | Chapter7.ipynb | yangzhou95/notes |
e. Not allowing keys to change during execution makes sense keys must be hashable, so numbers and strings are fine, but lists and other dictionaries are not. 7. update and add new dictionary | dict2['port'] = 6969 # update existing entry or add new entry | _____no_output_____ | Apache-2.0 | Chapter7.ipynb | yangzhou95/notes |
a. the string format operator (%) is specific for dictionary | print('host %(name)s is running on port %(port)d' % dict2)
dict2 | _____no_output_____ | Apache-2.0 | Chapter7.ipynb | yangzhou95/notes |
b. You may also add the contents of an entire dictionary to another dictionary by using the update() built-in method.3 8. remove dictionary elements: a. use the del statement to delete an entire dictionary | del dict2['name'] # remove entry with key 'name'
dict2.pop('port') # remove and return entry with key
adict.clear() # remove all entries in adict
del bdict # delete entire dictionary | _____no_output_____ | Apache-2.0 | Chapter7.ipynb | yangzhou95/notes |
Note: dict() is now a type and factory function, overriding it may cause you headaches and potential bugsDo NOT create variables with built-in names like: dict, list, file, bool, str, input, or len! 9.Dictionaries will work with all of the standard type operators but do not support operations such as concatenation and repetition. a.Dictionary Key-Lookup Operator ( [ ] ). The key-lookup operator is used for both assigning values to and retrieving values from a dictionary | adict={"k":2}
adict["k"] = 3 # set value in dictionary. Dictionary Key-Lookup Operator ( [ ] )
cdict = {'fruits':1}
ddict = {'fruits':1} | _____no_output_____ | Apache-2.0 | Chapter7.ipynb | yangzhou95/notes |
10. dict() function a. The dict() factory function is used for creating dictionaries. If no argument is provided, then an empty dictionary is created. The fun happens when a container object is passed in as an argument to dict(). dict()* dict() -> new empty dictionary* dict(mapping) -> new dictionary initialized from a mapping object's (key, value) pairs* dict(iterable) -> new dictionary initialized as if via: d = {} for k, v in iterable: d[k] = v * dict(**kwargs) -> new dictionary initialized with the name=value pairs in the keyword argument list. For example: dict(one=1, two=2) | dict()
dict({'k':1,'k2':2})
dict([(1,2),(2,3)])
dict(((1,2),(2,3)))
dict(([2,3],[3,4]))
dict(zip(('x','y'),(1,2))) | _____no_output_____ | Apache-2.0 | Chapter7.ipynb | yangzhou95/notes |
11. If it is a(nother) mapping object, i.e., a dictionary, then dict() will just create a new dictionary and copy the contents of the existing one. The new dictionary is actually a shallow copy of the original one and the same results can be accomplished by using a dictionaryโs copy() built-in method. Because creating a new dictionary from an existing one using dict() is measurably slower than using copy(), we recommend using the latter. 12.it is possible to call dict() with an existing dic- tionary or keyword argument dictionary ( function operator) | dict7=dict(x=1, y=2)
dict8 = dict(x=1, y=2)
dict9 = dict(**dict8) # not a realistic example, better use copy()
dict10=dict(dict7)
dict9
dict10
dict9 = dict8.copy() # better than dict9 = dict(**dict8) | _____no_output_____ | Apache-2.0 | Chapter7.ipynb | yangzhou95/notes |
13.The len() BIF is flexible. It works with sequences, mapping types, and sets | dict2 = {'name': 'earth', 'port': 80}
len(dict2) | _____no_output_____ | Apache-2.0 | Chapter7.ipynb | yangzhou95/notes |
14. We can see that above, when referencing dict2, the items are listed in reverse order from which they were entered into the dictionary. ?????? | dict2 = {'name': 'earth', 'port': 80}
dict2 | _____no_output_____ | Apache-2.0 | Chapter7.ipynb | yangzhou95/notes |
15.The hash() BIF is not really meant to be used for dictionaries per se, but it can be used to determine whether an object is fit to be a dictionary key (or not).* Given an object as its argument, hash() returns the hash value of that object.* Numeric val- ues that are equal hash to the same value.* A TypeError will occur if an unhashable type is given as the argument to hash() | hash([])
dict2={}
dict2[{}]="foo" | _____no_output_____ | Apache-2.0 | Chapter7.ipynb | yangzhou95/notes |
16. Mapping Type Built-in Methods* has_key() and its replacements in and not in* keys(), which returns a list of the dictionaryโs keys, * values(), which returns a list of the dictionaryโs values, and* items(), which returns a list of (key, value) tuple pairs. | dict2={"k1":1,"k2":2,"k3":3}
for eachKey in dict2.keys():
print(eachKey,dict2[eachKey]) | k1 1
k2 2
k3 3
| Apache-2.0 | Chapter7.ipynb | yangzhou95/notes |
* dict.fromkeysc (seq, val=None): create dict where all the key in seq have teh same value val | {}.fromkeys(("k1","k2","3"),None) # fromkeysc(seq, val=None) | _____no_output_____ | Apache-2.0 | Chapter7.ipynb | yangzhou95/notes |
* get(key,default=None): return the value corresponding to key, otherwise return None if key is not in dictionary * dict.setdefault (key, default=None): Similar to get(), but sets dict[key]=default if key is not already in dict * dict.setdefault(key, default=None): Add the key-value pairs of dict2 to dict * keys() method to get the list of its keys, then call that listโs sort() method to get a sorted list to iterate over. sorted(), made especially for iterators, exists, which returns a sorted iterator: | for eachKey in sorted(dict2):
print(eachKey,dict2[eachKey]) | k1 1
k2 2
k3 3
| Apache-2.0 | Chapter7.ipynb | yangzhou95/notes |
* The update() method can be used to add the contents of one dictionary to another. Any existing entries with duplicate keys will be overridden by the new incoming entries. Nonexistent ones will be added. All entries in a dictio- nary can be removed with the clear() method. | dict2
dict3={"k1":"ka","kb":"kb"}
dict2.update(dict3)
dict2
dict3.clear()
dict3
del dict3
dict3 | _____no_output_____ | Apache-2.0 | Chapter7.ipynb | yangzhou95/notes |
* The copy() method simply returns a copy of a dictionary. * the get() method is similar to using the key-lookup operator ( [ ] ), but allows you to provide a default value returned if a key does not exist. | dict2
dict4=dict2.copy()
dict4
dict4.get('xgag')
type(dict4.get("agasg"))
type(dict4.get("agasg", "no such key"))
dict2 | _____no_output_____ | Apache-2.0 | Chapter7.ipynb | yangzhou95/notes |
* f the dictionary does not have the key you are seeking, you want to set a default value and then return it. That is precisely what setdefault() does | dict2.setdefault('kk','k1')
dict2 | _____no_output_____ | Apache-2.0 | Chapter7.ipynb | yangzhou95/notes |
* Currently,thekeys(),items(),andvalues()methodsreturnlists. This can be unwieldy if such data collections are large, and the main reason why iteritems(), iterkeys(), and itervalues() were added to Python * In python3, iter*() names are no longer supported. The new keys(), values(), and items() all return views * When key collisions are detected (meaning duplicate keys encountered during assignment), the last (most recent) assignment wins. | dict1 = {' foo':789, 'foo': 'xyz'}
dict1
dict1['foo'] | _____no_output_____ | Apache-2.0 | Chapter7.ipynb | yangzhou95/notes |
* most Python objects can serve as keys; however they have to be hashable objectsโmutable types such as lists and dictionaries are disallowed because they cannot be hashed* All immutable types are hashable* Numbers of the same value represent the same key. In other words, the integer 1 and the float 1.0 hash to the same value, meaning that they are identical as keys.* there are some mutable objects that are (barely) hashable, so they are eligible as keys, but there are very few of them. One example would be a class that has implemented the __hash__() special method. In the end, an immutable value is used anyway as __hash__() must return an integer.* Why must keys be hashable? The hash function used by the interpreter to calculate where to store your data is based on the value of your key. If the key was a mutable object, its value could be changed. If a key changes, the hash function will map to a different place to store the data. If that was the case, then the hash function could never reliably store or retrieve the associated value* : Tuples are valid keys only if they only contain immutable arguments like numbers and strings. 19.A set object is an unordered collection of distinct values that are hashable. a.Like other container types, sets support membership testing via in and not in operators, cardinality using the len()BIF, and iteration over the set membership using for loops. However, since sets are unordered, you do not index into or slice them, and there are no keys used to access a value. b.There are two different types of sets available, mutable (set) and immuta- ble (frozenset). c.Note that mutable sets are not hashable and thus cannot be used as either a dictionary key or as an element of another set. d.sets module and accessed via the ImmutableSet and Set classes. d. sets can be created, using their factory functions set() and frozenset(): | s1=set('asgag')
s2=frozenset('sbag')
len(s1)
type(s1)
type(s2)
len(s2) | _____no_output_____ | Apache-2.0 | Chapter7.ipynb | yangzhou95/notes |
f. iterate over set or check if an item is a member of a set | 'k' in s1 | _____no_output_____ | Apache-2.0 | Chapter7.ipynb | yangzhou95/notes |
g. update set | s1.add('z')
s1
s1.update('abc')
s1
s1.remove('a')
s1 | _____no_output_____ | Apache-2.0 | Chapter7.ipynb | yangzhou95/notes |
h.As mentioned before, only mutable sets can be updated. Any attempt at such operations on immutable sets is met with an exception | s2.add('c') | _____no_output_____ | Apache-2.0 | Chapter7.ipynb | yangzhou95/notes |
i. mixed set type operation | type(s1|s2) # set | frozenset, mix operation
s3=frozenset('agg') #frozenset
type(s2|s3) | _____no_output_____ | Apache-2.0 | Chapter7.ipynb | yangzhou95/notes |
j. update mutable set: (Union) Update ( |= ) | s=set('abc')
s1=set("123")
s |=s1
s | _____no_output_____ | Apache-2.0 | Chapter7.ipynb | yangzhou95/notes |
k.The retention (or intersection update) operation keeps only the existing set members that are also elements of the other set. The method equivalent is intersection_update() | s=set('abc')
s1=set('ab')
s &=s1
s | _____no_output_____ | Apache-2.0 | Chapter7.ipynb | yangzhou95/notes |
l.The difference update operation returns a set whose elements are members of the original set after removing elements that are (also) members of the other set. The method equivalent is difference_update(). | s = set('cheeseshop')
s
u = frozenset(s)
s -= set('shop')
s | _____no_output_____ | Apache-2.0 | Chapter7.ipynb | yangzhou95/notes |
m.The symmetric difference update operation returns a set whose members are either elements of the original or other set but not both. The method equiva- lent is symmetric_difference_update() | s=set('cheeseshop')
s
u=set('bookshop')
u
s ^=u
s
vari='abc'
set(vari) # vari must be iterable | _____no_output_____ | Apache-2.0 | Chapter7.ipynb | yangzhou95/notes |
Multiple Linear Regression with Normalize Data | # Importing the libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")
# fix_yahoo_finance is used to fetch data
import fix_yahoo_finance as yf
yf.pdr_override()
# input
symbol = 'AMD'
start = '2014-01-01'
end = '2018-08-27'
# Read data
dataset = yf.download(symbol,start,end)
# View columns
dataset.head()
X = dataset.iloc[ : , 0:4].values
Y = np.asanyarray(dataset[['Adj Close']])
from sklearn import preprocessing
# normalize the data attributes
normalized_X = preprocessing.normalize(X)
X = normalized_X[: , 1:]
# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.2, random_state = 0)
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(X_train, Y_train)
y_pred = regressor.predict(X_test)
from sklearn.metrics import explained_variance_score, mean_absolute_error, mean_squared_error, r2_score
ex_var_score = explained_variance_score(Y_test, y_pred)
m_absolute_error = mean_absolute_error(Y_test, y_pred)
m_squared_error = mean_squared_error(Y_test, y_pred)
r_2_score = r2_score(Y_test, y_pred)
print("Explained Variance Score: "+str(ex_var_score))
print("Mean Absolute Error "+str(m_absolute_error))
print("Mean Squared Error "+str(m_squared_error))
print("R Squared Error "+str(r_2_score))
print ('Coefficients: ', regressor.coef_)
print("Residual sum of squares: %.2f"
% np.mean((y_pred - Y_test) ** 2))
# Explained variance score: 1 is perfect prediction
print('Variance score: %.2f' % regressor.score(X_test, y_pred))
print('Multiple Linear Score:', regressor.score(X_test, y_pred)) | Multiple Linear Score: 0.0145752513278
| MIT | Stock_Algorithms/Multiple_Linear_Regression_with_Normalize_Data.ipynb | NTForked-ML/Deep-Learning-Machine-Learning-Stock |
Chapter 7. ํ
์คํธ ๋ฌธ์์ ๋ฒ์ฃผํ - (4) IMDB ์ ์ฒด ๋ฐ์ดํฐ๋ก ์ ์ดํ์ต- ์์ ์ ์ดํ์ต ์ค์ต๊ณผ๋ ๋ฌ๋ฆฌ, IMDB ์ํ๋ฆฌ๋ทฐ ๋ฐ์ดํฐ์
์ ์ฒด๋ฅผ ์ฌ์ฉํ๋ฉฐ ๋ฌธ์ฅ ์๋ 10๊ฐ -> 20๊ฐ๋ก ์กฐ์ ํ๋ค- IMDB ์ํ ๋ฆฌ๋ทฐ ๋ฐ์ดํฐ๋ฅผ ๋ค์ด๋ก๋ ๋ฐ์ data ๋๋ ํ ๋ฆฌ์ ์์ถ ํด์ ํ๋ค - ๋ค์ด๋ก๋ : http://ai.stanford.edu/~amaas/data/sentiment/ - ์ ์ฅ๊ฒฝ๋ก : data/aclImdb | import os
import config
from dataloader.loader import Loader
from preprocessing.utils import Preprocess, remove_empty_docs
from dataloader.embeddings import GloVe
from model.cnn_document_model import DocumentModel, TrainingParameters
from keras.callbacks import ModelCheckpoint, EarlyStopping
import numpy as np | Using TensorFlow backend.
| MIT | Chapter07/HandsOn-04_Transfer_with_IMDB_full_model.ipynb | wikibook/transfer-learning |
ํ์ต ํ๋ผ๋ฏธํฐ ์ค์ | # ํ์ต๋ ๋ชจ๋ธ์ ์ ์ฅํ ๋๋ ํ ๋ฆฌ ์์ฑ
if not os.path.exists(os.path.join(config.MODEL_DIR, 'imdb')):
os.makedirs(os.path.join(config.MODEL_DIR, 'imdb'))
# ํ์ต ํ๋ผ๋ฏธํฐ ์ค์
train_params = TrainingParameters('imdb_transfer_tanh_activation',
model_file_path = config.MODEL_DIR+ '/imdb/full_model_10.hdf5',
model_hyper_parameters = config.MODEL_DIR+ '/imdb/full_model_10.json',
model_train_parameters = config.MODEL_DIR+ '/imdb/full_model_10_meta.json',
num_epochs=30,
batch_size=128) | _____no_output_____ | MIT | Chapter07/HandsOn-04_Transfer_with_IMDB_full_model.ipynb | wikibook/transfer-learning |
IMDB ๋ฐ์ดํฐ์
๋ก๋ | # ๋ค์ด๋ฐ์ IMDB ๋ฐ์ดํฐ ๋ก๋: ํ์ต์
์ ์ฒด ์ฌ์ฉ
train_df = Loader.load_imdb_data(directory = 'train')
# train_df = train_df.sample(frac=0.05, random_state = train_params.seed)
print(f'train_df.shape : {train_df.shape}')
test_df = Loader.load_imdb_data(directory = 'test')
print(f'test_df.shape : {test_df.shape}')
# ํ
์คํธ ๋ฐ์ดํฐ, ๋ ์ด๋ธ ์ถ์ถ
corpus = train_df['review'].tolist()
target = train_df['sentiment'].tolist()
corpus, target = remove_empty_docs(corpus, target)
print(f'corpus size : {len(corpus)}')
print(f'target size : {len(target)}') | train_df.shape : (25000, 2)
test_df.shape : (25000, 2)
corpus size : 25000
target size : 25000
| MIT | Chapter07/HandsOn-04_Transfer_with_IMDB_full_model.ipynb | wikibook/transfer-learning |
์ธ๋ฑ์ค ์ํ์ค ์์ฑ | # ์์ ์ ์ดํ์ต ์ค์ต๊ณผ ๋ฌ๋ฆฌ, ๋ฌธ์ฅ ๊ฐ์๋ฅผ 10๊ฐ -> 20๊ฐ๋ก ์ํฅ
Preprocess.NUM_SENTENCES = 20
# ํ์ต์
์ ์ธ๋ฑ์ค ์ํ์ค๋ก ๋ณํ
preprocessor = Preprocess(corpus=corpus)
corpus_to_seq = preprocessor.fit()
print(f'corpus_to_seq size : {len(corpus_to_seq)}')
print(f'corpus_to_seq[0] size : {len(corpus_to_seq[0])}')
# ํ
์คํธ์
์ ์ธ๋ฑ์ค ์ํ์ค๋ก ๋ณํ
test_corpus = test_df['review'].tolist()
test_target = test_df['sentiment'].tolist()
test_corpus, test_target = remove_empty_docs(test_corpus, test_target)
test_corpus_to_seq = preprocessor.transform(test_corpus)
print(f'test_corpus_to_seq size : {len(test_corpus_to_seq)}')
print(f'test_corpus_to_seq[0] size : {len(test_corpus_to_seq[0])}')
# ํ์ต์
, ํ
์คํธ์
์ค๋น
x_train = np.array(corpus_to_seq)
x_test = np.array(test_corpus_to_seq)
y_train = np.array(target)
y_test = np.array(test_target)
print(f'x_train.shape : {x_train.shape}')
print(f'y_train.shape : {y_train.shape}')
print(f'x_test.shape : {x_test.shape}')
print(f'y_test.shape : {y_test.shape}') | x_train.shape : (25000, 600)
y_train.shape : (25000,)
x_test.shape : (25000, 600)
y_test.shape : (25000,)
| MIT | Chapter07/HandsOn-04_Transfer_with_IMDB_full_model.ipynb | wikibook/transfer-learning |
GloVe ์๋ฒ ๋ฉ ์ด๊ธฐํ | # GloVe ์๋ฒ ๋ฉ ์ด๊ธฐํ - glove.6B.50d.txt pretrained ๋ฒกํฐ ์ฌ์ฉ
glove = GloVe(50)
initial_embeddings = glove.get_embedding(preprocessor.word_index)
print(f'initial_embeddings.shape : {initial_embeddings.shape}') | Reading 50 dim GloVe vectors
Found 400000 word vectors.
words not found in embeddings: 499
initial_embeddings.shape : (28656, 50)
| MIT | Chapter07/HandsOn-04_Transfer_with_IMDB_full_model.ipynb | wikibook/transfer-learning |
ํ๋ จ๋ ๋ชจ๋ธ ๋ก๋- HandsOn03์์ ์๋ง์กด ๋ฆฌ๋ทฐ ๋ฐ์ดํฐ๋ก ํ์ตํ CNN ๋ชจ๋ธ์ ๋ก๋ํ๋ค.- DocumentModel ํด๋์ค์ load_model๋ก ๋ชจ๋ธ์ ๋ก๋ํ๊ณ , load_model_weights๋ก ํ์ต๋ ๊ฐ์ค์น๋ฅผ ๊ฐ์ ธ์จ๋ค. - ๊ทธ ํ, GloVe.update_embeddings ํจ์๋ก GloVe ์ด๊ธฐํ ์๋ฒ ๋ฉ์ ์
๋ฐ์ดํธํ๋ค | # ๋ชจ๋ธ ํ์ดํผํ๋ผ๋ฏธํฐ ๋ก๋
model_json_path = os.path.join(config.MODEL_DIR, 'amazonreviews/model_06.json')
amazon_review_model = DocumentModel.load_model(model_json_path)
# ๋ชจ๋ธ ๊ฐ์ค์น ๋ก๋
model_hdf5_path = os.path.join(config.MODEL_DIR, 'amazonreviews/model_06.hdf5')
amazon_review_model.load_model_weights(model_hdf5_path)
# ๋ชจ๋ธ ์๋ฒ ๋ฉ ๋ ์ด์ด ์ถ์ถ
learned_embeddings = amazon_review_model.get_classification_model().get_layer('imdb_embedding').get_weights()[0]
print(f'learned_embeddings size : {len(learned_embeddings)}')
# ๊ธฐ์กด GloVe ๋ชจ๋ธ์ ํ์ต๋ ์๋ฒ ๋ฉ ํ๋ ฌ๋ก ์
๋ฐ์ดํธํ๋ค
glove.update_embeddings(preprocessor.word_index,
np.array(learned_embeddings),
amazon_review_model.word_index)
# ์
๋ฐ์ดํธ๋ ์๋ฒ ๋ฉ์ ์ป๋๋ค
initial_embeddings = glove.get_embedding(preprocessor.word_index)
| learned_embeddings size : 43197
23629 words are updated out of 28654
| MIT | Chapter07/HandsOn-04_Transfer_with_IMDB_full_model.ipynb | wikibook/transfer-learning |
IMDB ์ ์ดํ์ต ๋ชจ๋ธ ์์ฑ | # ๋ถ๋ฅ ๋ชจ๋ธ ์์ฑ : IMDB ๋ฆฌ๋ทฐ ๋ฐ์ดํฐ๋ฅผ ์
๋ ฅ๋ฐ์ ์ด์ง๋ถ๋ฅ๋ฅผ ์ํํ๋ ๋ชจ๋ธ ์์ฑ
imdb_model = DocumentModel(vocab_size=preprocessor.get_vocab_size(),
word_index = preprocessor.word_index,
num_sentences=Preprocess.NUM_SENTENCES,
embedding_weights=initial_embeddings,
embedding_regularizer_l2 = 0.0,
conv_activation = 'tanh',
train_embedding = True, # ์๋ฒ ๋ฉ ๋ ์ด์ด์ ๊ฐ์ค์น ํ์ตํจ
learn_word_conv = False, # ๋จ์ด ์์ค conv ๋ ์ด์ด์ ๊ฐ์ค์น ํ์ต ์ ํจ
learn_sent_conv = False, # ๋ฌธ์ฅ ์์ค conv ๋ ์ด์ด์ ๊ฐ์ค์น ํ์ต ์ ํจ
hidden_dims=64,
input_dropout=0.1,
hidden_layer_kernel_regularizer=0.01,
final_layer_kernel_regularizer=0.01)
# ๊ฐ์ค์น ์
๋ฐ์ดํธ : ์์ฑํ imdb_model ๋ชจ๋ธ์์ ๋ค์์ ๊ฐ ๋ ์ด์ด๋ค์ ๊ฐ์ค์น๋ฅผ ์์์ ๋ก๋ํ ๊ฐ์ค์น๋ก ๊ฐฑ์ ํ๋ค
for l_name in ['word_conv','sentence_conv','hidden_0', 'final']:
new_weights = amazon_review_model.get_classification_model().get_layer(l_name).get_weights()
imdb_model.get_classification_model().get_layer(l_name).set_weights(weights=new_weights) | Vocab Size = 28656 and the index of vocabulary words passed has 28654 words
| MIT | Chapter07/HandsOn-04_Transfer_with_IMDB_full_model.ipynb | wikibook/transfer-learning |
๋ชจ๋ธ ํ์ต ๋ฐ ํ๊ฐ | # ๋ชจ๋ธ ์ปดํ์ผ
imdb_model.get_classification_model().compile(loss="binary_crossentropy",
optimizer='rmsprop',
metrics=["accuracy"])
# callback (1) - ์ฒดํฌํฌ์ธํธ
checkpointer = ModelCheckpoint(filepath=train_params.model_file_path,
verbose=1,
save_best_only=True,
save_weights_only=True)
# callback (2) - ์กฐ๊ธฐ์ข
๋ฃ
early_stop = EarlyStopping(patience=2)
# ํ์ต ์์
imdb_model.get_classification_model().fit(x_train,
y_train,
batch_size=train_params.batch_size,
epochs=train_params.num_epochs,
verbose=2,
validation_split=0.01,
callbacks=[checkpointer])
# ๋ชจ๋ธ ์ ์ฅ
imdb_model._save_model(train_params.model_hyper_parameters)
train_params.save()
# ๋ชจ๋ธ ํ๊ฐ
imdb_model.get_classification_model().evaluate(x_test,
y_test,
batch_size=train_params.batch_size*10,
verbose=2) | _____no_output_____ | MIT | Chapter07/HandsOn-04_Transfer_with_IMDB_full_model.ipynb | wikibook/transfer-learning |
**Basic chatbot** | import ast
from google.colab import drive
questions = []
answers = []
drive.mount("/content/drive")
with open("/content/drive/My Drive/data/chatbot/qa_Electronics.json") as f:
for line in f:
data = ast.literal_eval(line)
questions.append(data["question"].lower())
answers.append(data["answer"].lower())
from sklearn.feature_extraction.text import TfidfVectorizer
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
vectorizer = TfidfVectorizer(stop_words="english")
X_questions = vectorizer.fit_transform(questions)
def conversation(user_input):
global vectorizer, answers, X_questions
X_user_input = vectorizer.transform(user_input)
similarity_matrix = cosine_similarity(X_user_input, X_questions)
max_similarity = np.amax(similarity_matrix)
angle = np.rad2deg(np.arccos(max_similarity))
if angle > 60:
return "sorry, I did not quite understand that"
else:
index_max_similarity = np.argmax(similarity_matrix)
return answers[index_max_similarity]
def main():
usr = input("Please enter your username: ")
print("Q&A support: Hi, welcome to Q&A support. How can I help you?")
while True:
user_input = input("{}: ".format(usr))
if user_input.lower() == "bye":
print("Q&A support: bye!")
break
else:
print("Q&A support: " + conversation([user_input]))
main() | Please enter your username: pepe
Q&A support: Hi, welcome to Q&A support. How can I help you?
pepe: I want to buy an iPhone
Q&A support: i am sure amazon has all types.
| Apache-2.0 | 3.Statistical_NLP/2_chatbot.ipynb | bonigarcia/nlp-examples |
Lgbm and Optuna* changed with cross validation | import pandas as pd
import numpy as np
# the GBM used
mport xgboost as xgb
import catboost as cat
import lightgbm as lgb
from sklearn.model_selection import cross_validate
from sklearn.metrics import make_scorer
# to encode categoricals
from sklearn.preprocessing import LabelEncoder
# see utils.py
from utils import add_features, rmsle, train_encoders, apply_encoders
import warnings
warnings.filterwarnings('ignore')
import optuna
# globals and load train dataset
FILE_TRAIN = "train.csv"
# load train dataset
data_orig = pd.read_csv(FILE_TRAIN)
#
# Data preparation, feature engineering
#
# add features (hour, year) extracted form timestamp
data_extended = add_features(data_orig)
# ok, we will treat as categorical: holiday, hour, season, weather, workingday, year
all_columns = data_extended.columns
# cols to be ignored
# atemp and temp are strongly correlated (0.98) we're taking only one
del_columns = ['datetime', 'casual', 'registered', 'temp']
TARGET = "count"
cat_cols = ['season', 'holiday','workingday', 'weather', 'hour', 'year']
num_cols = list(set(all_columns) - set([TARGET]) - set(del_columns) - set(cat_cols))
features = sorted(cat_cols + num_cols)
# drop ignored columns
data_used = data_extended.drop(del_columns, axis=1)
# Code categorical columns (only season, weather, year)
le_list = train_encoders(data_used)
# coding
data_used = apply_encoders(data_used, le_list)
# define indexes for cat_cols
# cat boost want indexes
cat_columns_idxs = [i for i, col in enumerate(features) if col in cat_cols]
# finally we have the train dataset
X = data_used[features].values
y = data_used[TARGET].values
# general
FOLDS = 5
SEED = 4321
N_TRIALS = 5
STUDY_NAME = "gbm3"
#
# Here we define what we do using Optuna
#
def objective(trial):
# tuning on max_depth, n_estimators for the example
dict_params = {
"num_iterations": trial.suggest_categorical("num_iterations", [3000, 4000, 5000]),
"learning_rate": trial.suggest_loguniform("learning_rate", low=1e-4, high=1e-2),
"metrics" : ["rmse"],
"verbose" : -1,
}
max_depth = trial.suggest_int("max_depth", 4, 10)
num_leaves = trial.suggest_int("num_leaves", 2**(max_depth), 2**(max_depth))
dict_params['max_depth'] = max_depth
dict_params['num_leaves'] = num_leaves
regr = lgb.LGBMRegressor(**dict_params)
# using rmsle for scoring
scorer = make_scorer(rmsle, greater_is_better=False)
scores = cross_validate(regr, X, y, cv=FOLDS, scoring=scorer)
avg_test_score = round(np.mean(scores['test_score']), 4)
return avg_test_score
# launch Optuna Study
study = optuna.create_study(study_name=STUDY_NAME, direction="maximize")
study.optimize(objective, n_trials=N_TRIALS)
study.best_params
# visualize trials as an ordered Pandas df
df = study.trials_dataframe()
result_df = df[df['state'] == 'COMPLETE'].sort_values(by=['value'], ascending=False)
# best on top
result_df.head() | _____no_output_____ | MIT | .ipynb_checkpoints/lgbm-optuna-cross-validate-checkpoint.ipynb | luigisaetta/bike-sharing-forecast |
train the model on entire train set and save | %%time
# maybe I shoud add save best model (see nu_iteration in cell below)
model = lgb.LGBMRegressor(**study.best_params)
model.fit(X, y)
model_file = "lgboost.txt"
model.booster_.save_model(model_file, num_iteration=study.best_params['num_iterations']) | _____no_output_____ | MIT | .ipynb_checkpoints/lgbm-optuna-cross-validate-checkpoint.ipynb | luigisaetta/bike-sharing-forecast |
TensorFlow Tutorial 01 Simple Linear Modelby [Magnus Erik Hvass Pedersen](http://www.hvass-labs.org/)/ [GitHub](https://github.com/Hvass-Labs/TensorFlow-Tutorials) / [Videos on YouTube](https://www.youtube.com/playlist?list=PL9Hr9sNUjfsmEu1ZniY0XpHSzl5uihcXZ) IntroductionThis tutorial demonstrates the basic workflow of using TensorFlow with a simple linear model. After loading the so-called MNIST data-set with images of hand-written digits, we define and optimize a simple mathematical model in TensorFlow. The results are then plotted and discussed.You should be familiar with basic linear algebra, Python and the Jupyter Notebook editor. It also helps if you have a basic understanding of Machine Learning and classification. Imports | %matplotlib inline
import matplotlib.pyplot as plt
from matplotlib.colors import LogNorm
import tensorflow as tf
import numpy as np
from sklearn.metrics import confusion_matrix | /home/magnus/anaconda3/envs/tf-gpu/lib/python3.6/site-packages/h5py/__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.
from ._conv import register_converters as _register_converters
| MIT | 01_Simple_Linear_Model.ipynb | Asciotti/TensorFlow-Tutorials |
This was developed using Python 3.6 (Anaconda) and TensorFlow version: | tf.__version__ | _____no_output_____ | MIT | 01_Simple_Linear_Model.ipynb | Asciotti/TensorFlow-Tutorials |
Load Data The MNIST data-set is about 12 MB and will be downloaded automatically if it is not located in the given path. | from mnist import MNIST
data = MNIST(data_dir="data/MNIST/") | _____no_output_____ | MIT | 01_Simple_Linear_Model.ipynb | Asciotti/TensorFlow-Tutorials |
The MNIST data-set has now been loaded and consists of 70.000 images and class-numbers for the images. The data-set is split into 3 mutually exclusive sub-sets. We will only use the training and test-sets in this tutorial. | print("Size of:")
print("- Training-set:\t\t{}".format(data.num_train))
print("- Validation-set:\t{}".format(data.num_val))
print("- Test-set:\t\t{}".format(data.num_test)) | Size of:
- Training-set: 55000
- Validation-set: 5000
- Test-set: 10000
| MIT | 01_Simple_Linear_Model.ipynb | Asciotti/TensorFlow-Tutorials |
Copy some of the data-dimensions for convenience. | # The images are stored in one-dimensional arrays of this length.
img_size_flat = data.img_size_flat
# Tuple with height and width of images used to reshape arrays.
img_shape = data.img_shape
# Number of classes, one class for each of 10 digits.
num_classes = data.num_classes | _____no_output_____ | MIT | 01_Simple_Linear_Model.ipynb | Asciotti/TensorFlow-Tutorials |
One-Hot Encoding The output-data is loaded as both integer class-numbers and so-called One-Hot encoded arrays. This means the class-numbers have been converted from a single integer to a vector whose length equals the number of possible classes. All elements of the vector are zero except for the $i$'th element which is 1 and means the class is $i$. For example, the One-Hot encoded labels for the first 5 images in the test-set are: | data.y_test[0:5, :] | _____no_output_____ | MIT | 01_Simple_Linear_Model.ipynb | Asciotti/TensorFlow-Tutorials |
We also need the classes as integers for various comparisons and performance measures. These can be found from the One-Hot encoded arrays by taking the index of the highest element using the `np.argmax()` function. But this has already been done for us when the data-set was loaded, so we can see the class-number for the first five images in the test-set. Compare these to the One-Hot encoded arrays above. | data.y_test_cls[0:5] | _____no_output_____ | MIT | 01_Simple_Linear_Model.ipynb | Asciotti/TensorFlow-Tutorials |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.