markdown
stringlengths
0
1.02M
code
stringlengths
0
832k
output
stringlengths
0
1.02M
license
stringlengths
3
36
path
stringlengths
6
265
repo_name
stringlengths
6
127
d) Single matrix operations In this section we describe a few operations that can be done over matrices: d.1) TransposeA very common operation is the transpose. If you are used to see matrix notation, you should know what this operation is. Take a matrix with 2 dimensions:$$ X = \begin{bmatrix} a & b \\ c & d \\ \end{bmatrix} $$Transposing the matrix is inverting its data with respect to its diagonal:$$ X^T = \begin{bmatrix} a & c \\ b & d \\ \end{bmatrix} $$This means that the rows of X will become its columns and vice-versa. You can attain the transpose of a matrix by using either `.T` on a matrix or calling `numpy.transpose`:
m1 = np.array([[ .1, 1., 2.], [ 3., .24, 4.], [ 6., 2., 5.]]) print('Initial matrix: \n{}'.format(m1)) m1_transposed = m1.transpose() print('Transposed matrix with `transpose` \n{}'.format(m1_transposed)) m1_transposed = m1.T print('Transposed matrix with `T` \n{}'.format(m1_transposed))
Transposed matrix with `T` [[0.1 3. 6. ] [1. 0.24 2. ] [2. 4. 5. ]]
MIT
S01 - Bootcamp and Binary Classification/SLU07 - Regression with Linear Regression/Example notebook.ipynb
claury/sidecar-academy-batch2
A few examples of non-squared matrices. In these, you'll see that the shape (a, b) gets inverted to (b, a):
m1 = np.array([[ .1, 1., 2., 5.], [ 3., .24, 4., .6]]) print('Initial matrix: \n{}'.format(m1)) m1_transposed = m1.T print('Transposed matrix: \n{}'.format(m1_transposed)) m1 = np.array([[ .1, 1.], [2., 5.], [ 3., .24], [4., .6]]) print('Initial matrix: \n{}'.format(m1)) m1_transposed = m1.T print('Transposed matrix: \n{}'.format(m1_transposed))
Initial matrix: [[0.1 1. ] [2. 5. ] [3. 0.24] [4. 0.6 ]] Transposed matrix: [[0.1 2. 3. 4. ] [1. 5. 0.24 0.6 ]]
MIT
S01 - Bootcamp and Binary Classification/SLU07 - Regression with Linear Regression/Example notebook.ipynb
claury/sidecar-academy-batch2
For vectors represented as matrices, this means transforming from a row vector (1, N) to a column vector (N, 1) or vice-versa:
v1 = np.array([ .1, 1., 2.]) v1_reshaped = v1.reshape((1, -1)) print('Row vector as 2-d array: {}'.format(v1_reshaped)) print('Shape: {}'.format(v1_reshaped.shape)) v1_transposed = v1_reshaped.T print('Transposed (column vector as 2-d array): \n{}'.format(v1_transposed)) print('Shape: {}'.format(v1_transposed.shape)) v1 = np.array([ 3., .23, 2., .6]) v1_reshaped = v1.reshape((-1, 1)) print('Column vector as 2-d array: \n{}'.format(v1_reshaped)) print('Shape: {}'.format(v1_reshaped.shape)) v1_transposed = v1_reshaped.T print('Transposed (row vector as 2-d array): {}'.format(v1_transposed)) print('Shape: {}'.format(v1_transposed.shape))
Column vector as 2-d array: [[3. ] [0.23] [2. ] [0.6 ]] Shape: (4, 1) Transposed (row vector as 2-d array): [[3. 0.23 2. 0.6 ]] Shape: (1, 4)
MIT
S01 - Bootcamp and Binary Classification/SLU07 - Regression with Linear Regression/Example notebook.ipynb
claury/sidecar-academy-batch2
d.2) Statistics operatorsNumpy also allows us to perform several operations over the rows and columns of a matrix, such as: * Sum* Mean* Max* Min* ...The most important thing to take into account when using these is to know exactly in which direction we are performing the operations. We can perform, for example, a `max` operation over the whole matrix, obtaining the max value in all of the matrix values. Or we might want this value for each row, or for each column. Check the following examples:
m1 = np.array([[ .1, 1.], [2., 5.], [ 3., .24], [4., .6]]) print('Initial matrix: \n{}'.format(m1))
Initial matrix: [[0.1 1. ] [2. 5. ] [3. 0.24] [4. 0.6 ]]
MIT
S01 - Bootcamp and Binary Classification/SLU07 - Regression with Linear Regression/Example notebook.ipynb
claury/sidecar-academy-batch2
Operating over all matrix' values:
print('Total sum of matrix elements: {}'.format(m1.sum())) print('Minimum of all matrix elements: {}'.format(m1.max())) print('Maximum of all matrix elements: {}'.format(m1.min())) print('Mean of all matrix elements: {}'.format(m1.mean()))
Total sum of matrix elements: 15.94 Minimum of all matrix elements: 5.0 Maximum of all matrix elements: 0.1 Mean of all matrix elements: 1.9925
MIT
S01 - Bootcamp and Binary Classification/SLU07 - Regression with Linear Regression/Example notebook.ipynb
claury/sidecar-academy-batch2
Operating across rows - produces a row with the sum/max/min/mean for each column:
print('Total sum of matrix elements: {}'.format(m1.sum(axis=0))) print('Minimum of all matrix elements: {}'.format(m1.max(axis=0))) print('Maximum of all matrix elements: {}'.format(m1.min(axis=0))) print('Mean of all matrix elements: {}'.format(m1.mean(axis=0)))
Total sum of matrix elements: [9.1 6.84] Minimum of all matrix elements: [4. 5.] Maximum of all matrix elements: [0.1 0.24] Mean of all matrix elements: [2.275 1.71 ]
MIT
S01 - Bootcamp and Binary Classification/SLU07 - Regression with Linear Regression/Example notebook.ipynb
claury/sidecar-academy-batch2
Operating across columns - produces a column with the sum/max/min/mean for each row:
print('Total sum of matrix elements: {}'.format(m1.sum(axis=1))) print('Minimum of all matrix elements: {}'.format(m1.max(axis=1))) print('Maximum of all matrix elements: {}'.format(m1.min(axis=1))) print('Mean of all matrix elements: {}'.format(m1.mean(axis=1)))
Total sum of matrix elements: [1.1 7. 3.24 4.6 ] Minimum of all matrix elements: [1. 5. 3. 4.] Maximum of all matrix elements: [0.1 2. 0.24 0.6 ] Mean of all matrix elements: [0.55 3.5 1.62 2.3 ]
MIT
S01 - Bootcamp and Binary Classification/SLU07 - Regression with Linear Regression/Example notebook.ipynb
claury/sidecar-academy-batch2
As an example, imagine that you have a matrix of shape (n_samples, n_features), where each row represents all the features for one sample. Then , to average over the samples, we do:
m1 = np.array([[ .1, 1.], [2., 5.], [ 3., .24], [4., .6]]) print('Initial matrix: \n{}'.format(m1)) print('\n') print('Sample 1: {}'.format(m1[0, :])) print('Sample 2: {}'.format(m1[1, :])) print('Sample 3: {}'.format(m1[2, :])) print('Sample 4: {}'.format(m1[3, :])) print('\n') print('Average over samples: \n{}'.format(m1.mean(axis=0)))
Initial matrix: [[0.1 1. ] [2. 5. ] [3. 0.24] [4. 0.6 ]] Sample 1: [0.1 1. ] Sample 2: [2. 5.] Sample 3: [3. 0.24] Sample 4: [4. 0.6] Average over samples: [2.275 1.71 ]
MIT
S01 - Bootcamp and Binary Classification/SLU07 - Regression with Linear Regression/Example notebook.ipynb
claury/sidecar-academy-batch2
Other statistical functions behave in a similar manner, so it is important to know how to work the axis of these objects. e) Multiple matrix operations e.1) Element wise operationsSeveral operations available work at the element level, this is, if we have two matrices A and B:$$ A = \begin{bmatrix} a & b \\ c & d \\ \end{bmatrix} $$and $$ B = \begin{bmatrix} e & f \\ g & h \\ \end{bmatrix} $$an element-wise operation produces a matrix:$$ Op(A, B) = \begin{bmatrix} Op(a,e) & Op(b,f) \\ Op(c,g) & Op(d,h) \\ \end{bmatrix} $$You can perform sum and difference, but also element-wise multiplication and division. These are implemented with the regular operators `+`, `-`, `*`, `/`. Check out the examples below:
m1 = np.array([[ .1, 1., 2., 5.], [ 3., .24, 4., .6]]) m2 = np.array([[ .1, 4., .25, .1], [ 2., 1.5, .42, -1.]]) print('Matrix 1: \n{}'.format(m1)) print('Matrix 2: \n{}'.format(m1)) print('\n') print('Sum: \n{}'.format(m1 + m2)) print('\n') print('Difference: \n{}'.format(m1 - m2)) print('\n') print('Multiplication: \n{}'.format(m1*m2)) print('\n') print('Division: \n{}'.format(m1/m2))
Matrix 1: [[0.1 1. 2. 5. ] [3. 0.24 4. 0.6 ]] Matrix 2: [[0.1 1. 2. 5. ] [3. 0.24 4. 0.6 ]] Sum: [[ 0.2 5. 2.25 5.1 ] [ 5. 1.74 4.42 -0.4 ]] Difference: [[ 0. -3. 1.75 4.9 ] [ 1. -1.26 3.58 1.6 ]] Multiplication: [[ 0.01 4. 0.5 0.5 ] [ 6. 0.36 1.68 -0.6 ]] Division: [[ 1. 0.25 8. 50. ] [ 1.5 0.16 9.52380952 -0.6 ]]
MIT
S01 - Bootcamp and Binary Classification/SLU07 - Regression with Linear Regression/Example notebook.ipynb
claury/sidecar-academy-batch2
For these operations, ideally your matrices should have the same dimensions. An exception to this is when you have one of the elements that can be [broadcasted](https://numpy.org/doc/stable/user/basics.broadcasting.html) over the other. However we won't cover that in these examples. e.2) Matrix multiplicationAlthough you've seen how to perform element wise multiplication with the basic operation, one of the most common matrix operations is matrix multiplication, where the output is not the result of an element wise combination of its elements, but actually a linear combination between rows of the first matrix nd columns of the second.In other words, element (i, j) of the resulting matrix is the dot product between row i of the first matrix and column j of the second:![matrix-multiply](assets/matrix-multiply-a.svg)Where the dot product represented breaks down to:$$ 58 = 1 \times 7 + 2 \times 9 + 3 \times 11 $$Numpy already provides this function, so check out the following examples:
m1 = np.array([[ .1, 1., 2., 5.], [ 3., .24, 4., .6]]) m2 = np.array([[ .1, 4.], [.25, .1], [ 2., 1.5], [.42, -1.]]) print('Matrix 1: \n{}'.format(m1)) print('Matrix 2: \n{}'.format(m1)) print('\n') print('Matrix multiplication: \n{}'.format(np.matmul(m1, m2))) m1 = np.array([[ .1, 4.], [.25, .1], [ 2., 1.5], [.42, -1.]]) m2 = np.array([[ .1, 1., 2.], [ 3., .24, 4.]]) print('Matrix 1: \n{}'.format(m1)) print('Matrix 2: \n{}'.format(m1)) print('\n') print('Matrix multiplication: \n{}'.format(np.matmul(m1, m2)))
Matrix 1: [[ 0.1 4. ] [ 0.25 0.1 ] [ 2. 1.5 ] [ 0.42 -1. ]] Matrix 2: [[ 0.1 4. ] [ 0.25 0.1 ] [ 2. 1.5 ] [ 0.42 -1. ]] Matrix multiplication: [[12.01 1.06 16.2 ] [ 0.325 0.274 0.9 ] [ 4.7 2.36 10. ] [-2.958 0.18 -3.16 ]]
MIT
S01 - Bootcamp and Binary Classification/SLU07 - Regression with Linear Regression/Example notebook.ipynb
claury/sidecar-academy-batch2
Notice that in both operations the matrix multiplication of shapes `(k, l)` and `(m, n)` yields a matrix of dimensions `(k, n)`. Additionally, for this operation to be possible, the inner dimensions need to match, this is `l == m` . See what happens if we try to multiply matrices with incompatible dimensions:
m1 = np.array([[ .1, 4., 3.], [.25, .1, 1.], [ 2., 1.5, .5], [.42, -1., 4.3]]) m2 = np.array([[ .1, 1., 2.], [ 3., .24, 4.]]) print('Matrix 1: \n{}'.format(m1)) print('Shape: {}'.format(m1.shape)) print('Matrix 2: \n{}'.format(m1)) print('Shape: {}'.format(m2.shape)) print('\n') try: m3 = np.matmul(m1, m2) except Exception as e: print('Matrix multiplication raised the following error: {}'.format(e))
Matrix 1: [[ 0.1 4. 3. ] [ 0.25 0.1 1. ] [ 2. 1.5 0.5 ] [ 0.42 -1. 4.3 ]] Shape: (4, 3) Matrix 2: [[ 0.1 4. 3. ] [ 0.25 0.1 1. ] [ 2. 1.5 0.5 ] [ 0.42 -1. 4.3 ]] Shape: (2, 3) Matrix multiplication raised the following error: matmul: Input operand 1 has a mismatch in its core dimension 0, with gufunc signature (n?,k),(k,m?)->(n?,m?) (size 2 is different from 3)
MIT
S01 - Bootcamp and Binary Classification/SLU07 - Regression with Linear Regression/Example notebook.ipynb
claury/sidecar-academy-batch2
numpy
def add(image, c): return uint8(np.clip(float64(image) + c, 0, 255))
_____no_output_____
MIT
util/imutil.ipynb
shoulderhu/azure-image-ipy
matplotlib
def matplot(img, title=None, cmap=None, figsize=None): col = len(img) if figsize is None: plt.figure(figsize=(col * 4, col * 4)) else: plt.figure(figsize=figsize) for i, j in enumerate(img): plt.subplot(1, col, i + 1) plt.axis("off") if title != None: plt.title(title[i]) if cmap != None and cmap[i] != "": plt.imshow(j, cmap=cmap[i]) else: imshow(j)
_____no_output_____
MIT
util/imutil.ipynb
shoulderhu/azure-image-ipy
Chapter 2
def imread(fname): return io.imread(os.path.join("/home/nbuser/library/", "Image", "read", fname)) def imsave(fname, image): io.imsave(os.path.join("/home/nbuser/library/", "Image", "save", fname), image)
_____no_output_____
MIT
util/imutil.ipynb
shoulderhu/azure-image-ipy
Chapter 3
def spatial_resolution(image, scale): return rescale(rescale(image, 1 / scale), scale, order=0) def grayslice(image, n): image = img_as_ubyte(image) v = 256 // n return image // v * v
_____no_output_____
MIT
util/imutil.ipynb
shoulderhu/azure-image-ipy
Chapter 4
def imhist(image, equal=False): if equal: image = img_as_ubyte(equalize_hist(image)) f = plt.figure() f.show(plt.hist(image.flatten(), bins=256))
_____no_output_____
MIT
util/imutil.ipynb
shoulderhu/azure-image-ipy
Chapter 5
def unsharp(alpha=0.2): A1 = array([[-1, 1, -1], [1, 1, 1], [-1, 1, -1]], dtype=float64) A2 = array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]], dtype=float64) return (alpha * A1 + A2) / (alpha + 1)
_____no_output_____
MIT
util/imutil.ipynb
shoulderhu/azure-image-ipy
Chapter 6
ne = array([[1, 1, 0], [1, 1, 0], [0, 0, 0]]) bi = array([[1, 2, 1], [2, 4, 2], [1, 2, 1]]) / 4 bc = array([[1, 4, 6, 4, 1], [4, 16, 24, 16, 4], [6, 24, 35, 24, 6], [4, 16, 24, 16, 4], [1, 4, 6, 4, 1]]) / 64 def zeroint(img): r, c = img.shape res = zeros((r*2, c*2)) res[::2, ::2] = img return res def spatial_filtering(img, p, filt): for i in range(int(log2(p))): img_zi = zeroint(img) img_sf = correlate(img_zi, filt, mode="reflect") return img_sf
_____no_output_____
MIT
util/imutil.ipynb
shoulderhu/azure-image-ipy
Chapter 7
def fftformat(F): for f in F: print("%8.4f %+.4fi" % (f.real, f.imag)) def fftshow(f, type="log"): if type == "log": return rescale_intensity(np.log(1 + abs(f)), out_range=(0, 1)) elif type == "abs": return rescale_intensity(abs(f), out_range=(0, 1)) def circle_mask(img, type, lh, D=15, n=2, sigma=10): r, c = img.shape arr = arange(-r / 2, r / 2) arc = arange(-c / 2, c / 2) x, y = np.meshgrid(arr, arc) if type == "ideal": if lh == "low": return x**2 + y**2 < D**2 elif lh == "high": return x**2 + y**2 > D**2 elif type == "butterworth": if lh == "low": return 1 / (1 + (np.sqrt(2) - 1) * ((x**2 + y**2) / D**2)**n) elif lh == "high": return 1 / (1 + (D**2 / (x**2 + y**2))**n) elif type == "gaussian": g = np.exp(-(x**2 + y**2) / sigma**2) if lh == "low": return g / g.max() elif lh == "high": return 1 - g / g.max() def fft_filter(img, type, lh, D=15, n=2, sigma=10): f = fftshift(fft2(img)) c = circle_mask(img, type, lh, D, n, sigma) fc = f * c return fftshow(f), c, fftshow(fc), fftshow(ifft2(fc), "abs")
_____no_output_____
MIT
util/imutil.ipynb
shoulderhu/azure-image-ipy
Chapter 8
def periodic_noise(img, s=None): if "numpy" not in str(type(s)): r, c = img.shape x, y = np.mgrid[0:r, 0:c].astype(float64) s = np.sin(x / 3 + y / 3) + 1 return (2 * img_as_float(img) + s / 2) / 3 def outlier_filter(img, D=0.5): av = array([[1, 1, 1], [1, 0, 1], [1, 1, 1]]) / 8 img_av = convolve(img, av) r = abs(img - img_av) > D return r * img_av + (1 - r) * img def image_average(img, n): x, y = img.shape t = zeros((x, y, n)) for i in range(n): t[:, :, i] = random_noise(img, "gaussian") return np.mean(t, 2) def pseudo_median(x): MAXMIN = 0 MINMAX = 255 for i in range(len(x) - 2): MAXMIN = max(MAXMIN, min(x[i:i+3])) MINMAX = min(MINMAX, max(x[i:i+3])) return 0.5 * (MAXMIN + MINMAX) def periodic_filter(img, type="band", k=1): r, c = img.shape x_mid, y_mid = r // 2, c // 2 f = fftshift(fft2(img)) f2 = img_as_ubyte(fftshow(f, "abs")) f2[x_mid, y_mid] = 0 x, y = np.where(f2 == f2.max()) d = np.sqrt((x[0] - x_mid)**2 + (y[0] - y_mid)**2) if type == "band": x, y = np.meshgrid(arange(0, r), arange(0, c)) z = np.sqrt((x - x_mid)**2 + (y - y_mid)**2) br = (z < np.floor(d - k)) | (z > np.ceil(d + k)) fc = f * br elif type == "criss": fc = np.copy(f) fc[x, :] = 0 fc[:, y] = 0 fci = ifft2(fc) return fftshow(f), fftshow(fc), fftshow(fci, "abs") def fft_inverse(img, c, type="low", D2=15, n2=2, d=0.01): f = fftshift(fft2(img_as_ubyte(img))) if type == "low": c2 = circle_mask(img, "butterworth", "low", D2, n2, 10) fb = f / c * c2 elif type == "con": c2 = np.copy(c) c2[np.where(c2 < d)] = 1 fb = f / c2 return c2, fftshow(ifft2(fb), "abs") def deblur(img, m, type="con",d=0.02): m2 = zeros_like(img, dtype=float64) r, c = m.shape m2[0:r, 0:c] = m mf = fft2(m2) if type == "div": bmi = ifft2(fft2(img) / mf) bmu = fftshow(bmi, "abs") elif type == "con": mf[np.where(abs(mf) < d)] = 1 bmi = abs(ifft2(fft2(img) / mf)) bmu = img_as_ubyte(bmi / bmi.max()) bmu = rescale_intensity(bmu, in_range=(0, 128)) return bmu
_____no_output_____
MIT
util/imutil.ipynb
shoulderhu/azure-image-ipy
Chapter 9
def threshold_adaptive(img, cut): r, c = img.shape w = c // cut starts = range(0, c - 1, w) ends = range(w, c + 1, w) z = zeros((r, c)) for i in range(cut): tmp = img[:, starts[i]:ends[i]] z[:, starts[i]:ends[i]] = tmp > threshold_otsu(tmp) return z def zerocross(img): r, c = img.shape z = np.zeros_like(img) for i in range(1, r - 1): for j in range(1, c - 1): if (img[i][j] < 0 and (img[i - 1][j] > 0 or img[i + 1][j] > 0 or img[i][j - 1] > 0 or img[i][j + 1] > 0)) or \ (img[i][j] == 0 and (img[i - 1][j] * img[i + 1][j] < 0 or img[i][j - 1] * img[i][j + 1] < 0)): z[i][j] = 1 return z def laplace_zerocross(img): return zerocross(ndi.laplace(float64(img), mode="constant")) def marr_hildreth(img, sigma=0.5): return zerocross(ndi.gaussian_laplace(float64(img), sigma=sigma))
_____no_output_____
MIT
util/imutil.ipynb
shoulderhu/azure-image-ipy
Chapter 10
sq = square(3) cr = array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) sq cr def internal_boundary(a, b): ''' A - (A erosion B) ''' return a - binary_erosion(a, b) def external_boundary(a, b): ''' (A dilation B) - A ''' return binary_dilation(a, b) - a def morphological_gradient(a, b): ''' (A dilation B) - (A erosion B) ''' return binary_dilation(a, b) * 1 - binary_erosion(a, b) def hit_or_miss(t, b1): ''' (A erosion B1) and (not A erosion B2) ''' r, c = b1.shape b2 = ones((r + 2, c + 2)) b2[1:r+1, 1:c+1] = 1 - b1 t = img_as_bool(t) tb1 = binary_erosion(t, b1) tb2 = binary_erosion(1 - t, b2) x, y = np.where((tb1 & tb2) == 1) tb3 = np.zeros_like(tb1) tb3[x, y] = 1 return x, y, tb1, tb2, tb3 def bwskel(img, kernel=sq): skel = zeros_like(img, dtype=bool) e = (np.copy(img) > 0) * 1 while e.max() > 0: o = binary_opening(e, kernel) * 1 skel = skel | (e & (1 - o)) e = binary_erosion(e, kernel) * 1 return skel
_____no_output_____
MIT
util/imutil.ipynb
shoulderhu/azure-image-ipy
MethodsWe've already seen a few example of methods when learning about Object and Data Structure Types in Python. Methods are essentially functions built into objects. Later on in the course we will learn about how to create our own objects and methods using Object Oriented Programming (OOP) and classes.Methods will perform specific actions on the object and can also take arguments, just like a function. This lecture will serve as just a bried introduction to methods and get you thinking about overall design methods that we will touch back upon when we reach OOP in the course.Methods are in the form: object.method(arg1,arg2,etc...) You'll later see that we can think of methods as having an argument 'self' referring to the object itself. You can't see this argument but we will be using it later on in the course during the OOP lectures.Lets take a quick look at what an example of the various methods a list has:
# Create a simple list l = [1,2,3,4,5]
_____no_output_____
BSD-3-Clause
notebooks/Complete-Python-Bootcamp-master/Methods.ipynb
sheldon-cheah/cppkernel
Fortunately, with iPython and the Jupyter Notebook we can quickly see all the possible methods using the tab key. The methods for a list are:* append* count* extend* insert* pop* remove* reverse* sortLet's try out a few of them: append() allows us to add elements to the end of a list:
l.append(6) l
_____no_output_____
BSD-3-Clause
notebooks/Complete-Python-Bootcamp-master/Methods.ipynb
sheldon-cheah/cppkernel
Great! Now how about count()? The count() method will count the number of occurences of an element in a list.
# Check how many times 2 shows up in the list l.count(2)
_____no_output_____
BSD-3-Clause
notebooks/Complete-Python-Bootcamp-master/Methods.ipynb
sheldon-cheah/cppkernel
You can always use Shift+Tab in the Jupyter Notebook to get more help about the method. In general Python you can use the help() function:
help(l.count)
Help on built-in function count: count(...) L.count(value) -> integer -- return number of occurrences of value
BSD-3-Clause
notebooks/Complete-Python-Bootcamp-master/Methods.ipynb
sheldon-cheah/cppkernel
Exercise 3: Order of ExecutionThis Jupyter notebook has been written to partner with Lesson 1 - Machine Learning Toolkit
print('Hello World!!') print(hello_world) hello_world = 'Hello World!!!!!!!!!!!!'
_____no_output_____
MIT
Chapter 1 - Machine Learning Toolkit/Exercise 3 - Order of Execution.ipynb
doc-E-brown/Applied-Supervised-Learning-with-Python
Task 4: Support Vector Machines_All credit for the code examples of this notebook goes to the book "Hands-On Machine Learning with Scikit-Learn & TensorFlow" by A. Geron. Modifications were made and text was added by K. Zoch in preparation for the hands-on sessions._ Setup First, import a few common modules, ensure MatplotLib plots figures inline and prepare a function to save the figures:
# Common imports import numpy as np import os # to make this notebook's output stable across runs np.random.seed(42) # To plot pretty figures %matplotlib inline import matplotlib as mpl import matplotlib.pyplot as plt mpl.rc('axes', labelsize=14) mpl.rc('xtick', labelsize=12) mpl.rc('ytick', labelsize=12) # Function to save a figure. This also decides that all output files # should stored in the subdirectorz 'classification'. PROJECT_ROOT_DIR = "." EXERCISE = "SVMs" def save_fig(fig_id, tight_layout=True): path = os.path.join(PROJECT_ROOT_DIR, "output", EXERCISE, fig_id + ".png") print("Saving figure", fig_id) if tight_layout: plt.tight_layout() plt.savefig(path, format='png', dpi=300)
_____no_output_____
Apache-2.0
task_7_SVMs.ipynb
knutzk/handson-ml
Large margin *vs* margin violations This code example contains two linear support vector machine classifiers ([LinearSVC](https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html), which are initialised with different hyperparameter C. The used dataset is the iris dataset also shown in the lecture (iris verginica vcs. iris versicolor). Try a few different values for C and compare the results! What effect do different values of C have on: (1) the width of the street, (2) the number of outliers, (3) the number of support vectors?
import numpy as np from sklearn import datasets from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler from sklearn.svm import LinearSVC # Load the dataset and store the necessary features/labels in X/y. iris = datasets.load_iris() X = iris["data"][:, (2, 3)] # petal length, petal width y = (iris["target"] == 2).astype(np.float64) # Iris-Virginica # Initialise a scaler and the two SVC instances. scaler = StandardScaler() svm_clf1 = LinearSVC(C=1, loss="hinge", max_iter=10000, random_state=42) svm_clf2 = LinearSVC(C=100, loss="hinge", max_iter=10000, random_state=42) # Create pipelines to automatically scale the input. scaled_svm_clf1 = Pipeline([ ("scaler", scaler), ("linear_svc", svm_clf1), ]) scaled_svm_clf2 = Pipeline([ ("scaler", scaler), ("linear_svc", svm_clf2), ]) # Perform the actual fit of the two models. scaled_svm_clf1.fit(X, y) scaled_svm_clf2.fit(X, y) # Convert to unscaled parameters b1 = svm_clf1.decision_function([-scaler.mean_ / scaler.scale_]) b2 = svm_clf2.decision_function([-scaler.mean_ / scaler.scale_]) w1 = svm_clf1.coef_[0] / scaler.scale_ w2 = svm_clf2.coef_[0] / scaler.scale_ svm_clf1.intercept_ = np.array([b1]) svm_clf2.intercept_ = np.array([b2]) svm_clf1.coef_ = np.array([w1]) svm_clf2.coef_ = np.array([w2]) # Find support vectors (LinearSVC does not do this automatically) t = y * 2 - 1 support_vectors_idx1 = (t * (X.dot(w1) + b1) < 1).ravel() support_vectors_idx2 = (t * (X.dot(w2) + b2) < 1).ravel() svm_clf1.support_vectors_ = X[support_vectors_idx1] svm_clf2.support_vectors_ = X[support_vectors_idx2] # Now do the plotting. def plot_svc_decision_boundary(svm_clf, xmin, xmax): w = svm_clf.coef_[0] b = svm_clf.intercept_[0] # At the decision boundary, w0*x0 + w1*x1 + b = 0 # => x1 = -w0/w1 * x0 - b/w1 x0 = np.linspace(xmin, xmax, 200) decision_boundary = -w[0]/w[1] * x0 - b/w[1] margin = 1/w[1] gutter_up = decision_boundary + margin gutter_down = decision_boundary - margin svs = svm_clf.support_vectors_ plt.scatter(svs[:, 0], svs[:, 1], s=180, facecolors='#FFAAAA') plt.plot(x0, decision_boundary, "k-", linewidth=2) plt.plot(x0, gutter_up, "k--", linewidth=2) plt.plot(x0, gutter_down, "k--", linewidth=2) plt.figure(figsize=(12,3.2)) plt.subplot(121) plt.plot(X[:, 0][y==1], X[:, 1][y==1], "g^", label="Iris-Virginica") plt.plot(X[:, 0][y==0], X[:, 1][y==0], "bs", label="Iris-Versicolor") plot_svc_decision_boundary(svm_clf1, 4, 6) plt.xlabel("Petal length", fontsize=14) plt.ylabel("Petal width", fontsize=14) plt.legend(loc="upper left", fontsize=14) plt.title("$C = {}$".format(svm_clf1.C), fontsize=16) plt.axis([4, 6, 0.8, 2.8]) plt.subplot(122) plt.plot(X[:, 0][y==1], X[:, 1][y==1], "g^") plt.plot(X[:, 0][y==0], X[:, 1][y==0], "bs") plot_svc_decision_boundary(svm_clf2, 4, 6) plt.xlabel("Petal length", fontsize=14) plt.title("$C = {}$".format(svm_clf2.C), fontsize=16) plt.axis([4, 6, 0.8, 2.8]) save_fig("regularization_plot")
_____no_output_____
Apache-2.0
task_7_SVMs.ipynb
knutzk/handson-ml
Polynomial features vs. polynomial kernelsLet's create a non-linear dataset, for which we can compare two approaches: (1) adding polynomial features to the model, (2) using a polynomial kernel (see exercise sheet). First, create some random data.
from sklearn.datasets import make_moons X, y = make_moons(n_samples=100, noise=0.15, random_state=42) def plot_dataset(X, y, axes): plt.plot(X[:, 0][y==0], X[:, 1][y==0], "bs") plt.plot(X[:, 0][y==1], X[:, 1][y==1], "g^") plt.axis(axes) plt.grid(True, which='both') plt.xlabel(r"$x_1$", fontsize=20) plt.ylabel(r"$x_2$", fontsize=20, rotation=0) plot_dataset(X, y, [-1.5, 2.5, -1, 1.5]) plt.show()
_____no_output_____
Apache-2.0
task_7_SVMs.ipynb
knutzk/handson-ml
Now let's first look at a linear SVM classifier that uses polynomial features. We will implement them through a pipeline including scaling of the inputs. What happens if you increase the degrees of polynomial features? Does the model get better? How is the computing time affected? Hint: you might have to increase the `max_iter` parameter for higher degrees.
from sklearn.pipeline import Pipeline from sklearn.preprocessing import PolynomialFeatures polynomial_svm_clf = Pipeline([ ("poly_features", PolynomialFeatures(degree=3)), ("scaler", StandardScaler()), ("svm_clf", LinearSVC(C=10, loss="hinge", max_iter=1000, random_state=42)) ]) polynomial_svm_clf.fit(X, y) def plot_predictions(clf, axes): x0s = np.linspace(axes[0], axes[1], 100) x1s = np.linspace(axes[2], axes[3], 100) x0, x1 = np.meshgrid(x0s, x1s) X = np.c_[x0.ravel(), x1.ravel()] y_pred = clf.predict(X).reshape(x0.shape) y_decision = clf.decision_function(X).reshape(x0.shape) plt.contourf(x0, x1, y_pred, cmap=plt.cm.brg, alpha=0.2) plt.contourf(x0, x1, y_decision, cmap=plt.cm.brg, alpha=0.1) plot_predictions(polynomial_svm_clf, [-1.5, 2.5, -1, 1.5]) plot_dataset(X, y, [-1.5, 2.5, -1, 1.5]) save_fig("moons_polynomial_svc_plot") plt.show()
_____no_output_____
Apache-2.0
task_7_SVMs.ipynb
knutzk/handson-ml
Now let's try the same without polynomial features, but a polynomial kernel instead. What is the fundamental difference between these two approaches? How do they scale in terms of computing time: (1) as a function of the number of features, (2) as a function of the number of instances?1. Try out different degrees for the polynomial kernel. Do you expect any changes in the computing time? How does the model itself change in the plot?2. Try different values for the `coef0` parameter. Can you guess what it controls? You should be able to see different behaviour for different degrees in the kernel.3. Try different values for the hyperparameter C, which controls margin violations.
from sklearn.svm import SVC # Let's make one pipeline with polynomial kernel degree 3. poly_kernel_svm_clf = Pipeline([ ("scaler", StandardScaler()), ("svm_clf", SVC(kernel="poly", degree=3, coef0=1, C=5)) ]) poly_kernel_svm_clf.fit(X, y) # And another pipeline with polynomial kernel degree 10. poly100_kernel_svm_clf = Pipeline([ ("scaler", StandardScaler()), ("svm_clf", SVC(kernel="poly", degree=10, coef0=100, C=5)) ]) poly100_kernel_svm_clf.fit(X, y) # Now start the plotting. plt.figure(figsize=(11, 4)) plt.subplot(121) plot_predictions(poly_kernel_svm_clf, [-1.5, 2.5, -1, 1.5]) plot_dataset(X, y, [-1.5, 2.5, -1, 1.5]) plt.title(r"$d=3, r=1, C=5$", fontsize=18) plt.subplot(122) plot_predictions(poly100_kernel_svm_clf, [-1.5, 2.5, -1, 1.5]) plot_dataset(X, y, [-1.5, 2.5, -1, 1.5]) plt.title(r"$d=10, r=100, C=5$", fontsize=18) save_fig("moons_kernelized_polynomial_svc_plot") plt.show()
_____no_output_____
Apache-2.0
task_7_SVMs.ipynb
knutzk/handson-ml
Gaussian kernels Before trying the following piece of code which implements Gaussian RBF (Radial Basis Function) kernels, remember _similarity features_ that were discussed in the lecture:1. What are similarity features? What is the idea of adding a "landmark"?2. If similarity features help to increase the power of the model, why should we be careful to just add a similarity feature for _each_ instance of the dataset?3. How does the kernel trick (once again) save the day in this case?4. What does the `gamma` parameter control?Below you find a code implementation which creates a set of four plots with different values for gamma and hyperparameter C. Try different values for both. Which direction _increases_ regularisation of the model? In which direction would you go to avoid underfitting? In which to avoid overfitting?
from sklearn.svm import SVC # Set up multiple values for gamma and hyperparameter C # and create a list of value pairs. gamma1, gamma2 = 0.1, 5 C1, C2 = 0.001, 1000 hyperparams = (gamma1, C1), (gamma1, C2), (gamma2, C1), (gamma2, C2) # Store multiple SVM classifiers in a list with these sets of # hyperparameters. For all of them, use a pipeline to allow # scaling of the inputs. svm_clfs = [] for gamma, C in hyperparams: rbf_kernel_svm_clf = Pipeline([ ("scaler", StandardScaler()), ("svm_clf", SVC(kernel="rbf", gamma=gamma, C=C)) ]) rbf_kernel_svm_clf.fit(X, y) svm_clfs.append(rbf_kernel_svm_clf) # Now do the plotting. plt.figure(figsize=(11, 7)) for i, svm_clf in enumerate(svm_clfs): plt.subplot(221 + i) plot_predictions(svm_clf, [-1.5, 2.5, -1, 1.5]) plot_dataset(X, y, [-1.5, 2.5, -1, 1.5]) gamma, C = hyperparams[i] plt.title(r"$\gamma = {}, C = {}$".format(gamma, C), fontsize=16) save_fig("moons_rbf_svc_plot") plt.show()
_____no_output_____
Apache-2.0
task_7_SVMs.ipynb
knutzk/handson-ml
RegressionThe following code implements the support vector regression class from Scikit-Learn ([SVR](https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html)). Here are a couple of questions (some of which require changes to the code, others are just conceptual:1. Quick recap: whereas the SVC class tries to make a classification decision, what is the job of this regression class? How is the output different?2. Try different values for the hyperparameter C. What does it control?3. How should the margin of a 'good' SVR model look like? Should it be broad? Should it be narrow? How does the parameter epsilon affect this?
# Generate some random data (degree = 2). np.random.seed(42) m = 100 X = 2 * np.random.rand(m, 1) - 1 y = (0.2 + 0.1 * X + 0.5 * X**2 + np.random.randn(m, 1)/10).ravel() # Import the support vector regression class and create two # instances with different hyperparameters. from sklearn.svm import SVR svm_poly_reg1 = SVR(kernel="poly", degree=2, C=100, epsilon=0.1, gamma="auto") svm_poly_reg2 = SVR(kernel="poly", degree=2, C=0.01, epsilon=0.1, gamma="auto") svm_poly_reg1.fit(X, y) svm_poly_reg2.fit(X, y) # Now do the plotting. def plot_svm_regression(svm_reg, X, y, axes): x1s = np.linspace(axes[0], axes[1], 100).reshape(100, 1) y_pred = svm_reg.predict(x1s) plt.plot(x1s, y_pred, "k-", linewidth=2, label=r"$\hat{y}$") plt.plot(x1s, y_pred + svm_reg.epsilon, "k--") plt.plot(x1s, y_pred - svm_reg.epsilon, "k--") plt.scatter(X[svm_reg.support_], y[svm_reg.support_], s=180, facecolors='#FFAAAA') plt.plot(X, y, "bo") plt.xlabel(r"$x_1$", fontsize=18) plt.legend(loc="upper left", fontsize=18) plt.axis(axes) plt.figure(figsize=(9, 4)) plt.subplot(121) plot_svm_regression(svm_poly_reg1, X, y, [-1, 1, 0, 1]) plt.title(r"$degree={}, C={}, \epsilon = {}$".format(svm_poly_reg1.degree, svm_poly_reg1.C, svm_poly_reg1.epsilon), fontsize=18) plt.ylabel(r"$y$", fontsize=18, rotation=0) plt.subplot(122) plot_svm_regression(svm_poly_reg2, X, y, [-1, 1, 0, 1]) plt.title(r"$degree={}, C={}, \epsilon = {}$".format(svm_poly_reg2.degree, svm_poly_reg2.C, svm_poly_reg2.epsilon), fontsize=18) save_fig("svm_with_polynomial_kernel_plot") plt.show()
_____no_output_____
Apache-2.0
task_7_SVMs.ipynb
knutzk/handson-ml
Create TensorFlow Deep Neural Network Model**Learning Objective**- Create a DNN model using the high-level Estimator API IntroductionWe'll begin by modeling our data using a Deep Neural Network. To achieve this we will use the high-level Estimator API in Tensorflow. Have a look at the various models available through the Estimator API in [the documentation here](https://www.tensorflow.org/api_docs/python/tf/estimator). Start by setting the environment variables related to your project.
PROJECT = "cloud-training-demos" # Replace with your PROJECT BUCKET = "cloud-training-bucket" # Replace with your BUCKET REGION = "us-central1" # Choose an available region for Cloud MLE TFVERSION = "1.14" # TF version for CMLE to use import os os.environ["BUCKET"] = BUCKET os.environ["PROJECT"] = PROJECT os.environ["REGION"] = REGION os.environ["TFVERSION"] = TFVERSION %%bash if ! gsutil ls | grep -q gs://${BUCKET}/; then gsutil mb -l ${REGION} gs://${BUCKET} fi %%bash ls *.csv
_____no_output_____
Apache-2.0
courses/machine_learning/deepdive/05_review/3_tensorflow_dnn.ipynb
Glairly/introduction_to_tensorflow
Create TensorFlow model using TensorFlow's Estimator API We'll begin by writing an input function to read the data and define the csv column names and label column. We'll also set the default csv column values and set the number of training steps.
import shutil import numpy as np import tensorflow as tf print(tf.__version__) CSV_COLUMNS = "weight_pounds,is_male,mother_age,plurality,gestation_weeks".split(',') LABEL_COLUMN = "weight_pounds" # Set default values for each CSV column DEFAULTS = [[0.0], ["null"], [0.0], ["null"], [0.0]] TRAIN_STEPS = 1000
_____no_output_____
Apache-2.0
courses/machine_learning/deepdive/05_review/3_tensorflow_dnn.ipynb
Glairly/introduction_to_tensorflow
Create the input functionNow we are ready to create an input function using the Dataset API.
def read_dataset(filename_pattern, mode, batch_size = 512): def _input_fn(): def decode_csv(value_column): columns = tf.decode_csv(records = value_column, record_defaults = DEFAULTS) features = dict(zip(CSV_COLUMNS, columns)) label = features.pop(LABEL_COLUMN) return features, label # Create list of files that match pattern file_list = tf.gfile.Glob(filename = filename_pattern) # Create dataset from file list dataset = (tf.data.TextLineDataset(filenames = file_list) # Read text file .map(map_func = decode_csv)) # Transform each elem by applying decode_csv fn if mode == tf.estimator.ModeKeys.TRAIN: num_epochs = None # indefinitely dataset = dataset.shuffle(buffer_size = 10 * batch_size) else: num_epochs = 1 # end-of-input after this dataset = dataset.repeat(count = num_epochs).batch(batch_size = batch_size) return dataset return _input_fn
_____no_output_____
Apache-2.0
courses/machine_learning/deepdive/05_review/3_tensorflow_dnn.ipynb
Glairly/introduction_to_tensorflow
Create the feature columnsNext, we define the feature columns
def get_categorical(name, values): return tf.feature_column.indicator_column( categorical_column = tf.feature_column.categorical_column_with_vocabulary_list(key = name, vocabulary_list = values)) def get_cols(): # Define column types return [\ get_categorical("is_male", ["True", "False", "Unknown"]), tf.feature_column.numeric_column(key = "mother_age"), get_categorical("plurality", ["Single(1)", "Twins(2)", "Triplets(3)", "Quadruplets(4)", "Quintuplets(5)","Multiple(2+)"]), tf.feature_column.numeric_column(key = "gestation_weeks") ]
_____no_output_____
Apache-2.0
courses/machine_learning/deepdive/05_review/3_tensorflow_dnn.ipynb
Glairly/introduction_to_tensorflow
Create the Serving Input function To predict with the TensorFlow model, we also need a serving input function. This will allow us to serve prediction later using the predetermined inputs. We will want all the inputs from our user.
def serving_input_fn(): feature_placeholders = { "is_male": tf.placeholder(dtype = tf.string, shape = [None]), "mother_age": tf.placeholder(dtype = tf.float32, shape = [None]), "plurality": tf.placeholder(dtype = tf.string, shape = [None]), "gestation_weeks": tf.placeholder(dtype = tf.float32, shape = [None]) } features = { key: tf.expand_dims(input = tensor, axis = -1) for key, tensor in feature_placeholders.items() } return tf.estimator.export.ServingInputReceiver(features = features, receiver_tensors = feature_placeholders)
_____no_output_____
Apache-2.0
courses/machine_learning/deepdive/05_review/3_tensorflow_dnn.ipynb
Glairly/introduction_to_tensorflow
Create the model and run training and evaluationLastly, we'll create the estimator to train and evaluate. In the cell below, we'll set up a `DNNRegressor` estimator and the train and evaluation operations.
def train_and_evaluate(output_dir): EVAL_INTERVAL = 300 run_config = tf.estimator.RunConfig( save_checkpoints_secs = EVAL_INTERVAL, keep_checkpoint_max = 3) estimator = tf.estimator.DNNRegressor( model_dir = output_dir, feature_columns = get_cols(), hidden_units = [64, 32], config = run_config) train_spec = tf.estimator.TrainSpec( input_fn = read_dataset("train.csv", mode = tf.estimator.ModeKeys.TRAIN), max_steps = TRAIN_STEPS) exporter = tf.estimator.LatestExporter(name = "exporter", serving_input_receiver_fn = serving_input_fn) eval_spec = tf.estimator.EvalSpec( input_fn = read_dataset("eval.csv", mode = tf.estimator.ModeKeys.EVAL), steps = None, start_delay_secs = 60, # start evaluating after N seconds throttle_secs = EVAL_INTERVAL, # evaluate every N seconds exporters = exporter) tf.estimator.train_and_evaluate(estimator = estimator, train_spec = train_spec, eval_spec = eval_spec)
_____no_output_____
Apache-2.0
courses/machine_learning/deepdive/05_review/3_tensorflow_dnn.ipynb
Glairly/introduction_to_tensorflow
Finally, we train the model!
# Run the model shutil.rmtree(path = "babyweight_trained_dnn", ignore_errors = True) # start fresh each time train_and_evaluate("babyweight_trained_dnn")
_____no_output_____
Apache-2.0
courses/machine_learning/deepdive/05_review/3_tensorflow_dnn.ipynb
Glairly/introduction_to_tensorflow
Compare different DEMs for individual glaciers For most glaciers in the world there are several digital elevation models (DEM) which cover the respective glacier. In OGGM we have currently implemented 10 different open access DEMs to choose from. Some are regional and only available in certain areas (e.g. Greenland or Antarctica) and some cover almost the entire globe. For more information, visit the [rgitools documentation about DEMs](https://rgitools.readthedocs.io/en/latest/dems.html).This notebook allows to see which of the DEMs are available for a selected glacier and how they compare to each other. That way it is easy to spot systematic differences and also invalid points in the DEMs. Input parameters This notebook can be run as a script with parameters using [papermill](https://github.com/nteract/papermill), but it is not necessary. The following cell contains the parameters you can choose from:
# The RGI Id of the glaciers you want to look for # Use the original shapefiles or the GLIMS viewer to check for the ID: https://www.glims.org/maps/glims rgi_id = 'RGI60-11.00897' # The default is to test for all sources available for this glacier # Set to a list of source names to override this sources = None # Where to write the plots. Default is in the current working directory plot_dir = '' # The RGI version to use # V62 is an unofficial modification of V6 with only minor, backwards compatible modifications prepro_rgi_version = 62 # Size of the map around the glacier. Currently only 10 and 40 are available prepro_border = 10 # Degree of processing level. Currently only 1 is available. from_prepro_level = 1
_____no_output_____
BSD-3-Clause
notebooks/dem_comparison.ipynb
pat-schmitt/tutorials
Check input and set up
# The sources can be given as parameters if sources is not None and isinstance(sources, str): sources = sources.split(',') # Plotting directory as well if not plot_dir: plot_dir = './' + rgi_id import os plot_dir = os.path.abspath(plot_dir) import pandas as pd import numpy as np from oggm import cfg, utils, workflow, tasks, graphics, GlacierDirectory import xarray as xr import geopandas as gpd import salem import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import AxesGrid import itertools from oggm.utils import DEM_SOURCES from oggm.workflow import init_glacier_directories # Make sure the plot directory exists utils.mkdir(plot_dir); # Use OGGM to download the data cfg.initialize() cfg.PATHS['working_dir'] = utils.gettempdir(dirname='OGGM-DEMS', reset=True) cfg.PARAMS['use_intersects'] = False
_____no_output_____
BSD-3-Clause
notebooks/dem_comparison.ipynb
pat-schmitt/tutorials
Download the data using OGGM utility functions Note that you could reach the same goal by downloading the data manually from https://cluster.klima.uni-bremen.de/~oggm/gdirs/oggm_v1.4/rgitopo/
# URL of the preprocessed GDirs gdir_url = 'https://cluster.klima.uni-bremen.de/~oggm/gdirs/oggm_v1.4/rgitopo/' # We use OGGM to download the data gdir = init_glacier_directories([rgi_id], from_prepro_level=1, prepro_border=10, prepro_rgi_version='62', prepro_base_url=gdir_url)[0]
_____no_output_____
BSD-3-Clause
notebooks/dem_comparison.ipynb
pat-schmitt/tutorials
Read the DEMs and store them all in a dataset
if sources is None: sources = [src for src in os.listdir(gdir.dir) if src in utils.DEM_SOURCES] print('RGI ID:', rgi_id) print('Available DEM sources:', sources) print('Plotting directory:', plot_dir) # We use xarray to store the data ods = xr.Dataset() for src in sources: demfile = os.path.join(gdir.dir, src) + '/dem.tif' with xr.open_rasterio(demfile) as ds: data = ds.sel(band=1).load() * 1. ods[src] = data.where(data > -100, np.NaN) sy, sx = np.gradient(ods[src], gdir.grid.dx, gdir.grid.dx) ods[src + '_slope'] = ('y', 'x'), np.arctan(np.sqrt(sy**2 + sx**2)) with xr.open_rasterio(gdir.get_filepath('glacier_mask')) as ds: ods['mask'] = ds.sel(band=1).load() # Decide on the number of plots and figure size ns = len(sources) x_size = 12 n_cols = 3 n_rows = -(-ns // n_cols) y_size = x_size / n_cols * n_rows
_____no_output_____
BSD-3-Clause
notebooks/dem_comparison.ipynb
pat-schmitt/tutorials
Raw topography data
smap = salem.graphics.Map(gdir.grid, countries=False) smap.set_shapefile(gdir.read_shapefile('outlines')) smap.set_plot_params(cmap='topo') smap.set_lonlat_contours(add_tick_labels=False) smap.set_plot_params(vmin=np.nanquantile([ods[s].min() for s in sources], 0.25), vmax=np.nanquantile([ods[s].max() for s in sources], 0.75)) fig = plt.figure(figsize=(x_size, y_size)) grid = AxesGrid(fig, 111, nrows_ncols=(n_rows, n_cols), axes_pad=0.7, cbar_mode='each', cbar_location='right', cbar_pad=0.1 ) for i, s in enumerate(sources): data = ods[s] smap.set_data(data) ax = grid[i] smap.visualize(ax=ax, addcbar=False, title=s) if np.isnan(data).all(): grid[i].cax.remove() continue cax = grid.cbar_axes[i] smap.colorbarbase(cax) # take care of uneven grids if ax != grid[-1]: grid[-1].remove() grid[-1].cax.remove() plt.savefig(os.path.join(plot_dir, 'dem_topo_color.png'), dpi=150, bbox_inches='tight')
_____no_output_____
BSD-3-Clause
notebooks/dem_comparison.ipynb
pat-schmitt/tutorials
Shaded relief
fig = plt.figure(figsize=(x_size, y_size)) grid = AxesGrid(fig, 111, nrows_ncols=(n_rows, n_cols), axes_pad=0.7, cbar_mode='none', cbar_location='right', cbar_pad=0.1 ) smap.set_plot_params(cmap='Blues') smap.set_shapefile() for i, s in enumerate(sources): data = ods[s].copy().where(np.isfinite(ods[s]), 0) smap.set_data(data * 0) ax = grid[i] smap.set_topography(data) smap.visualize(ax=ax, addcbar=False, title=s) # take care of uneven grids if ax != grid[-1]: grid[-1].remove() grid[-1].cax.remove() plt.savefig(os.path.join(plot_dir, 'dem_topo_shade.png'), dpi=150, bbox_inches='tight')
_____no_output_____
BSD-3-Clause
notebooks/dem_comparison.ipynb
pat-schmitt/tutorials
Slope
fig = plt.figure(figsize=(x_size, y_size)) grid = AxesGrid(fig, 111, nrows_ncols=(n_rows, n_cols), axes_pad=0.7, cbar_mode='each', cbar_location='right', cbar_pad=0.1 ) smap.set_topography(); smap.set_plot_params(vmin=0, vmax=0.7, cmap='Blues') for i, s in enumerate(sources): data = ods[s + '_slope'] smap.set_data(data) ax = grid[i] smap.visualize(ax=ax, addcbar=False, title=s + ' (slope)') cax = grid.cbar_axes[i] smap.colorbarbase(cax) # take care of uneven grids if ax != grid[-1]: grid[-1].remove() grid[-1].cax.remove() plt.savefig(os.path.join(plot_dir, 'dem_slope.png'), dpi=150, bbox_inches='tight')
_____no_output_____
BSD-3-Clause
notebooks/dem_comparison.ipynb
pat-schmitt/tutorials
Some simple statistics about the DEMs
df = pd.DataFrame() for s in sources: df[s] = ods[s].data.flatten()[ods.mask.data.flatten() == 1] dfs = pd.DataFrame() for s in sources: dfs[s] = ods[s + '_slope'].data.flatten()[ods.mask.data.flatten() == 1] df.describe()
_____no_output_____
BSD-3-Clause
notebooks/dem_comparison.ipynb
pat-schmitt/tutorials
Comparison matrix plot
# Table of differences between DEMS df_diff = pd.DataFrame() done = [] for s1, s2 in itertools.product(sources, sources): if s1 == s2: continue if (s2, s1) in done: continue df_diff[s1 + '-' + s2] = df[s1] - df[s2] done.append((s1, s2)) # Decide on plot levels max_diff = df_diff.quantile(0.99).max() base_levels = np.array([-8, -5, -3, -1.5, -1, -0.5, -0.2, -0.1, 0, 0.1, 0.2, 0.5, 1, 1.5, 3, 5, 8]) if max_diff < 10: levels = base_levels elif max_diff < 100: levels = base_levels * 10 elif max_diff < 1000: levels = base_levels * 100 else: levels = base_levels * 1000 levels = [l for l in levels if abs(l) < max_diff] if max_diff > 10: levels = [int(l) for l in levels] levels smap.set_plot_params(levels=levels, cmap='PuOr', extend='both') smap.set_shapefile(gdir.read_shapefile('outlines')) fig = plt.figure(figsize=(14, 14)) grid = AxesGrid(fig, 111, nrows_ncols=(ns - 1, ns - 1), axes_pad=0.3, cbar_mode='single', cbar_location='right', cbar_pad=0.1 ) done = [] for ax in grid: ax.set_axis_off() for s1, s2 in itertools.product(sources, sources): if s1 == s2: continue if (s2, s1) in done: continue data = ods[s1] - ods[s2] ax = grid[sources.index(s1) * (ns - 1) + sources[1:].index(s2)] ax.set_axis_on() smap.set_data(data) smap.visualize(ax=ax, addcbar=False) done.append((s1, s2)) ax.set_title(s1 + '-' + s2, fontsize=8) cax = grid.cbar_axes[0] smap.colorbarbase(cax); plt.savefig(os.path.join(plot_dir, 'dem_diffs.png'), dpi=150, bbox_inches='tight')
_____no_output_____
BSD-3-Clause
notebooks/dem_comparison.ipynb
pat-schmitt/tutorials
Comparison scatter plot
import seaborn as sns sns.set(style="ticks") l1, l2 = (utils.nicenumber(df.min().min(), binsize=50, lower=True), utils.nicenumber(df.max().max(), binsize=50, lower=False)) def plot_unity(xdata, ydata, **kwargs): points = np.linspace(l1, l2, 100) plt.gca().plot(points, points, color='k', marker=None, linestyle=':', linewidth=3.0) g = sns.pairplot(df.dropna(how='all', axis=1).dropna(), plot_kws=dict(s=50, edgecolor="C0", linewidth=1)); g.map_offdiag(plot_unity) for asx in g.axes: for ax in asx: ax.set_xlim((l1, l2)) ax.set_ylim((l1, l2)) plt.savefig(os.path.join(plot_dir, 'dem_scatter.png'), dpi=150, bbox_inches='tight')
_____no_output_____
BSD-3-Clause
notebooks/dem_comparison.ipynb
pat-schmitt/tutorials
Table statistics
df.describe() df.corr() df_diff.describe() df_diff.abs().describe()
_____no_output_____
BSD-3-Clause
notebooks/dem_comparison.ipynb
pat-schmitt/tutorials
Created from https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/random_cut_forest/random_cut_forest.ipynb
import boto3 import botocore import sagemaker import sys bucket = 'tdk-awsml-sagemaker-data.io-dev' # <--- specify a bucket you have access to prefix = '' execution_role = sagemaker.get_execution_role() # check if the bucket exists try: boto3.Session().client('s3').head_bucket(Bucket=bucket) except botocore.exceptions.ParamValidationError as e: print('Hey! You either forgot to specify your S3 bucket' ' or you gave your bucket an invalid name!') except botocore.exceptions.ClientError as e: if e.response['Error']['Code'] == '403': print("Hey! You don't have permission to access the bucket, {}.".format(bucket)) elif e.response['Error']['Code'] == '404': print("Hey! Your bucket, {}, doesn't exist!".format(bucket)) else: raise else: print('Training input/output will be stored in: s3://{}/{}'.format(bucket, prefix)) %%time import pandas as pd import urllib.request data_filename = 'nyc_taxi.csv' data_source = 'https://raw.githubusercontent.com/numenta/NAB/master/data/realKnownCause/nyc_taxi.csv' urllib.request.urlretrieve(data_source, data_filename) taxi_data = pd.read_csv(data_filename, delimiter=',') from sagemaker import RandomCutForest session = sagemaker.Session() # specify general training job information rcf = RandomCutForest(role=execution_role, train_instance_count=1, train_instance_type='ml.m5.large', data_location='s3://{}/{}/'.format(bucket, prefix), output_path='s3://{}/{}/output'.format(bucket, prefix), num_samples_per_tree=512, num_trees=50) # automatically upload the training data to S3 and run the training job # TK - had to modify this line to use to_numpy() instead of as_matrix() rcf.fit(rcf.record_set(taxi_data.value.to_numpy().reshape(-1,1))) rcf_inference = rcf.deploy( initial_instance_count=1, instance_type='ml.m5.large', ) print('Endpoint name: {}'.format(rcf_inference.endpoint)) from sagemaker.predictor import csv_serializer, json_deserializer rcf_inference.content_type = 'text/csv' rcf_inference.serializer = csv_serializer rcf_inference.accept = 'application/json' rcf_inference.deserializer = json_deserializer # TK - had to modify this line to use to_numpy() instead of as_matrix() taxi_data_numpy = taxi_data.value.to_numpy().reshape(-1,1) print(taxi_data_numpy[:6]) results = rcf_inference.predict(taxi_data_numpy[:6]) sagemaker.Session().delete_endpoint(rcf_inference.endpoint)
_____no_output_____
MIT
code/sagemaker_rcf.ipynb
tkeech1/aws_ml
Predicting employee attrition rate in organizations Using PyCaret Step 1: Importing the data
import numpy as np import pandas as pd from pycaret.regression import * train_csv = '../dataset/Train.csv' test_csv = '../dataset/Test.csv' train_data = pd.read_csv(train_csv) test_data = pd.read_csv(test_csv)
_____no_output_____
MIT
notebooks/.ipynb_checkpoints/pycaret-final-checkpoint.ipynb
ChandrakanthNethi/predict-the-employee-attrition-rate-in-organizations
Step 2: Setup
reg = setup(train_data, target='Attrition_rate', ignore_features=['Employee_ID'])
Setup Succesfully Completed!
MIT
notebooks/.ipynb_checkpoints/pycaret-final-checkpoint.ipynb
ChandrakanthNethi/predict-the-employee-attrition-rate-in-organizations
Step 3: Tuning the models
compare_models()
_____no_output_____
MIT
notebooks/.ipynb_checkpoints/pycaret-final-checkpoint.ipynb
ChandrakanthNethi/predict-the-employee-attrition-rate-in-organizations
Step 4: Selecting a model
model = create_model('br') print(model)
BayesianRidge(alpha_1=1e-06, alpha_2=1e-06, alpha_init=None, compute_score=False, copy_X=True, fit_intercept=True, lambda_1=1e-06, lambda_2=1e-06, lambda_init=None, n_iter=300, normalize=False, tol=0.001, verbose=False)
MIT
notebooks/.ipynb_checkpoints/pycaret-final-checkpoint.ipynb
ChandrakanthNethi/predict-the-employee-attrition-rate-in-organizations
Step 5: Predicting on test data
predictions = predict_model(model, data = test_data) predictions predictions.rename(columns={"Label": "Attrition_rate"}, inplace=True) predictions[['Employee_ID', 'Attrition_rate']].to_csv('../predictions.csv', index=False)
_____no_output_____
MIT
notebooks/.ipynb_checkpoints/pycaret-final-checkpoint.ipynb
ChandrakanthNethi/predict-the-employee-attrition-rate-in-organizations
from google.colab import drive drive.mount('/content/drive') pip install nilearn pip install tables pip install git+https://www.github.com/farizrahman4u/keras-contrib.git pip install SimpleITK #pip install tensorflow==1.4 import tensorflow as tf from tensorflow.python.framework import ops import tensorflow.compat.v1 as tf tf.disable_v2_behavior() def cross_entropy_loss_v1(y_true, y_pred, sample_weight=None, eps=1e-6): """ :param y_pred: output 5D tensor, [batch size, dim0, dim1, dim2, class] :param y_true: 4D GT tensor, [batch size, dim0, dim1, dim2] :param eps: avoid log0 :return: cross entropy loss """ log_y = tf.log(y_pred + eps) num_samples = tf.cast(tf.reduce_prod(tf.shape(y_true)), "float32") label_one_hot = tf.one_hot(indices=y_true, depth=y_pred.shape[-1], axis=-1, dtype=tf.float32) if sample_weight is not None: # ce = mean(- weight * y_true * log(y_pred)). label_one_hot = label_one_hot * sample_weight cross_entropy = - tf.reduce_sum(label_one_hot * log_y) / num_samples return cross_entropy def cross_entropy_loss(y_true, y_pred, sample_weight=None): # may not use one_hot when use tf.keras.losses.CategoricalCrossentropy y_true = tf.one_hot(indices=y_true, depth=y_pred.shape[-1], axis=-1, dtype=tf.float32) if sample_weight is not None: # ce = mean(weight * y_true * log(y_pred)). y_true = y_true * sample_weight return tf.keras.losses.BinaryCrossentropy()(y_true, y_pred) def cross_entropy_loss_with_weight(y_true, y_pred, sample_weight_per_c=None, eps=1e-6): # for simple calculate this batch. # if possible, get weight per epoch before training. num_dims, num_classes = [len(y_true.shape), y_pred.shape.as_list()[-1]] if sample_weight_per_c is None: print('use batch to calculate weight') num_lbls_in_ygt = tf.cast(tf.reduce_prod(tf.shape(y_true)), dtype="float32") num_lbls_in_ygt_per_c = tf.bincount(arr=tf.cast(y_true, tf.int32), minlength=num_classes, maxlength=num_classes, dtype="float32") # without the min/max, length of vector can change. sample_weight_per_c = (1. / (num_lbls_in_ygt_per_c + eps)) * (num_lbls_in_ygt / num_classes) sample_weight_per_c = tf.reshape(sample_weight_per_c, [1] * num_dims + [num_classes]) # use cross_entropy_loss get negative value, while cross_entropy_loss and cross_entropy_loss_v1 get the same # when no weight. I guess may some error when batch distribution is huge different from epoch distribution. return cross_entropy_loss_v1(y_true, y_pred, sample_weight=sample_weight_per_c) def dice_coef(y_true, y_pred, eps=1e-6): # problem: when gt class-0 >> class-1, the pred p(class-0) >> p(class-1) # eg. gt = [0, 0, 0, 0, 1] pred = [[1, 0], [1, 0], [1, 0], [1, 0], [1, 0]]. 2 * 4 / (5 + 5) = 0.8 # in fact, change every pred, 4/5 -> 0.6, 1/5 ->1, so the model just pred all 0. imbalance class problem. # only calculate gt == 1 can fix my problem, but for multi-class task, weight needed like ce loss above. y_true = tf.one_hot(indices=y_true, depth=y_pred.shape[-1], axis=-1, dtype=tf.float32) abs_x_and_y = 2 * tf.reduce_sum(y_true * y_pred) abs_x_plus_abs_y = tf.reduce_sum(y_true) + tf.reduce_sum(y_pred) return (abs_x_and_y + eps) / (abs_x_plus_abs_y + eps) def dice_coef_loss(y_true, y_pred): return 1. - dice_coef(y_true, y_pred) import numpy as np from keras import backend as K from keras.engine import Input, Model from keras.layers import Conv3D, MaxPooling3D, UpSampling3D, Activation, BatchNormalization, PReLU#, Deconvolution3D from keras.optimizers import Adam #from unet3d.metrics import dice_coefficient_loss, get_label_dice_coefficient_function, dice_coefficient K.set_image_data_format("channels_first") try: from keras.engine import merge except ImportError: from keras.layers.merge import concatenate def unet_model_3d(input_shape, pool_size=(2, 2, 2), n_labels=1, initial_learning_rate=0.00001, deconvolution=False, depth=4, n_base_filters=32, include_label_wise_dice_coefficients=False, metrics=dice_coef, batch_normalization=False, activation_name="sigmoid"): """ Builds the 3D UNet Keras model.f :param metrics: List metrics to be calculated during model training (default is dice coefficient). :param include_label_wise_dice_coefficients: If True and n_labels is greater than 1, model will report the dice coefficient for each label as metric. :param n_base_filters: The number of filters that the first layer in the convolution network will have. Following layers will contain a multiple of this number. Lowering this number will likely reduce the amount of memory required to train the model. :param depth: indicates the depth of the U-shape for the model. The greater the depth, the more max pooling layers will be added to the model. Lowering the depth may reduce the amount of memory required for training. :param input_shape: Shape of the input data (n_chanels, x_size, y_size, z_size). The x, y, and z sizes must be divisible by the pool size to the power of the depth of the UNet, that is pool_size^depth. :param pool_size: Pool size for the max pooling operations. :param n_labels: Number of binary labels that the model is learning. :param initial_learning_rate: Initial learning rate for the model. This will be decayed during training. :param deconvolution: If set to True, will use transpose convolution(deconvolution) instead of up-sampling. This increases the amount memory required during training. :return: Untrained 3D UNet Model """ inputs = Input(input_shape) current_layer = inputs levels = list() # add levels with max pooling for layer_depth in range(depth): layer1 = create_convolution_block(input_layer=current_layer, n_filters=n_base_filters*(2**layer_depth), batch_normalization=batch_normalization) layer2 = create_convolution_block(input_layer=layer1, n_filters=n_base_filters*(2**layer_depth)*2, batch_normalization=batch_normalization) if layer_depth < depth - 1: current_layer = MaxPooling3D(pool_size=pool_size)(layer2) levels.append([layer1, layer2, current_layer]) else: current_layer = layer2 levels.append([layer1, layer2]) # add levels with up-convolution or up-sampling for layer_depth in range(depth-2, -1, -1): up_convolution = get_up_convolution(pool_size=pool_size, deconvolution=deconvolution, n_filters=current_layer._keras_shape[1])(current_layer) concat = concatenate([up_convolution, levels[layer_depth][1]], axis=1) current_layer = create_convolution_block(n_filters=levels[layer_depth][1]._keras_shape[1], input_layer=concat, batch_normalization=batch_normalization) current_layer = create_convolution_block(n_filters=levels[layer_depth][1]._keras_shape[1], input_layer=current_layer, batch_normalization=batch_normalization) final_convolution = Conv3D(n_labels, (1, 1, 1))(current_layer) act = Activation(activation_name)(final_convolution) model = Model(inputs=inputs, outputs=act) if not isinstance(metrics, list): metrics = [metrics] if include_label_wise_dice_coefficients and n_labels > 1: label_wise_dice_metrics = [get_label_dice_coefficient_function(index) for index in range(n_labels)] if metrics: metrics = metrics + label_wise_dice_metrics else: metrics = label_wise_dice_metrics model.compile(optimizer=Adam(lr=initial_learning_rate), loss=dice_coefficient_loss, metrics=metrics) return model def create_convolution_block(input_layer, n_filters, batch_normalization=False, kernel=(3, 3, 3), activation=None, padding='same', strides=(1, 1, 1), instance_normalization=False): """ :param strides: :param input_layer: :param n_filters: :param batch_normalization: :param kernel: :param activation: Keras activation layer to use. (default is 'relu') :param padding: :return: """ layer = Conv3D(n_filters, kernel, padding=padding, strides=strides)(input_layer) if batch_normalization: layer = BatchNormalization(axis=1)(layer) elif instance_normalization: try: from keras_contrib.layers.normalization.instancenormalization import InstanceNormalization except ImportError: raise ImportError("Install keras_contrib in order to use instance normalization." "\nTry: pip install git+https://www.github.com/farizrahman4u/keras-contrib.git") layer = InstanceNormalization(axis=1)(layer) if activation is None: return Activation('relu')(layer) else: return activation()(layer) def compute_level_output_shape(n_filters, depth, pool_size, image_shape): """ Each level has a particular output shape based on the number of filters used in that level and the depth or number of max pooling operations that have been done on the data at that point. :param image_shape: shape of the 3d image. :param pool_size: the pool_size parameter used in the max pooling operation. :param n_filters: Number of filters used by the last node in a given level. :param depth: The number of levels down in the U-shaped model a given node is. :return: 5D vector of the shape of the output node """ output_image_shape = np.asarray(np.divide(image_shape, np.power(pool_size, depth)), dtype=np.int32).tolist() return tuple([None, n_filters] + output_image_shape) def get_up_convolution(n_filters, pool_size, kernel_size=(2, 2, 2), strides=(2, 2, 2), deconvolution=False): if deconvolution: return Deconvolution3D(filters=n_filters, kernel_size=kernel_size, strides=strides) else: return UpSampling3D(size=pool_size) import os import glob #from unet3d.data import write_data_to_file, open_data_file #from unet3d.generator import get_training_and_validation_generators #from unet3d.model import unet_model_3d #from unet3d.training import load_old_model, train_model config = dict() config["pool_size"] = (2, 2, 2) # pool size for the max pooling operations config["image_shape"] = (144, 144, 144) # This determines what shape the images will be cropped/resampled to. config["patch_shape"] = (64, 64, 64) # switch to None to train on the whole image config["labels"] = (1, 2, 4) # the label numbers on the input image config["n_labels"] = len(config["labels"]) config["all_modalities"] = ["t1", "t1ce", "flair", "t2"] config["training_modalities"] = config["all_modalities"] # change this if you want to only use some of the modalities config["nb_channels"] = len(config["training_modalities"]) if "patch_shape" in config and config["patch_shape"] is not None: config["input_shape"] = tuple([config["nb_channels"]] + list(config["patch_shape"])) else: config["input_shape"] = tuple([config["nb_channels"]] + list(config["image_shape"])) config["truth_channel"] = config["nb_channels"] config["deconvolution"] = True # if False, will use upsampling instead of deconvolution config["batch_size"] = 6 config["validation_batch_size"] = 12 config["n_epochs"] = 500 # cutoff the training after this many epochs config["patience"] = 10 # learning rate will be reduced after this many epochs if the validation loss is not improving config["early_stop"] = 50 # training will be stopped after this many epochs without the validation loss improving config["initial_learning_rate"] = 0.00001 config["learning_rate_drop"] = 0.5 # factor by which the learning rate will be reduced config["validation_split"] = 0.8 # portion of the data that will be used for training config["flip"] = False # augments the data by randomly flipping an axis during config["permute"] = True # data shape must be a cube. Augments the data by permuting in various directions config["distort"] = None # switch to None if you want no distortion config["augment"] = config["flip"] or config["distort"] config["validation_patch_overlap"] = 0 # if > 0, during training, validation patches will be overlapping config["training_patch_start_offset"] = (16, 16, 16) # randomly offset the first patch index by up to this offset config["skip_blank"] = True # if True, then patches without any target will be skipped config["data_file"] = os.path.abspath("/content/drive/My Drive/Brats2019/data.h5") config["model_file"] = os.path.abspath("/content/drive/My Drive/Brats2019/tumor_segmentation_model.h5") config["training_file"] = os.path.abspath("/content/drive/My Drive/Brats2019/pkl/training_ids.pkl") config["validation_file"] = os.path.abspath("/content/drive/My Drive/Brats2019/pkl/validation_ids.pkl") config["overwrite"] = False # If True, will previous files. If False, will use previously written files. def fetch_training_data_files(): training_data_files = list() for subject_dir in glob.glob(os.path.join(os.path.dirname(__file__), "data", "preprocessed", "*", "*")): subject_files = list() for modality in config["training_modalities"] + ["truth"]: subject_files.append(os.path.join(subject_dir, modality + ".nii.gz")) training_data_files.append(tuple(subject_files)) return training_data_files def main(overwrite=False): # convert input images into an hdf5 file if overwrite or not os.path.exists(config["data_file"]): training_files = fetch_training_data_files() write_data_to_file(training_files, config["data_file"], image_shape=config["image_shape"]) data_file_opened = open_data_file(config["data_file"]) if not overwrite and os.path.exists(config["model_file"]): model = load_old_model(config["model_file"]) else: # instantiate new model model = unet_model_3d(input_shape=config["input_shape"], pool_size=config["pool_size"], n_labels=config["n_labels"], initial_learning_rate=config["initial_learning_rate"], deconvolution=config["deconvolution"]) # get training and testing generators train_generator, validation_generator, n_train_steps, n_validation_steps = get_training_and_validation_generators( data_file_opened, batch_size=config["batch_size"], data_split=config["validation_split"], overwrite=overwrite, validation_keys_file=config["validation_file"], training_keys_file=config["training_file"], n_labels=config["n_labels"], labels=config["labels"], patch_shape=config["patch_shape"], validation_batch_size=config["validation_batch_size"], validation_patch_overlap=config["validation_patch_overlap"], training_patch_start_offset=config["training_patch_start_offset"], permute=config["permute"], augment=config["augment"], skip_blank=config["skip_blank"], augment_flip=config["flip"], augment_distortion_factor=config["distort"]) # run training train_model(model=model, model_file=config["model_file"], training_generator=train_generator, validation_generator=validation_generator, steps_per_epoch=n_train_steps, validation_steps=n_validation_steps, initial_learning_rate=config["initial_learning_rate"], learning_rate_drop=config["learning_rate_drop"], learning_rate_patience=config["patience"], early_stopping_patience=config["early_stop"], n_epochs=config["n_epochs"]) data_file_opened.close() if __name__ == "__main__": main(overwrite=config["overwrite"])
_____no_output_____
MIT
test.ipynb
sima97/unihobby
![ejemplo.jpg]() $$\vec{v}+\vec{w}=(x_1,x_2)+(y_1,y_2)=(x_1 +y_1, x_2 +y_2)$$$$\vec{v}-\vec{w}=(x_1,x_2)-(y_1,y_2)=(x_1 -y_1, x_2 -y_2)$$ ![ejemplo.jpg]()
#Algebra lineal se enfoca en matrices y vectores en python import numpy as np #importar numpy M = np.array([[1, 2, 3],[4, 5, 6],[7, 8, 9]])#Matriz v = np.array([[1],[2],[3]])# Vector que es de una sola columna v1=np.array([1,2,3])#Vector fila print(M) print(v) print(v1) print (M.shape) print (v.shape)#nos indica que tiene 3 elementos v_single_dim = np.array([1, 2, 3]) print (v_single_dim.shape) print(v+v)#suma de dos vecotres #se lo suma a el m print(3*v)#multiplcaciones de un valor escalar #un valor escalar es un valor unico #multiplca cada uno de los elemtnos por 3 # Otra forma de crear matrices v1 = np.array([1, 2, 3])#puedo crear arreglos y unirlos v2 = np.array([4, 5, 6]) v3 = np.array([7, 8, 9]) M = np.vstack([v1, v2, v3])#losasi se unen y forman una matriz print(M) M # Indexar matrices print (M[:2, 1:3])#puedo hacer recortes de la matriz, SACAR ELEMENTOS v #Indexar vectores print(v[1,0])# de la posicion 1 columna 0 print(v[1:,0])#desde el 1 en adelante #similar a las listar pero puedo sacar filas y columnas lista=[[1,2],[3,4],[4,6]] #DIRENCIAS CON LISTAS #los vectores si se suman entre ellos en cambio las listas indenxa otra lista igual print(v+v) print(lista+lista) #LOS ARREGLOS ME PERMITEN HACER OPERACIONES MATRICIALES v*3 lista*3
_____no_output_____
MIT
Repaso_algebra_LinealHeidy.ipynb
1966hs/MujeresDigitales
![ejemplo.jpg]() ![ejemplo.jpg]() ![ejemplo.jpg]() ![ejemplo.jpg]()
v.T# TRANSPUESTA print (M.dot(v)) print (v.T.dot(v)) v1=np.array([3,-3,1]) v2=np.array([4,9,2]) print (np.cross(v1, v2, axisa=0, axisb=0).T) print (np.multiply(M, v)) print (np.multiply(v, v))
[[14] [32] [50]] [[14]] [-15 -2 39] [[ 1 2 3] [ 8 10 12] [21 24 27]] [[1] [4] [9]]
MIT
Repaso_algebra_LinealHeidy.ipynb
1966hs/MujeresDigitales
Transpuesta$$C_{mxn}=A_{nxm}^T$$$$c_{ij}=a_{ji}$$$$(A+B)^T = A^T + B^T$$$$(AB)^T = B^T A^T$$Si $A=A^T$ entonces A es **simetrica**
M print(M.T)#transpuestas print(v.T) #el determinante es para saber el valor de la matriz
_____no_output_____
MIT
Repaso_algebra_LinealHeidy.ipynb
1966hs/MujeresDigitales
![ejemplo.jpg]() ![ejemplo.jpg]()
np.identity(3) #hacer una matriz que multiplcarse por si misma da la matriz identidad #que todo lo diagonal es 1 y el resto 0 v1 = np.array([3, 0, 2]) v2 = np.array([2, 0, -2]) v3 = np.array([0, 1, 1]) M = np.vstack([v1, v2, v3])#creamos la matriz apartir de esos valores y luego los unimos print (np.linalg.inv(M))#para invertir la matriz print (np.linalg.det(M))#para ver el determinante de mi matriz print (np.linalg.inv(M))#invertir print (np.linalg.det(M))#determinante
10.000000000000002
MIT
Repaso_algebra_LinealHeidy.ipynb
1966hs/MujeresDigitales
**Definicion de Variables**
a= np.array([1,1,1]) b= np.array([2,2,2]) #Multiplcacion de los elementos #(lo hace elemento a elemento ) a*b #metodo multiplicacion de elementos: np.multiply(a,b) #Metodo multiplicacion de matrices #2*1+2*1+2*1 np.matmul(a,b) #Metodo producto punto #similar a la multiplcacion matricial np.dot(a,b) #Metodo producto cruz #como son paralelos no es muy perpendicular np.cross(a,b) #Metodo producto cruz con vectores ortogonales #ortogonal seria la parte de abajo en eje z np.cross(np.array([1,0,0]), np.array([0,1,0]))
_____no_output_____
MIT
Repaso_algebra_LinealHeidy.ipynb
1966hs/MujeresDigitales
**Definicion de Matrices**
a = np.array([[1,2], [2,3]]) b = np.array([[3,4],[5,6]]) print(a) print(b) #Multiplicacion elemento a elemento a*b #mulitplicacion punto a punto #Metodo multiplicacion elemento np.multiply(a,b) #Metodo multiplcacion matricial #1*3+2*5=13 #1*4+2*4=16 #2*3+3*5=21 #2*4+3*6=26 np.matmul(a,b) #Metodo producto punto
_____no_output_____
MIT
Repaso_algebra_LinealHeidy.ipynb
1966hs/MujeresDigitales
**Inversion de matrices**
a= np.array([[1,1,1],[0,2,5],[2,5,-1]])#esta es mi matriz b= np.linalg.inv(a)#aqui la estoy invirtiendo b np.matmul(a,b)#cuando la multiplico matricialmente me da una matriz identidad #cuando iniverto una matriz y luego la multilplico me da una identidad v1= np.array([3,0,2]) v2=np.array([2,0,-2]) v3=np.array([0,1,1]) M=np.vstack([v1,v2,v3]) M M_inv = np.linalg.inv(M)#LA INVERTIMOS M_inv
_____no_output_____
MIT
Repaso_algebra_LinealHeidy.ipynb
1966hs/MujeresDigitales
Valores y vectores propiosUn valor propio $\lambda$ y un vector propio $\vec{u}$ satisfacen$$Au = \lambda u$$Donde A es una matriz cuadrada.Reordenando la ecuacion anterior tenemos el sistema:$$Au -\lambda u = (A- \lambda I)u =0$$El cual tiene solucion si y solo si $det(A-\lambda I)=0$1. Los valores propios son las raices del polinomio caracteristico del determinante2. Susituyendo los valores propios en $$Au = \lambda u$$ y resolviendo se puede obtener el vector propio asociado
#TENGO UN ESPACIO DE DOS DIMENSIONES Y LO QUE HAGO #ES DISTORSIONAR ESE ESPACIO DIMENSIAL v1 = np.array([0, 1]) v2 = np.array([-2, -3]) M = np.vstack([v1, v2]) eigvals, eigvecs= np.linalg.eig(M) print(eigvals)#caractericas de las matrices print(eigvecs) #valor propio es un valor que podemos crear y hacer la solucion de las operaciones A=np.array([[-81,16],[-420,83]]) A eigvals,eigvecs=np.linalg.eig(A) eigvals
_____no_output_____
MIT
Repaso_algebra_LinealHeidy.ipynb
1966hs/MujeresDigitales
Setup
from day1 import puzzle1 from day1 import puzzle1slow from day1 import puzzle1maybefaster from day2 import puzzle2 from day2 import puzzle2slow from day2 import puzzle2maybefaster sample_input1 = [1721, 979, 366, 299, 675, 1456] input1 = open("input1.txt", "r").read() input1_list = [int(x) for x in input1.split("\n") if x]
_____no_output_____
MIT
AdventofCode2020/timings/Timing Day 1.ipynb
evan-freeman/puzzles
Puzzle Timings
%%timeit puzzle1(input1_list) %%timeit puzzle1maybefaster(input1_list) %%timeit puzzle1slow(input1_list) %%timeit puzzle2(input1_list) %%timeit puzzle2maybefaster(input1_list) %%timeit puzzle2slow(input1_list)
393 ms ± 60.4 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
MIT
AdventofCode2020/timings/Timing Day 1.ipynb
evan-freeman/puzzles
Sample Input Timings
%%timeit puzzle1(sample_input1) %%timeit puzzle1slow(sample_input1) %%timeit puzzle1maybefaster(sample_input1) %%timeit puzzle2(sample_input1) %%timeit puzzle2maybefaster(sample_input1) %%timeit puzzle2slow(sample_input1)
6.02 µs ± 166 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
MIT
AdventofCode2020/timings/Timing Day 1.ipynb
evan-freeman/puzzles
📃 Solution of Exercise M6.01The aim of this notebook is to investigate if we can tune the hyperparametersof a bagging regressor and evaluate the gain obtained.We will load the California housing dataset and split it into a training anda testing set.
from sklearn.datasets import fetch_california_housing from sklearn.model_selection import train_test_split data, target = fetch_california_housing(as_frame=True, return_X_y=True) target *= 100 # rescale the target in k$ data_train, data_test, target_train, target_test = train_test_split( data, target, random_state=0, test_size=0.5)
_____no_output_____
CC-BY-4.0
notebooks/M6-ensemble_sol_01.ipynb
datagistips/scikit-learn-mooc
NoteIf you want a deeper overview regarding this dataset, you can refer to theAppendix - Datasets description section at the end of this MOOC. Create a `BaggingRegressor` and provide a `DecisionTreeRegressor`to its parameter `base_estimator`. Train the regressor and evaluate itsstatistical performance on the testing set using the mean absolute error.
from sklearn.metrics import mean_absolute_error from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import BaggingRegressor tree = DecisionTreeRegressor() bagging = BaggingRegressor(base_estimator=tree, n_jobs=-1) bagging.fit(data_train, target_train) target_predicted = bagging.predict(data_test) print(f"Basic mean absolute error of the bagging regressor:\n" f"{mean_absolute_error(target_test, target_predicted):.2f} k$") abs(target_test - target_predicted).mean()
_____no_output_____
CC-BY-4.0
notebooks/M6-ensemble_sol_01.ipynb
datagistips/scikit-learn-mooc
Now, create a `RandomizedSearchCV` instance using the previous model andtune the important parameters of the bagging regressor. Find the bestparameters and check if you are able to find a set of parameters thatimprove the default regressor still using the mean absolute error as ametric.TipYou can list the bagging regressor's parameters using the get_paramsmethod.
for param in bagging.get_params().keys(): print(param) from scipy.stats import randint from sklearn.model_selection import RandomizedSearchCV param_grid = { "n_estimators": randint(10, 30), "max_samples": [0.5, 0.8, 1.0], "max_features": [0.5, 0.8, 1.0], "base_estimator__max_depth": randint(3, 10), } search = RandomizedSearchCV( bagging, param_grid, n_iter=20, scoring="neg_mean_absolute_error" ) _ = search.fit(data_train, target_train) import pandas as pd columns = [f"param_{name}" for name in param_grid.keys()] columns += ["mean_test_score", "std_test_score", "rank_test_score"] cv_results = pd.DataFrame(search.cv_results_) cv_results = cv_results[columns].sort_values(by="rank_test_score") cv_results["mean_test_score"] = -cv_results["mean_test_score"] cv_results target_predicted = search.predict(data_test) print(f"Mean absolute error after tuning of the bagging regressor:\n" f"{mean_absolute_error(target_test, target_predicted):.2f} k$")
Mean absolute error after tuning of the bagging regressor: 40.29 k$
CC-BY-4.0
notebooks/M6-ensemble_sol_01.ipynb
datagistips/scikit-learn-mooc
Recommendations with MovieTweetings: Collaborative FilteringOne of the most popular methods for making recommendations is **collaborative filtering**. In collaborative filtering, you are using the collaboration of user-item recommendations to assist in making new recommendations. There are two main methods of performing collaborative filtering:1. **Neighborhood-Based Collaborative Filtering**, which is based on the idea that we can either correlate items that are similar to provide recommendations or we can correlate users to one another to provide recommendations.2. **Model Based Collaborative Filtering**, which is based on the idea that we can use machine learning and other mathematical models to understand the relationships that exist amongst items and users to predict ratings and provide ratings.In this notebook, you will be working on performing **neighborhood-based collaborative filtering**. There are two main methods for performing collaborative filtering:1. **User-based collaborative filtering:** In this type of recommendation, users related to the user you would like to make recommendations for are used to create a recommendation.2. **Item-based collaborative filtering:** In this type of recommendation, first you need to find the items that are most related to each other item (based on similar ratings). Then you can use the ratings of an individual on those similar items to understand if a user will like the new item.In this notebook you will be implementing **user-based collaborative filtering**. However, it is easy to extend this approach to make recommendations using **item-based collaborative filtering**. First, let's read in our data and necessary libraries.**NOTE**: Because of the size of the datasets, some of your code cells here will take a while to execute, so be patient!
import numpy as np import pandas as pd import matplotlib.pyplot as plt import tests as t from scipy.sparse import csr_matrix from IPython.display import HTML %matplotlib inline # Read in the datasets movies = pd.read_csv('movies_clean.csv') reviews = pd.read_csv('reviews_clean.csv') del movies['Unnamed: 0'] del reviews['Unnamed: 0'] print(reviews.head())
user_id movie_id rating timestamp date month_1 \ 0 1 68646 10 1381620027 2013-10-12 23:20:27 0 1 1 113277 10 1379466669 2013-09-18 01:11:09 0 2 2 422720 8 1412178746 2014-10-01 15:52:26 0 3 2 454876 8 1394818630 2014-03-14 17:37:10 0 4 2 790636 7 1389963947 2014-01-17 13:05:47 0 month_2 month_3 month_4 month_5 ... month_9 month_10 month_11 \ 0 0 0 0 0 ... 0 1 0 1 0 0 0 0 ... 0 0 0 2 0 0 0 0 ... 0 1 0 3 0 0 0 0 ... 0 0 0 4 0 0 0 0 ... 0 0 0 month_12 year_2013 year_2014 year_2015 year_2016 year_2017 year_2018 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 2 0 0 1 0 0 0 0 3 0 0 1 0 0 0 0 4 0 0 1 0 0 0 0 [5 rows x 23 columns]
MIT
lessons/Recommendations/1_Intro_to_Recommendations/4_Collaborative Filtering - Solution.ipynb
callezenwaka/DSND_Term2
Measures of SimilarityWhen using **neighborhood** based collaborative filtering, it is important to understand how to measure the similarity of users or items to one another. There are a number of ways in which we might measure the similarity between two vectors (which might be two users or two items). In this notebook, we will look specifically at two measures used to compare vectors:* **Pearson's correlation coefficient**Pearson's correlation coefficient is a measure of the strength and direction of a linear relationship. The value for this coefficient is a value between -1 and 1 where -1 indicates a strong, negative linear relationship and 1 indicates a strong, positive linear relationship. If we have two vectors x and y, we can define the correlation between the vectors as:$$CORR(x, y) = \frac{\text{COV}(x, y)}{\text{STDEV}(x)\text{ }\text{STDEV}(y)}$$where $$\text{STDEV}(x) = \sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(x_i - \bar{x})^2}$$and $$\text{COV}(x, y) = \frac{1}{n-1}\sum_{i=1}^{n}(x_i - \bar{x})(y_i - \bar{y})$$where n is the length of the vector, which must be the same for both x and y and $\bar{x}$ is the mean of the observations in the vector. We can use the correlation coefficient to indicate how alike two vectors are to one another, where the closer to 1 the coefficient, the more alike the vectors are to one another. There are some potential downsides to using this metric as a measure of similarity. You will see some of these throughout this workbook.* **Euclidean distance**Euclidean distance is a measure of the straightline distance from one vector to another. Because this is a measure of distance, larger values are an indication that two vectors are different from one another (which is different than Pearson's correlation coefficient).Specifically, the euclidean distance between two vectors x and y is measured as:$$ \text{EUCL}(x, y) = \sqrt{\sum_{i=1}^{n}(x_i - y_i)^2}$$Different from the correlation coefficient, no scaling is performed in the denominator. Therefore, you need to make sure all of your data are on the same scale when using this metric.**Note:** Because measuring similarity is often based on looking at the distance between vectors, it is important in these cases to scale your data or to have all data be in the same scale. In this case, we will not need to scale data because they are all on a 10 point scale, but it is always something to keep in mind!------------ User-Item MatrixIn order to calculate the similarities, it is common to put values in a matrix. In this matrix, users are identified by each row, and items are represented by columns. ![alt text](images/userxitem.png "User Item Matrix") In the above matrix, you can see that **User 1** and **User 2** both used **Item 1**, and **User 2**, **User 3**, and **User 4** all used **Item 2**. However, there are also a large number of missing values in the matrix for users who haven't used a particular item. A matrix with many missing values (like the one above) is considered **sparse**.Our first goal for this notebook is to create the above matrix with the **reviews** dataset. However, instead of 1 values in each cell, you should have the actual rating. The users will indicate the rows, and the movies will exist across the columns. To create the user-item matrix, we only need the first three columns of the **reviews** dataframe, which you can see by running the cell below.
user_items = reviews[['user_id', 'movie_id', 'rating']] user_items.head()
_____no_output_____
MIT
lessons/Recommendations/1_Intro_to_Recommendations/4_Collaborative Filtering - Solution.ipynb
callezenwaka/DSND_Term2
Creating the User-Item MatrixIn order to create the user-items matrix (like the one above), I personally started by using a [pivot table](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.pivot_table.html). However, I quickly ran into a memory error (a common theme throughout this notebook). I will help you navigate around many of the errors I had, and achieve useful collaborative filtering results! _____`1.` Create a matrix where the users are the rows, the movies are the columns, and the ratings exist in each cell, or a NaN exists in cells where a user hasn't rated a particular movie. If you get a memory error (like I did), [this link here](https://stackoverflow.com/questions/39648991/pandas-dataframe-pivot-memory-error) might help you!
# Create user-by-item matrix user_by_movie = user_items.groupby(['user_id', 'movie_id'])['rating'].max().unstack()
_____no_output_____
MIT
lessons/Recommendations/1_Intro_to_Recommendations/4_Collaborative Filtering - Solution.ipynb
callezenwaka/DSND_Term2
Check your results below to make sure your matrix is ready for the upcoming sections.
assert movies.shape[0] == user_by_movie.shape[1], "Oh no! Your matrix should have {} columns, and yours has {}!".format(movies.shape[0], user_by_movie.shape[1]) assert reviews.user_id.nunique() == user_by_movie.shape[0], "Oh no! Your matrix should have {} rows, and yours has {}!".format(reviews.user_id.nunique(), user_by_movie.shape[0]) print("Looks like you are all set! Proceed!") HTML('<img src="images/greatjob.webp">')
_____no_output_____
MIT
lessons/Recommendations/1_Intro_to_Recommendations/4_Collaborative Filtering - Solution.ipynb
callezenwaka/DSND_Term2
`2.` Now that you have a matrix of users by movies, use this matrix to create a dictionary where the key is each user and the value is an array of the movies each user has rated.
# Create a dictionary with users and corresponding movies seen def movies_watched(user_id): ''' INPUT: user_id - the user_id of an individual as int OUTPUT: movies - an array of movies the user has watched ''' movies = user_by_movie.loc[user_id][user_by_movie.loc[user_id].isnull() == False].index.values return movies def create_user_movie_dict(): ''' INPUT: None OUTPUT: movies_seen - a dictionary where each key is a user_id and the value is an array of movie_ids Creates the movies_seen dictionary ''' n_users = user_by_movie.shape[0] movies_seen = dict() for user1 in range(1, n_users+1): # assign list of movies to each user key movies_seen[user1] = movies_watched(user1) return movies_seen movies_seen = create_user_movie_dict()
_____no_output_____
MIT
lessons/Recommendations/1_Intro_to_Recommendations/4_Collaborative Filtering - Solution.ipynb
callezenwaka/DSND_Term2
`3.` If a user hasn't rated more than 2 movies, we consider these users "too new". Create a new dictionary that only contains users who have rated more than 2 movies. This dictionary will be used for all the final steps of this workbook.
# Remove individuals who have watched 2 or fewer movies - don't have enough data to make recs def create_movies_to_analyze(movies_seen, lower_bound=2): ''' INPUT: movies_seen - a dictionary where each key is a user_id and the value is an array of movie_ids lower_bound - (an int) a user must have more movies seen than the lower bound to be added to the movies_to_analyze dictionary OUTPUT: movies_to_analyze - a dictionary where each key is a user_id and the value is an array of movie_ids The movies_seen and movies_to_analyze dictionaries should be the same except that the output dictionary has removed ''' movies_to_analyze = dict() for user, movies in movies_seen.items(): if len(movies) > lower_bound: movies_to_analyze[user] = movies return movies_to_analyze movies_to_analyze = create_movies_to_analyze(movies_seen) # Run the tests below to check that your movies_to_analyze matches the solution assert len(movies_to_analyze) == 23512, "Oops! It doesn't look like your dictionary has the right number of individuals." assert len(movies_to_analyze[2]) == 23, "Oops! User 2 didn't match the number of movies we thought they would have." assert len(movies_to_analyze[7]) == 3, "Oops! User 7 didn't match the number of movies we thought they would have." print("If this is all you see, you are good to go!")
_____no_output_____
MIT
lessons/Recommendations/1_Intro_to_Recommendations/4_Collaborative Filtering - Solution.ipynb
callezenwaka/DSND_Term2
Calculating User SimilaritiesNow that you have set up the **movies_to_analyze** dictionary, it is time to take a closer look at the similarities between users. Below is the pseudocode for how I thought about determining the similarity between users:```for user1 in movies_to_analyze for user2 in movies_to_analyze see how many movies match between the two users if more than two movies in common pull the overlapping movies compute the distance/similarity metric between ratings on the same movies for the two users store the users and the distance metric```However, this took a very long time to run, and other methods of performing these operations did not fit on the workspace memory!Therefore, rather than creating a dataframe with all possible pairings of users in our data, your task for this question is to look at a few specific examples of the correlation between ratings given by two users. For this question consider you want to compute the [correlation](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.corr.html) between users.`4.` Using the **movies_to_analyze** dictionary and **user_by_movie** dataframe, create a function that computes the correlation between the ratings of similar movies for two users. Then use your function to compare your results to ours using the tests below.
def compute_correlation(user1, user2): ''' INPUT user1 - int user_id user2 - int user_id OUTPUT the correlation between the matching ratings between the two users ''' # Pull movies for each user movies1 = movies_to_analyze[user1] movies2 = movies_to_analyze[user2] # Find Similar Movies sim_movs = np.intersect1d(movies1, movies2, assume_unique=True) # Calculate correlation between the users df = user_by_movie.loc[(user1, user2), sim_movs] corr = df.transpose().corr().iloc[0,1] return corr #return the correlation # Test your function against the solution assert compute_correlation(2,2) == 1.0, "Oops! The correlation between a user and itself should be 1.0." assert round(compute_correlation(2,66), 2) == 0.76, "Oops! The correlation between user 2 and 66 should be about 0.76." assert np.isnan(compute_correlation(2,104)), "Oops! The correlation between user 2 and 104 should be a NaN." print("If this is all you see, then it looks like your function passed all of our tests!")
_____no_output_____
MIT
lessons/Recommendations/1_Intro_to_Recommendations/4_Collaborative Filtering - Solution.ipynb
callezenwaka/DSND_Term2
Why the NaN's?If the function you wrote passed all of the tests, then you have correctly set up your function to calculate the correlation between any two users. `5.` But one question is, why are we still obtaining **NaN** values? As you can see in the code cell above, users 2 and 104 have a correlation of **NaN**. Why? Think and write your ideas here about why these NaNs exist, and use the cells below to do some coding to validate your thoughts. You can check other pairs of users and see that there are actually many NaNs in our data - 2,526,710 of them in fact. These NaN's ultimately make the correlation coefficient a less than optimal measure of similarity between two users.```In the denominator of the correlation coefficient, we calculate the standard deviation for each user's ratings. The ratings for user 2 are all the same rating on the movies that match with user 104. Therefore, the standard deviation is 0. Because a 0 is in the denominator of the correlation coefficient, we end up with a **NaN** correlation coefficient. Therefore, a different approach is likely better for this particular situation.```
# Which movies did both user 2 and user 104 see? set_2 = set(movies_to_analyze[2]) set_104 = set(movies_to_analyze[104]) set_2.intersection(set_104) # What were the ratings for each user on those movies? print(user_by_movie.loc[2, set_2.intersection(set_104)]) print(user_by_movie.loc[104, set_2.intersection(set_104)])
_____no_output_____
MIT
lessons/Recommendations/1_Intro_to_Recommendations/4_Collaborative Filtering - Solution.ipynb
callezenwaka/DSND_Term2
`6.` Because the correlation coefficient proved to be less than optimal for relating user ratings to one another, we could instead calculate the euclidean distance between the ratings. I found [this post](https://stackoverflow.com/questions/1401712/how-can-the-euclidean-distance-be-calculated-with-numpy) particularly helpful when I was setting up my function. This function should be very similar to your previous function. When you feel confident with your function, test it against our results.
def compute_euclidean_dist(user1, user2): ''' INPUT user1 - int user_id user2 - int user_id OUTPUT the euclidean distance between user1 and user2 ''' # Pull movies for each user movies1 = movies_to_analyze[user1] movies2 = movies_to_analyze[user2] # Find Similar Movies sim_movs = np.intersect1d(movies1, movies2, assume_unique=True) # Calculate euclidean distance between the users df = user_by_movie.loc[(user1, user2), sim_movs] dist = np.linalg.norm(df.loc[user1] - df.loc[user2]) return dist #return the euclidean distance # Read in solution euclidean distances" import pickle df_dists = pd.read_pickle("data/Term2/recommendations/lesson1/data/dists.p") # Test your function against the solution assert compute_euclidean_dist(2,2) == df_dists.query("user1 == 2 and user2 == 2")['eucl_dist'][0], "Oops! The distance between a user and itself should be 0.0." assert round(compute_euclidean_dist(2,66), 2) == round(df_dists.query("user1 == 2 and user2 == 66")['eucl_dist'][1], 2), "Oops! The distance between user 2 and 66 should be about 2.24." assert np.isnan(compute_euclidean_dist(2,104)) == np.isnan(df_dists.query("user1 == 2 and user2 == 104")['eucl_dist'][4]), "Oops! The distance between user 2 and 104 should be 2." print("If this is all you see, then it looks like your function passed all of our tests!")
_____no_output_____
MIT
lessons/Recommendations/1_Intro_to_Recommendations/4_Collaborative Filtering - Solution.ipynb
callezenwaka/DSND_Term2
Using the Nearest Neighbors to Make RecommendationsIn the previous question, you read in **df_dists**. Therefore, you have a measure of distance between each user and every other user. This dataframe holds every possible pairing of users, as well as the corresponding euclidean distance.Because of the **NaN** values that exist within the correlations of the matching ratings for many pairs of users, as we discussed above, we will proceed using **df_dists**. You will want to find the users that are 'nearest' each user. Then you will want to find the movies the closest neighbors have liked to recommend to each user.I made use of the following objects:* df_dists (to obtain the neighbors)* user_items (to obtain the movies the neighbors and users have rated)* movies (to obtain the names of the movies)`7.` Complete the functions below, which allow you to find the recommendations for any user. There are five functions which you will need:* **find_closest_neighbors** - this returns a list of user_ids from closest neighbor to farthest neighbor using euclidean distance* **movies_liked** - returns an array of movie_ids* **movie_names** - takes the output of movies_liked and returns a list of movie names associated with the movie_ids* **make_recommendations** - takes a user id and goes through closest neighbors to return a list of movie names as recommendations* **all_recommendations** = loops through every user and returns a dictionary of with the key as a user_id and the value as a list of movie recommendations
def find_closest_neighbors(user): ''' INPUT: user - (int) the user_id of the individual you want to find the closest users OUTPUT: closest_neighbors - an array of the id's of the users sorted from closest to farthest away ''' # I treated ties as arbitrary and just kept whichever was easiest to keep using the head method # You might choose to do something less hand wavy closest_users = df_dists[df_dists['user1']==user].sort_values(by='eucl_dist').iloc[1:]['user2'] closest_neighbors = np.array(closest_users) return closest_neighbors def movies_liked(user_id, min_rating=7): ''' INPUT: user_id - the user_id of an individual as int min_rating - the minimum rating considered while still a movie is still a "like" and not a "dislike" OUTPUT: movies_liked - an array of movies the user has watched and liked ''' movies_liked = np.array(user_items.query('user_id == @user_id and rating > (@min_rating -1)')['movie_id']) return movies_liked def movie_names(movie_ids): ''' INPUT movie_ids - a list of movie_ids OUTPUT movies - a list of movie names associated with the movie_ids ''' movie_lst = list(movies[movies['movie_id'].isin(movie_ids)]['movie']) return movie_lst def make_recommendations(user, num_recs=10): ''' INPUT: user - (int) a user_id of the individual you want to make recommendations for num_recs - (int) number of movies to return OUTPUT: recommendations - a list of movies - if there are "num_recs" recommendations return this many otherwise return the total number of recommendations available for the "user" which may just be an empty list ''' # I wanted to make recommendations by pulling different movies than the user has already seen # Go in order from closest to farthest to find movies you would recommend # I also only considered movies where the closest user rated the movie as a 9 or 10 # movies_seen by user (we don't want to recommend these) movies_seen = movies_watched(user) closest_neighbors = find_closest_neighbors(user) # Keep the recommended movies here recs = np.array([]) # Go through the neighbors and identify movies they like the user hasn't seen for neighbor in closest_neighbors: neighbs_likes = movies_liked(neighbor) #Obtain recommendations for each neighbor new_recs = np.setdiff1d(neighbs_likes, movies_seen, assume_unique=True) # Update recs with new recs recs = np.unique(np.concatenate([new_recs, recs], axis=0)) # If we have enough recommendations exit the loop if len(recs) > num_recs-1: break # Pull movie titles using movie ids recommendations = movie_names(recs) return recommendations def all_recommendations(num_recs=10): ''' INPUT num_recs (int) the (max) number of recommendations for each user OUTPUT all_recs - a dictionary where each key is a user_id and the value is an array of recommended movie titles ''' # All the users we need to make recommendations for users = np.unique(df_dists['user1']) n_users = len(users) #Store all recommendations in this dictionary all_recs = dict() # Make the recommendations for each user for user in users: all_recs[user] = make_recommendations(user, num_recs) return all_recs all_recs = all_recommendations(10) # This loads our solution dictionary so you can compare results - FULL PATH IS "data/Term2/recommendations/lesson1/data/all_recs.p" all_recs_sol = pd.read_pickle("data/Term2/recommendations/lesson1/data/all_recs.p") assert all_recs[2] == make_recommendations(2), "Oops! Your recommendations for user 2 didn't match ours." assert all_recs[26] == make_recommendations(26), "Oops! It actually wasn't possible to make any recommendations for user 26." assert all_recs[1503] == make_recommendations(1503), "Oops! Looks like your solution for user 1503 didn't match ours." print("If you made it here, you now have recommendations for many users using collaborative filtering!") HTML('<img src="images/greatjob.webp">')
_____no_output_____
MIT
lessons/Recommendations/1_Intro_to_Recommendations/4_Collaborative Filtering - Solution.ipynb
callezenwaka/DSND_Term2
Now What?If you made it this far, you have successfully implemented a solution to making recommendations using collaborative filtering. `8.` Let's do a quick recap of the steps taken to obtain recommendations using collaborative filtering.
# Check your understanding of the results by correctly filling in the dictionary below a = "pearson's correlation and spearman's correlation" b = 'item based collaborative filtering' c = "there were too many ratings to get a stable metric" d = 'user based collaborative filtering' e = "euclidean distance and pearson's correlation coefficient" f = "manhattan distance and euclidean distance" g = "spearman's correlation and euclidean distance" h = "the spread in some ratings was zero" i = 'content based recommendation' sol_dict = { 'The type of recommendation system implemented here was a ...': d, 'The two methods used to estimate user similarity were: ': e, 'There was an issue with using the correlation coefficient. What was it?': h } t.test_recs(sol_dict)
_____no_output_____
MIT
lessons/Recommendations/1_Intro_to_Recommendations/4_Collaborative Filtering - Solution.ipynb
callezenwaka/DSND_Term2
Additionally, let's take a closer look at some of the results. There are two solution files that you read in to check your results, and you created these objects* **df_dists** - a dataframe of user1, user2, euclidean distance between the two users* **all_recs_sol** - a dictionary of all recommendations (key = user, value = list of recommendations) `9.` Use these two objects along with the cells below to correctly fill in the dictionary below and complete this notebook!
a = 567 b = 1503 c = 1319 d = 1325 e = 2526710 f = 0 g = 'Use another method to make recommendations - content based, knowledge based, or model based collaborative filtering' sol_dict2 = { 'For how many pairs of users were we not able to obtain a measure of similarity using correlation?': e, 'For how many pairs of users were we not able to obtain a measure of similarity using euclidean distance?': f, 'For how many users were we unable to make any recommendations for using collaborative filtering?': c, 'For how many users were we unable to make 10 recommendations for using collaborative filtering?': d, 'What might be a way for us to get 10 recommendations for every user?': g } t.test_recs2(sol_dict2) # Use the cells below for any work you need to do! # Users without recs users_without_recs = [] for user, movie_recs in all_recs.items(): if len(movie_recs) == 0: users_without_recs.append(user) len(users_without_recs) # NaN euclidean distance values df_dists['eucl_dist'].isnull().sum() # Users with fewer than 10 recs users_with_less_than_10recs = [] for user, movie_recs in all_recs.items(): if len(movie_recs) < 10: users_with_less_than_10recs.append(user) len(users_with_less_than_10recs)
_____no_output_____
MIT
lessons/Recommendations/1_Intro_to_Recommendations/4_Collaborative Filtering - Solution.ipynb
callezenwaka/DSND_Term2
Feature Engineering notebook This is a demo notebook to play with feature engineering toolkit. In this notebook we will see some capabilities of the toolkit like filling missing values, PCA, Random Projections, Normalizing values, and etc.
%load_ext autoreload %autoreload 1 %matplotlib inline from Pipeline import Pipeline from Compare import Compare from StructuredData.LoadCSV import LoadCSV from StructuredData.MissingValues import MissingValues from StructuredData.Normalize import Normalize from StructuredData.Factorize import Factorize from StructuredData.PCAFeatures import PCAFeatures from StructuredData.RandomProjection import RandomProjection csv_path = './DemoData/synthetic_classification.csv' df = LoadCSV(csv_path)() df.head(5)
_____no_output_____
MIT
Feature_Engineering_Toolkit_demo_features_v1.ipynb
jassimran/Feature-Engineering-Toolkit
Filling missing valuesBy default, median of the values of the column is applied for filling out the missing values
pipelineObj = Pipeline([MissingValues()]) new_df = pipelineObj(df, '0') new_df.head(5)
_____no_output_____
MIT
Feature_Engineering_Toolkit_demo_features_v1.ipynb
jassimran/Feature-Engineering-Toolkit
However, the imputation type is a configurable parameter to customize it as per needs.
pipelineObj = Pipeline([MissingValues(imputation_type = 'mean')]) new_df = pipelineObj(df, '0') new_df.head(5)
_____no_output_____
MIT
Feature_Engineering_Toolkit_demo_features_v1.ipynb
jassimran/Feature-Engineering-Toolkit
Normalize dataBy default, Min max normalization is applied. Please note that assertion has been set such that normlization cant be applied if there rae missing values in that column. This is part of validation phase
pipelineObj = Pipeline([MissingValues(), Normalize(['1','2', '3'])]) new_df = pipelineObj(df, '0') df.head(5)
_____no_output_____
MIT
Feature_Engineering_Toolkit_demo_features_v1.ipynb
jassimran/Feature-Engineering-Toolkit
Factorize dataEncode the object as an enumerated type or categorical variable for column 4 and 8, but we must remove missing values before Factorizing
pipelineObj = Pipeline([MissingValues(), Factorize(['4','8'])]) new_df = pipelineObj(df, '0') new_df.head(5)
_____no_output_____
MIT
Feature_Engineering_Toolkit_demo_features_v1.ipynb
jassimran/Feature-Engineering-Toolkit
Principal Component Analysis Use n_components to play around with how many dimensions you want to keep. Please note that assertions will validate if a data frame has any missing values before applying PCA. In the below example, the pipeline first removed missing values before applying PCA.
pipelineObj = Pipeline([MissingValues(imputation_type = 'mean'), PCAFeatures(n_components = 5)]) pca_df = pipelineObj(df, '0') pca_df.head(5)
_____no_output_____
MIT
Feature_Engineering_Toolkit_demo_features_v1.ipynb
jassimran/Feature-Engineering-Toolkit
Random ProjectionsUse n_components to play around with how many dimensions you want to keep. Please note that assertions will validate if a data frame has any missing values before applying Random Projections. Type of projections can be specified as an argument, by default GaussianRandomProjection is applied. In the below example, the pipeline first removed missing values before applying Sparse Random Projection. As of now, 'auto' deduction of number of dimensions which are sufficient to represent the features with minimal loss of information has not been implemeted, hence default value for ouput columns is 2 (Use n_components to specify custom value)
pipelineObj = Pipeline([MissingValues(imputation_type = 'mean'), RandomProjection(n_components = 6, proj_type = 'Sparse')]) new_df = pipelineObj(df, '0') new_df.head()
_____no_output_____
MIT
Feature_Engineering_Toolkit_demo_features_v1.ipynb
jassimran/Feature-Engineering-Toolkit
Download the modified CSVAt any point, the new tranformed features can be downloaded using below command
csv_path = './DemoData/synthetic_classification_transformed.csv' new_df.to_csv(csv_path)
_____no_output_____
MIT
Feature_Engineering_Toolkit_demo_features_v1.ipynb
jassimran/Feature-Engineering-Toolkit
Figure 4: NIRCam Grism + Filter Sensitivities ($1^{st}$ order) *** Table of Contents1. [Information](Information)2. [Imports](Imports)3. [Data](Data)4. [Generate the First Order Grism + Filter Sensitivity Plot](Generate-the-First-Order-Grism-+-Filter-Sensitivity-Plot)5. [Issues](Issues)6. [About this Notebook](About-this-Notebook)*** Information JDox links: * [NIRCam Grisms](https://jwst-docs.stsci.edu/display/JTI/NIRCam+GrismsNIRCamGrisms-Sensitivity) * Figure 4. NIRCam grism + filter sensitivities ($1^{st}$ order) Imports
import os import pylab import numpy as np from astropy.io import ascii, fits from astropy.table import Table from scipy.optimize import fmin from scipy.interpolate import interp1d import requests import matplotlib.pyplot as plt %matplotlib inline
_____no_output_____
BSD-3-Clause
nircam_jdox/nircam_grisms/figure4_sensitivity.ipynb
aliciacanipe/nircam_jdox
Data Data Location: The data is stored in a NIRCam JDox Box folder here:[ST-INS-NIRCAM -> JDox -> nircam_grisms](https://stsci.box.com/s/wu9mo54vi957x50rdirlcg9zkkr3xiaw)
files = [('https://stsci.box.com/shared/static/i0a9dkp02nnuw6w0xcfd7b42ctxfb8es.fits', 'NIRCam.F250M.R.A.1st.sensitivity.fits'), ('https://stsci.box.com/shared/static/vfnyk9veote92dz1edpbu83un5n20rsw.fits', 'NIRCam.F250M.R.A.2nd.sensitivity.fits'), ('https://stsci.box.com/shared/static/ssvltwzt7f4y5lfvch2o1prdk5hb2gz2.fits', 'NIRCam.F250M.R.B.1st.sensitivity.fits'), ('https://stsci.box.com/shared/static/56wjvzx1jf2i5yg7l1gg77vtvi01ec5p.fits', 'NIRCam.F250M.R.B.2nd.sensitivity.fits'), ('https://stsci.box.com/shared/static/v1621dcm44be21n381mbgd2hzxxqrb2e.fits', 'NIRCam.F277W.R.A.1st.sensitivity.fits'), ('https://stsci.box.com/shared/static/8slec91wj6ety6d8qvest09msklpypi8.fits', 'NIRCam.F277W.R.A.2nd.sensitivity.fits'), ('https://stsci.box.com/shared/static/r42hdv64x6skqqszv24qkxohiijitqcf.fits', 'NIRCam.F277W.R.B.1st.sensitivity.fits'), ('https://stsci.box.com/shared/static/3vye6ni05i3kdqyd5vs1jk2q59yyms2e.fits', 'NIRCam.F277W.R.B.2nd.sensitivity.fits'), ('https://stsci.box.com/shared/static/twcxbe6lxrjckqph980viiijv8fpmm8b.fits', 'NIRCam.F300M.R.A.1st.sensitivity.fits'), ('https://stsci.box.com/shared/static/bpvluysg3zsl3q4b4l5rj5nue84ydjem.fits', 'NIRCam.F300M.R.A.2nd.sensitivity.fits'), ('https://stsci.box.com/shared/static/15x7rbwngsxiubbexy7zcezxqm3ndq54.fits', 'NIRCam.F300M.R.B.1st.sensitivity.fits'), ('https://stsci.box.com/shared/static/a7tqdp0feqcttw3d9vaioy7syzfsftz6.fits', 'NIRCam.F300M.R.B.2nd.sensitivity.fits'), ('https://stsci.box.com/shared/static/i76sb53pthieh4kn62fpxhcxn8lreffj.fits', 'NIRCam.F322W2.R.A.1st.sensitivity.fits'), ('https://stsci.box.com/shared/static/wgbyfi3ofs7i19b7zsf2iceupzkbkokq.fits', 'NIRCam.F322W2.R.A.2nd.sensitivity.fits'), ('https://stsci.box.com/shared/static/jhk3deym5wbc68djtcahy3otk2xfjdb5.fits', 'NIRCam.F322W2.R.B.1st.sensitivity.fits'), ('https://stsci.box.com/shared/static/zu3xqnicbyfjn54yb4kgzvnglanf13ak.fits', 'NIRCam.F322W2.R.B.2nd.sensitivity.fits'), ('https://stsci.box.com/shared/static/e2srtf52wnh6vvxsy2aiknbcr8kx2xr5.fits', 'NIRCam.F335M.R.A.1st.sensitivity.fits'), ('https://stsci.box.com/shared/static/bav3tswdd7lemsyd53bnpj4b6yke5bgd.fits', 'NIRCam.F335M.R.A.2nd.sensitivity.fits'), ('https://stsci.box.com/shared/static/81wm768mjemzj84w1ogzqddgmrk3exvt.fits', 'NIRCam.F335M.R.B.1st.sensitivity.fits'), ('https://stsci.box.com/shared/static/fhopmyongqifibdtwt3qr682lwdjaf7a.fits', 'NIRCam.F335M.R.B.2nd.sensitivity.fits'), ('https://stsci.box.com/shared/static/j9gd8bclethgex40o7qi1e79hgj2hsyt.fits', 'NIRCam.F356W.R.A.1st.sensitivity.fits'), ('https://stsci.box.com/shared/static/s23novi3p6qwm9f9hj9wutgju08be776.fits', 'NIRCam.F356W.R.A.2nd.sensitivity.fits'), ('https://stsci.box.com/shared/static/41fnmswn1ttnwts6jj5fu73m4hs6icxd.fits', 'NIRCam.F356W.R.B.1st.sensitivity.fits'), ('https://stsci.box.com/shared/static/wx3rvjt0mvf0hnhv4wvqcmxu61gamwmm.fits', 'NIRCam.F356W.R.B.2nd.sensitivity.fits'), ('https://stsci.box.com/shared/static/e0p6vkiow4jlp49deqkji9kekzdt4oon.fits', 'NIRCam.F360M.R.A.1st.sensitivity.fits'), ('https://stsci.box.com/shared/static/xbh0rjjvxn0x22k9ktiyikol7c4ep6ka.fits', 'NIRCam.F360M.R.A.2nd.sensitivity.fits'), ('https://stsci.box.com/shared/static/e7artuotyv8l9wfoa3rk1k00o5mv8so8.fits', 'NIRCam.F360M.R.B.1st.sensitivity.fits'), ('https://stsci.box.com/shared/static/9r5bmick13ti22l6hcsw0uod75vqartw.fits', 'NIRCam.F360M.R.B.2nd.sensitivity.fits'), ('https://stsci.box.com/shared/static/tqd1uqsf8nj12he5qa3hna0zodnlzfea.fits', 'NIRCam.F410M.R.A.1st.sensitivity.fits'), ('https://stsci.box.com/shared/static/4szffesvswh0h8fjym5m5ht37sj0jzrl.fits', 'NIRCam.F410M.R.A.2nd.sensitivity.fits'), ('https://stsci.box.com/shared/static/iur0tpbts23lc5rn5n0tplzndlkoudel.fits', 'NIRCam.F410M.R.B.1st.sensitivity.fits'), ('https://stsci.box.com/shared/static/rvz8iznsnl0bsjrqiw7rv74jj24b0otb.fits', 'NIRCam.F410M.R.B.2nd.sensitivity.fits'), ('https://stsci.box.com/shared/static/sv3g82qbb4u2umksgu5zdl7rp569sdi7.fits', 'NIRCam.F430M.R.A.1st.sensitivity.fits'), ('https://stsci.box.com/shared/static/mmqv1pkuzpj6abtufxxfo960z2v1oygc.fits', 'NIRCam.F430M.R.A.2nd.sensitivity.fits'), ('https://stsci.box.com/shared/static/84q83haic2h6eq5c6p2frkybz551hp8d.fits', 'NIRCam.F430M.R.B.1st.sensitivity.fits'), ('https://stsci.box.com/shared/static/3osceplhq6kmvmm2a72jsgrg6z1ggw1p.fits', 'NIRCam.F430M.R.B.2nd.sensitivity.fits'), ('https://stsci.box.com/shared/static/kitx7gdo5kool6jus2g19vdy7q7hmxck.fits', 'NIRCam.F444W.R.A.1st.sensitivity.fits'), ('https://stsci.box.com/shared/static/ug7y93v0en9c84hfp6d3vtjogmjou9u3.fits', 'NIRCam.F444W.R.A.2nd.sensitivity.fits'), ('https://stsci.box.com/shared/static/0p9h9ofayq8q6dbfsccf3tn5lvxxod9i.fits', 'NIRCam.F444W.R.B.1st.sensitivity.fits'), ('https://stsci.box.com/shared/static/34hbqzibt5h72hm0rj9wylttj7m9wd19.fits', 'NIRCam.F444W.R.B.2nd.sensitivity.fits'), ('https://stsci.box.com/shared/static/vj0rkyebg0afny1khdyiho4mktmtsi1q.fits', 'NIRCam.F460M.R.A.1st.sensitivity.fits'), ('https://stsci.box.com/shared/static/ky1z1dpewsjqab1o9hstihrec7h52oq4.fits', 'NIRCam.F460M.R.A.2nd.sensitivity.fits'), ('https://stsci.box.com/shared/static/s93cwpcvnxfjwqbulnkh9ts9ln0fu9cz.fits', 'NIRCam.F460M.R.B.1st.sensitivity.fits'), ('https://stsci.box.com/shared/static/1178in8zg462es1fkl0mgcbpgp6kgb6t.fits', 'NIRCam.F460M.R.B.2nd.sensitivity.fits'), ('https://stsci.box.com/shared/static/b855uj293klac8hnoqhrnv8ei0rcvudj.fits', 'NIRCam.F480M.R.A.1st.sensitivity.fits'), ('https://stsci.box.com/shared/static/werzjlp3ybxk2ovg6u689zsfpts2t8w3.fits', 'NIRCam.F480M.R.A.2nd.sensitivity.fits'), ('https://stsci.box.com/shared/static/yrh5mylru1upbo5rifbz77acn8k1ud6i.fits', 'NIRCam.F480M.R.B.1st.sensitivity.fits'), ('https://stsci.box.com/shared/static/oxu6jsg9cn9yqkh3nh646fx0flhw8rej.fits', 'NIRCam.F480M.R.B.2nd.sensitivity.fits')] def download_file(url, file_name, output_directory='./', overwrite=False): """Download a file from Box given the direct URL Parameters ---------- url : str URL to the file to be downloaded file_name : str The name of the file being downloaded output_directory : str Directory to download file_name into overwrite : str If False and the file to download already exists, the download will be skipped. If True, the file will be downloaded regardless of whether it already exists in output_directory Returns ------- download_filename : str Name of the downloaded file """ download_filename = os.path.join(output_directory, file_name) if not os.path.isfile(download_filename) or overwrite is True: print("Downloading {}".format(file_name)) with requests.get(url, stream=True) as response: if response.status_code != 200: raise RuntimeError("Wrong URL - {}".format(url)) with open(download_filename, 'wb') as f: for chunk in response.iter_content(chunk_size=2048): if chunk: f.write(chunk) else: print("{} already exists. Skipping download.".format(download_filename)) return download_filename
_____no_output_____
BSD-3-Clause
nircam_jdox/nircam_grisms/figure4_sensitivity.ipynb
aliciacanipe/nircam_jdox
Load the data(The next cell assumes you downloaded the data into your ```Users/$(logname)/``` home directory)
if os.environ.get('LOGNAME') is None: raise ValueError("WARNING: LOGNAME environment variable not set!") box_directory = os.path.join("/Users/", os.environ['LOGNAME'], "box_data") box_directory if not os.path.isdir(box_directory): try: os.mkdir(box_directory) except: raise OSError("Unable to create {}".format(box_directory)) for file_info in files: file_url, filename = file_info outfile = download_file(file_url, filename, output_directory=box_directory) grism = "R" mod = "A" filters = ["F250M","F277W","F300M","F322W2","F335M","F356W","F360M","F410M","F430M","F444W","F460M","F480M"] filenames = [] for fil in filters: filenames.append(os.path.join(box_directory, "NIRCam.%s.%s.%s.1st.sensitivity.fits" % (fil,grism,mod))) filenames
_____no_output_____
BSD-3-Clause
nircam_jdox/nircam_grisms/figure4_sensitivity.ipynb
aliciacanipe/nircam_jdox
Generate the First Order Grism + Filter Sensitivity Plot Define some convenience functions
def find_nearest(array,value): idx = (np.abs(array-value)).argmin() return array[idx] def find_nearest(array,value): idx = (np.abs(array-value)).argmin() return array[idx] def find_mid(w,s,w0,thr=0.05): fct = interp1d(w,s,bounds_error=None,fill_value='extrapolate') def func(x): #print "x:",x return np.abs(fct(x)-thr) res = fmin(func,w0) return res[0]
_____no_output_____
BSD-3-Clause
nircam_jdox/nircam_grisms/figure4_sensitivity.ipynb
aliciacanipe/nircam_jdox
Create the plots
f, ax1 = plt.subplots(1, figsize=(15, 10)) NUM_COLORS = len(filters) cm = pylab.get_cmap('tab10') grism = "R" mod = "A" for i,fname in zip(range(NUM_COLORS),filenames): color = cm(1.*i/NUM_COLORS) d = fits.open(fname) w = d[1].data["WAVELENGTH"] s = d[1].data["SENSITIVITY"]/(1e17) ax1.plot(w,s,label=fil,lw=4,color=color) ax1.legend(fontsize=16) miny,maxy = ax1.get_ylim() minx,maxx = ax1.get_xlim() ax1.set_ylim(miny,2.15) ax1.set_xlim(2.1,maxx) ax1.tick_params(labelsize=18) f.text(0.5, 0.04, 'Wavelength ($\mu m$)', ha='center', fontsize=22) f.text(0.03, 0.5, 'Sensitivity ('+r'$1 \times 10^{17}\ \frac{e^{-} s^{-1}}{erg s^{-1} cm^{-2} A^{-1}}$'+')', va='center', rotation='vertical', fontsize=22)
_____no_output_____
BSD-3-Clause
nircam_jdox/nircam_grisms/figure4_sensitivity.ipynb
aliciacanipe/nircam_jdox
Figure option 2: filter name positions
f, ax1 = plt.subplots(1, figsize=(15, 10)) thr = 0.05 # 5% of peak boundaries NUM_COLORS = len(filters) cm = pylab.get_cmap('tab10') for i,fil,fname in zip(range(NUM_COLORS),filters,filenames): color = cm(1.*i/NUM_COLORS) d = fits.open(fname) w = d[1].data["WAVELENGTH"] s = d[1].data["SENSITIVITY"]/(1e17) wmin,wmax = np.min(w),np.max(w) vg = w<(wmax+wmin)/2. w1 = find_mid(w[vg],s[vg],wmin,thr) vg = w>(wmax+wmin)/2. w2 = find_mid(w[vg],s[vg],wmax,thr) if fil == 'F356W': ax1.text((w2+w1)/2 -0.04, s[np.where(w == find_nearest(w, (w2+w1)/2))]+0.25, fil, ha='center',color=color,fontsize=16,weight='bold') elif fil == 'F335M': ax1.text((w2+w1)/2 -0.03, s[np.where(w == find_nearest(w, (w2+w1)/2))]+0.22, fil, ha='center',color=color,fontsize=16,weight='bold') elif fil == 'F460M': ax1.text((w2+w1)/2+0.15, s[np.where(w == find_nearest(w, (w2+w1)/2))]+0.12, fil, ha='center',color=color,fontsize=16,weight='bold') elif fil == 'F480M': ax1.text((w2+w1)/2+0.15, s[np.where(w == find_nearest(w, (w2+w1)/2))]+0.1, fil, ha='center',color=color,fontsize=16,weight='bold') else: ax1.text((w2+w1)/2 -0.04, s[np.where(w == find_nearest(w, (w2+w1)/2))]+0.2, fil, ha='center',color=color,fontsize=16,weight='bold') ax1.plot(w,s,label=fil,lw=4,color=color) miny,maxy = ax1.get_ylim() minx,maxx = ax1.get_xlim() ax1.set_ylim(miny,2.15) ax1.set_xlim(2.1,maxx) ax1.tick_params(labelsize=18) f.text(0.5, 0.04, 'Wavelength ($\mu m$)', ha='center', fontsize=22) f.text(0.03, 0.5, 'Sensitivity ('+r'$1 \times 10^{17}\ \frac{e^{-} s^{-1}}{erg\ s^{-1} cm^{-2} A^{-1}}$'+')', va='center', rotation='vertical', fontsize=22)
_____no_output_____
BSD-3-Clause
nircam_jdox/nircam_grisms/figure4_sensitivity.ipynb
aliciacanipe/nircam_jdox
**Version 2**: disable unfreezing for speed setup for pytorch/xla on TPU
import os import collections from datetime import datetime, timedelta os.environ["XRT_TPU_CONFIG"] = "tpu_worker;0;10.0.0.2:8470" _VersionConfig = collections.namedtuple('_VersionConfig', 'wheels,server') VERSION = "torch_xla==nightly" CONFIG = { 'torch_xla==nightly': _VersionConfig('nightly', 'XRT-dev{}'.format( (datetime.today() - timedelta(1)).strftime('%Y%m%d')))}[VERSION] DIST_BUCKET = 'gs://tpu-pytorch/wheels' TORCH_WHEEL = 'torch-{}-cp36-cp36m-linux_x86_64.whl'.format(CONFIG.wheels) TORCH_XLA_WHEEL = 'torch_xla-{}-cp36-cp36m-linux_x86_64.whl'.format(CONFIG.wheels) TORCHVISION_WHEEL = 'torchvision-{}-cp36-cp36m-linux_x86_64.whl'.format(CONFIG.wheels) !export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH !apt-get install libomp5 -y !apt-get install libopenblas-dev -y !pip uninstall -y torch torchvision !gsutil cp "$DIST_BUCKET/$TORCH_WHEEL" . !gsutil cp "$DIST_BUCKET/$TORCH_XLA_WHEEL" . !gsutil cp "$DIST_BUCKET/$TORCHVISION_WHEEL" . !pip install "$TORCH_WHEEL" !pip install "$TORCH_XLA_WHEEL" !pip install "$TORCHVISION_WHEEL"
The following NEW packages will be installed: libomp5 0 upgraded, 1 newly installed, 0 to remove and 32 not upgraded. Need to get 228 kB of archives. After this operation, 750 kB of additional disk space will be used. Get:1 http://deb.debian.org/debian stretch/main amd64 libomp5 amd64 3.9.1-1 [228 kB] Fetched 228 kB in 0s (5208 kB/s) debconf: delaying package configuration, since apt-utils is not installed Selecting previously unselected package libomp5:amd64. (Reading database ... 59973 files and directories currently installed.) Preparing to unpack .../libomp5_3.9.1-1_amd64.deb ... Unpacking libomp5:amd64 (3.9.1-1) ... Setting up libomp5:amd64 (3.9.1-1) ... Processing triggers for libc-bin (2.24-11+deb9u4) ... The following additional packages will be installed: libopenblas-base The following NEW packages will be installed: libopenblas-base libopenblas-dev 0 upgraded, 2 newly installed, 0 to remove and 32 not upgraded. Need to get 7602 kB of archives. After this operation, 91.5 MB of additional disk space will be used. Get:1 http://deb.debian.org/debian stretch/main amd64 libopenblas-base amd64 0.2.19-3 [3793 kB] Get:2 http://deb.debian.org/debian stretch/main amd64 libopenblas-dev amd64 0.2.19-3 [3809 kB] Fetched 7602 kB in 0s (35.9 MB/s) debconf: delaying package configuration, since apt-utils is not installed Selecting previously unselected package libopenblas-base. (Reading database ... 59978 files and directories currently installed.) Preparing to unpack .../libopenblas-base_0.2.19-3_amd64.deb ... Unpacking libopenblas-base (0.2.19-3) ... Selecting previously unselected package libopenblas-dev. Preparing to unpack .../libopenblas-dev_0.2.19-3_amd64.deb ... Unpacking libopenblas-dev (0.2.19-3) ... Processing triggers for libc-bin (2.24-11+deb9u4) ... Setting up libopenblas-base (0.2.19-3) ... update-alternatives: using /usr/lib/openblas-base/libblas.so.3 to provide /usr/lib/libblas.so.3 (libblas.so.3) in auto mode update-alternatives: using /usr/lib/openblas-base/liblapack.so.3 to provide /usr/lib/liblapack.so.3 (liblapack.so.3) in auto mode Setting up libopenblas-dev (0.2.19-3) ... update-alternatives: using /usr/lib/openblas-base/libblas.so to provide /usr/lib/libblas.so (libblas.so) in auto mode update-alternatives: using /usr/lib/openblas-base/liblapack.so to provide /usr/lib/liblapack.so (liblapack.so) in auto mode Processing triggers for libc-bin (2.24-11+deb9u4) ... Found existing installation: torch 1.4.0 Uninstalling torch-1.4.0: Successfully uninstalled torch-1.4.0 Found existing installation: torchvision 0.5.0 Uninstalling torchvision-0.5.0: Successfully uninstalled torchvision-0.5.0 Copying gs://tpu-pytorch/wheels/torch-nightly-cp36-cp36m-linux_x86_64.whl... Operation completed over 1 objects/77.8 MiB. Copying gs://tpu-pytorch/wheels/torch_xla-nightly-cp36-cp36m-linux_x86_64.whl... Operation completed over 1 objects/112.7 MiB. Copying gs://tpu-pytorch/wheels/torchvision-nightly-cp36-cp36m-linux_x86_64.whl... Operation completed over 1 objects/2.5 MiB. Processing ./torch-nightly-cp36-cp36m-linux_x86_64.whl ERROR: fastai 1.0.60 requires torchvision, which is not installed. ERROR: catalyst 20.2.1 requires torchvision>=0.2.1, which is not installed. ERROR: allennlp 0.9.0 has requirement spacy<2.2,>=2.1.0, but you'll have spacy 2.2.3 which is incompatible. Installing collected packages: torch Successfully installed torch-1.5.0a0+e0b90b8 Processing ./torch_xla-nightly-cp36-cp36m-linux_x86_64.whl Installing collected packages: torch-xla Successfully installed torch-xla-0.8+f1455a7 Processing ./torchvision-nightly-cp36-cp36m-linux_x86_64.whl Requirement already satisfied: numpy in /opt/conda/lib/python3.6/site-packages (from torchvision==nightly) (1.18.1) Requirement already satisfied: pillow>=4.1.1 in /opt/conda/lib/python3.6/site-packages (from torchvision==nightly) (5.4.1) Requirement already satisfied: torch in /opt/conda/lib/python3.6/site-packages (from torchvision==nightly) (1.5.0a0+e0b90b8) Requirement already satisfied: six in /opt/conda/lib/python3.6/site-packages (from torchvision==nightly) (1.14.0) Installing collected packages: torchvision Successfully installed torchvision-0.6.0a0+b2e9565
MIT
image/2. Flower Classification with TPUs/kaggle/fast-pytorch-xla-for-tpu-with-multiprocessing.ipynb
nishchalnishant/Completed_Kaggle_competitions