markdown
stringlengths
0
1.02M
code
stringlengths
0
832k
output
stringlengths
0
1.02M
license
stringlengths
3
36
path
stringlengths
6
265
repo_name
stringlengths
6
127
The syllables of the word `ભાવના` will thus be:
print(gujarati_syllables)
['ભા', 'વ', 'ના']
MIT
languages/south_asia/Gujarati_tutorial.ipynb
glaserti/tutorials
Project 3: Implement SLAM --- Project OverviewIn this project, you'll implement SLAM for robot that moves and senses in a 2 dimensional, grid world!SLAM gives us a way to both localize a robot and build up a map of its environment as a robot moves and senses in real-time. This is an active area of research in the fields of robotics and autonomous systems. Since this localization and map-building relies on the visual sensing of landmarks, this is a computer vision problem. Using what you've learned about robot motion, representations of uncertainty in motion and sensing, and localization techniques, you will be tasked with defining a function, `slam`, which takes in six parameters as input and returns the vector `mu`. > `mu` contains the (x,y) coordinate locations of the robot as it moves, and the positions of landmarks that it senses in the worldYou can implement helper functions as you see fit, but your function must return `mu`. The vector, `mu`, should have (x, y) coordinates interlaced, for example, if there were 2 poses and 2 landmarks, `mu` will look like the following, where `P` is the robot position and `L` the landmark position:```mu = matrix([[Px0], [Py0], [Px1], [Py1], [Lx0], [Ly0], [Lx1], [Ly1]])```You can see that `mu` holds the poses first `(x0, y0), (x1, y1), ...,` then the landmark locations at the end of the matrix; we consider a `nx1` matrix to be a vector. Generating an environmentIn a real SLAM problem, you may be given a map that contains information about landmark locations, and in this example, we will make our own data using the `make_data` function, which generates a world grid with landmarks in it and then generates data by placing a robot in that world and moving and sensing over some numer of time steps. The `make_data` function relies on a correct implementation of robot move/sense functions, which, at this point, should be complete and in the `robot_class.py` file. The data is collected as an instantiated robot moves and senses in a world. Your SLAM function will take in this data as input. So, let's first create this data and explore how it represents the movement and sensor measurements that our robot takes.--- Create the worldUse the code below to generate a world of a specified size with randomly generated landmark locations. You can change these parameters and see how your implementation of SLAM responds! `data` holds the sensors measurements and motion of your robot over time. It stores the measurements as `data[i][0]` and the motion as `data[i][1]`. Helper functionsYou will be working with the `robot` class that may look familiar from the first notebook, In fact, in the `helpers.py` file, you can read the details of how data is made with the `make_data` function. It should look very similar to the robot move/sense cycle you've seen in the first notebook.
import numpy as np from helpers import make_data # your implementation of slam should work with the following inputs # feel free to change these input values and see how it responds! # world parameters num_landmarks = 5 # number of landmarks N = 20 # time steps world_size = 100.0 # size of world (square) # robot parameters measurement_range = 50.0 # range at which we can sense landmarks motion_noise = 2.0 # noise in robot motion measurement_noise = 2.0 # noise in the measurements distance = 20.0 # distance by which robot (intends to) move each iteratation # make_data instantiates a robot, AND generates random landmarks for a given world size and number of landmarks data = make_data(N, num_landmarks, world_size, measurement_range, motion_noise, measurement_noise, distance)
Landmarks: [[12, 44], [62, 98], [19, 13], [45, 12], [7, 97]] Robot: [x=69.61429 y=95.52181]
MIT
3. Landmark Detection and Tracking.ipynb
mitsunami/SLAM
A note on `make_data`The function above, `make_data`, takes in so many world and robot motion/sensor parameters because it is responsible for:1. Instantiating a robot (using the robot class)2. Creating a grid world with landmarks in it**This function also prints out the true location of landmarks and the *final* robot location, which you should refer back to when you test your implementation of SLAM.**The `data` this returns is an array that holds information about **robot sensor measurements** and **robot motion** `(dx, dy)` that is collected over a number of time steps, `N`. You will have to use *only* these readings about motion and measurements to track a robot over time and find the determine the location of the landmarks using SLAM. We only print out the true landmark locations for comparison, later.In `data` the measurement and motion data can be accessed from the first and second index in the columns of the data array. See the following code for an example, where `i` is the time step:```measurement = data[i][0]motion = data[i][1]```
# print out some stats about the data time_step = 0 print('Example measurements: \n', data[time_step][0]) print('\n') print('Example motion: \n', data[time_step][1])
Example measurements: [[0, -38.94955155697709, -7.2954814723926384], [1, 11.679250951477753, 46.597074026819655], [2, -30.450451619432496, -37.41378043748835], [3, -4.896442127766177, -38.434283116881524], [4, -43.08341118340028, 47.17699212819607]] Example motion: [-15.396274422511562, -12.765372454680524]
MIT
3. Landmark Detection and Tracking.ipynb
mitsunami/SLAM
Try changing the value of `time_step`, you should see that the list of measurements varies based on what in the world the robot sees after it moves. As you know from the first notebook, the robot can only sense so far and with a certain amount of accuracy in the measure of distance between its location and the location of landmarks. The motion of the robot always is a vector with two values: one for x and one for y displacement. This structure will be useful to keep in mind as you traverse this data in your implementation of slam. Initialize ConstraintsOne of the most challenging tasks here will be to create and modify the constraint matrix and vector: omega and xi. In the second notebook, you saw an example of how omega and xi could hold all the values the define the relationships between robot poses `xi` and landmark positions `Li` in a 1D world, as seen below, where omega is the blue matrix and xi is the pink vector.In *this* project, you are tasked with implementing constraints for a 2D world. We are referring to robot poses as `Px, Py` and landmark positions as `Lx, Ly`, and one way to approach this challenge is to add *both* x and y locations in the constraint matrices.You may also choose to create two of each omega and xi (one for x and one for y positions). TODO: Write a function that initializes omega and xiComplete the function `initialize_constraints` so that it returns `omega` and `xi` constraints for the starting position of the robot. Any values that we do not yet know should be initialized with the value `0`. You may assume that our robot starts out in exactly the middle of the world with 100% confidence (no motion or measurement noise at this point). The inputs `N` time steps, `num_landmarks`, and `world_size` should give you all the information you need to construct intial constraints of the correct size and starting values.*Depending on your approach you may choose to return one omega and one xi that hold all (x,y) positions *or* two of each (one for x values and one for y); choose whichever makes most sense to you!*
def initialize_constraints(N, num_landmarks, world_size): ''' This function takes in a number of time steps N, number of landmarks, and a world_size, and returns initialized constraint matrices, omega and xi.''' ## Recommended: Define and store the size (rows/cols) of the constraint matrix in a variable ## TODO: Define the constraint matrix, Omega, with two initial "strength" values ## for the initial x, y location of our robot omega = np.zeros((2*N + 2*num_landmarks, 2*N + 2*num_landmarks)) omega[0,0] = 1 omega[1,1] = 1 ## TODO: Define the constraint *vector*, xi ## you can assume that the robot starts out in the middle of the world with 100% confidence xi = np.zeros((2*N + 2*num_landmarks, 1)) xi[0] = world_size/2 xi[1] = world_size/2 return omega, xi
_____no_output_____
MIT
3. Landmark Detection and Tracking.ipynb
mitsunami/SLAM
Test as you goIt's good practice to test out your code, as you go. Since `slam` relies on creating and updating constraint matrices, `omega` and `xi` to account for robot sensor measurements and motion, let's check that they initialize as expected for any given parameters.Below, you'll find some test code that allows you to visualize the results of your function `initialize_constraints`. We are using the [seaborn](https://seaborn.pydata.org/) library for visualization.**Please change the test values of N, landmarks, and world_size and see the results**. Be careful not to use these values as input into your final smal function.This code assumes that you have created one of each constraint: `omega` and `xi`, but you can change and add to this code, accordingly. The constraints should vary in size with the number of time steps and landmarks as these values affect the number of poses a robot will take `(Px0,Py0,...Pxn,Pyn)` and landmark locations `(Lx0,Ly0,...Lxn,Lyn)` whose relationships should be tracked in the constraint matrices. Recall that `omega` holds the weights of each variable and `xi` holds the value of the sum of these variables, as seen in Notebook 2. You'll need the `world_size` to determine the starting pose of the robot in the world and fill in the initial values for `xi`.
# import data viz resources import matplotlib.pyplot as plt from pandas import DataFrame import seaborn as sns %matplotlib inline # define a small N and world_size (small for ease of visualization) N_test = 5 num_landmarks_test = 2 small_world = 10 # initialize the constraints initial_omega, initial_xi = initialize_constraints(N_test, num_landmarks_test, small_world) # define figure size plt.rcParams["figure.figsize"] = (10,7) # display omega sns.heatmap(DataFrame(initial_omega), cmap='Blues', annot=True, linewidths=.5) # define figure size plt.rcParams["figure.figsize"] = (1,7) # display xi sns.heatmap(DataFrame(initial_xi), cmap='Oranges', annot=True, linewidths=.5)
_____no_output_____
MIT
3. Landmark Detection and Tracking.ipynb
mitsunami/SLAM
--- SLAM inputs In addition to `data`, your slam function will also take in:* N - The number of time steps that a robot will be moving and sensing* num_landmarks - The number of landmarks in the world* world_size - The size (w/h) of your world* motion_noise - The noise associated with motion; the update confidence for motion should be `1.0/motion_noise`* measurement_noise - The noise associated with measurement/sensing; the update weight for measurement should be `1.0/measurement_noise` A note on noiseRecall that `omega` holds the relative "strengths" or weights for each position variable, and you can update these weights by accessing the correct index in omega `omega[row][col]` and *adding/subtracting* `1.0/noise` where `noise` is measurement or motion noise. `Xi` holds actual position values, and so to update `xi` you'll do a similar addition process only using the actual value of a motion or measurement. So for a vector index `xi[row][0]` you will end up adding/subtracting one measurement or motion divided by their respective `noise`. TODO: Implement Graph SLAMFollow the TODO's below to help you complete this slam implementation (these TODO's are in the recommended order), then test out your implementation! Updating with motion and measurementsWith a 2D omega and xi structure as shown above (in earlier cells), you'll have to be mindful about how you update the values in these constraint matrices to account for motion and measurement constraints in the x and y directions. Recall that the solution to these matrices (which holds all values for robot poses `P` and landmark locations `L`) is the vector, `mu`, which can be computed at the end of the construction of omega and xi as the inverse of omega times xi: $\mu = \Omega^{-1}\xi$**You may also choose to return the values of `omega` and `xi` if you want to visualize their final state!**
## TODO: Complete the code to implement SLAM ## slam takes in 6 arguments and returns mu, ## mu is the entire path traversed by a robot (all x,y poses) *and* all landmarks locations def slam(data, N, num_landmarks, world_size, motion_noise, measurement_noise): ## TODO: Use your initilization to create constraint matrices, omega and xi omega, xi = initialize_constraints(N, num_landmarks, world_size) ## TODO: Iterate through each time step in the data ## get all the motion and measurement data as you iterate for t in range(N-1): ## TODO: update the constraint matrix/vector to account for all *measurements* ## this should be a series of additions that take into account the measurement noise #print("data: ", len(data), data[t][0]) measurements = data[t][0] for m in measurements: Lnum = m[0] Ldx = m[1] Ldy = m[2] omega[2*t+0] [2*t+0] += 1/measurement_noise omega[2*t+1] [2*t+1] += 1/measurement_noise omega[2*t+0] [2*(N+Lnum)+0] += -1/measurement_noise omega[2*t+1] [2*(N+Lnum)+1] += -1/measurement_noise omega[2*(N+Lnum)+0][2*t+0] += -1/measurement_noise omega[2*(N+Lnum)+1][2*t+1] += -1/measurement_noise omega[2*(N+Lnum)+0][2*(N+Lnum)+0] += 1/measurement_noise omega[2*(N+Lnum)+1][2*(N+Lnum)+1] += 1/measurement_noise xi[2*t+0] += -Ldx/measurement_noise xi[2*t+1] += -Ldy/measurement_noise xi[2*(N+Lnum)+0] += Ldx/measurement_noise xi[2*(N+Lnum)+1] += Ldy/measurement_noise ## TODO: update the constraint matrix/vector to account for all *motion* and motion noise motion = data[t][1] omega[2*t+0][2*t+0] += 1/motion_noise omega[2*t+1][2*t+1] += 1/motion_noise omega[2*t+0][2*t+2] += -1/motion_noise omega[2*t+1][2*t+3] += -1/motion_noise omega[2*t+2][2*t+0] += -1/motion_noise omega[2*t+3][2*t+1] += -1/motion_noise omega[2*t+2][2*t+2] += 1/motion_noise omega[2*t+3][2*t+3] += 1/motion_noise xi[2*t+0] += -motion[0]/motion_noise xi[2*t+2] += motion[0]/motion_noise xi[2*t+1] += -motion[1]/motion_noise xi[2*t+3] += motion[1]/motion_noise ## TODO: After iterating through all the data ## Compute the best estimate of poses and landmark positions ## using the formula, omega_inverse * Xi mu = np.linalg.inv(np.matrix(omega)) * xi return mu # return `mu`
_____no_output_____
MIT
3. Landmark Detection and Tracking.ipynb
mitsunami/SLAM
Helper functionsTo check that your implementation of SLAM works for various inputs, we have provided two helper functions that will help display the estimated pose and landmark locations that your function has produced. First, given a result `mu` and number of time steps, `N`, we define a function that extracts the poses and landmarks locations and returns those as their own, separate lists. Then, we define a function that nicely print out these lists; both of these we will call, in the next step.
# a helper function that creates a list of poses and of landmarks for ease of printing # this only works for the suggested constraint architecture of interlaced x,y poses def get_poses_landmarks(mu, N): # create a list of poses poses = [] for i in range(N): poses.append((mu[2*i].item(), mu[2*i+1].item())) # create a list of landmarks landmarks = [] for i in range(num_landmarks): landmarks.append((mu[2*(N+i)].item(), mu[2*(N+i)+1].item())) # return completed lists return poses, landmarks def print_all(poses, landmarks): print('\n') print('Estimated Poses:') for i in range(len(poses)): print('['+', '.join('%.3f'%p for p in poses[i])+']') print('\n') print('Estimated Landmarks:') for i in range(len(landmarks)): print('['+', '.join('%.3f'%l for l in landmarks[i])+']')
_____no_output_____
MIT
3. Landmark Detection and Tracking.ipynb
mitsunami/SLAM
Run SLAMOnce you've completed your implementation of `slam`, see what `mu` it returns for different world sizes and different landmarks! What to ExpectThe `data` that is generated is random, but you did specify the number, `N`, or time steps that the robot was expected to move and the `num_landmarks` in the world (which your implementation of `slam` should see and estimate a position for. Your robot should also start with an estimated pose in the very center of your square world, whose size is defined by `world_size`.With these values in mind, you should expect to see a result that displays two lists:1. **Estimated poses**, a list of (x, y) pairs that is exactly `N` in length since this is how many motions your robot has taken. The very first pose should be the center of your world, i.e. `[50.000, 50.000]` for a world that is 100.0 in square size.2. **Estimated landmarks**, a list of landmark positions (x, y) that is exactly `num_landmarks` in length. Landmark LocationsIf you refer back to the printout of *exact* landmark locations when this data was created, you should see values that are very similar to those coordinates, but not quite (since `slam` must account for noise in motion and measurement).
# call your implementation of slam, passing in the necessary parameters mu = slam(data, N, num_landmarks, world_size, motion_noise, measurement_noise) # print out the resulting landmarks and poses if(mu is not None): # get the lists of poses and landmarks # and print them out poses, landmarks = get_poses_landmarks(mu, N) print_all(poses, landmarks)
Estimated Poses: [50.000, 50.000] [35.859, 35.926] [21.364, 23.942] [6.980, 11.344] [24.945, 20.405] [43.518, 30.202] [62.058, 37.373] [79.693, 44.655] [95.652, 52.956] [77.993, 43.819] [60.450, 33.659] [41.801, 24.066] [23.993, 15.292] [7.068, 7.322] [23.995, -0.325] [32.465, 17.730] [41.235, 37.599] [50.421, 57.362] [59.424, 75.357] [67.357, 93.716] Estimated Landmarks: [11.692, 44.036] [61.744, 96.855] [19.061, 12.781] [44.483, 11.522] [6.063, 96.744]
MIT
3. Landmark Detection and Tracking.ipynb
mitsunami/SLAM
Visualize the constructed worldFinally, using the `display_world` code from the `helpers.py` file (which was also used in the first notebook), we can actually visualize what you have coded with `slam`: the final position of the robot and the positon of landmarks, created from only motion and measurement data!**Note that these should be very similar to the printed *true* landmark locations and final pose from our call to `make_data` early in this notebook.**
# import the helper function from helpers import display_world # Display the final world! # define figure size plt.rcParams["figure.figsize"] = (20,20) # check if poses has been created if 'poses' in locals(): # print out the last pose print('Last pose: ', poses[-1]) # display the last position of the robot *and* the landmark positions display_world(int(world_size), poses[-1], landmarks)
Last pose: (67.35712814937992, 93.71611790835976)
MIT
3. Landmark Detection and Tracking.ipynb
mitsunami/SLAM
Question: How far away is your final pose (as estimated by `slam`) compared to the *true* final pose? Why do you think these poses are different?You can find the true value of the final pose in one of the first cells where `make_data` was called. You may also want to look at the true landmark locations and compare them to those that were estimated by `slam`. Ask yourself: what do you think would happen if we moved and sensed more (increased N)? Or if we had lower/higher noise parameters. **Answer**: The true value of the final pose is [x=69.61429 y=95.52181], and it is close to the estimated pose [67.357, 93.716] in my slam implementation. And the true landmarks are [12, 44], [62, 98], [19, 13], [45, 12], [7, 97] while the estimated are [11.692, 44.036], [61.744, 96.855], [19.061, 12.781], [44.483, 11.522], [6.063, 96.744].If we moved and sensed more, the results becomes more accurate. And if we had lower noise parameters, then I can have more acculate results than higher noise parameters. TestingTo confirm that your slam code works before submitting your project, it is suggested that you run it on some test data and cases. A few such cases have been provided for you, in the cells below. When you are ready, uncomment the test cases in the next cells (there are two test cases, total); your output should be **close-to or exactly** identical to the given results. If there are minor discrepancies it could be a matter of floating point accuracy or in the calculation of the inverse matrix. Submit your projectIf you pass these tests, it is a good indication that your project will pass all the specifications in the project rubric. Follow the submission instructions to officially submit!
# Here is the data and estimated outputs for test case 1 test_data1 = [[[[1, 19.457599255548065, 23.8387362100849], [2, -13.195807561967236, 11.708840328458608], [3, -30.0954905279171, 15.387879242505843]], [-12.2607279422326, -15.801093326936487]], [[[2, -0.4659930049620491, 28.088559771215664], [4, -17.866382374890936, -16.384904503932]], [-12.2607279422326, -15.801093326936487]], [[[4, -6.202512900833806, -1.823403210274639]], [-12.2607279422326, -15.801093326936487]], [[[4, 7.412136480918645, 15.388585962142429]], [14.008259661173426, 14.274756084260822]], [[[4, -7.526138813444998, -0.4563942429717849]], [14.008259661173426, 14.274756084260822]], [[[2, -6.299793150150058, 29.047830407717623], [4, -21.93551130411791, -13.21956810989039]], [14.008259661173426, 14.274756084260822]], [[[1, 15.796300959032276, 30.65769689694247], [2, -18.64370821983482, 17.380022987031367]], [14.008259661173426, 14.274756084260822]], [[[1, 0.40311325410337906, 14.169429532679855], [2, -35.069349468466235, 2.4945558982439957]], [14.008259661173426, 14.274756084260822]], [[[1, -16.71340983241936, -2.777000269543834]], [-11.006096015782283, 16.699276945166858]], [[[1, -3.611096830835776, -17.954019226763958]], [-19.693482634035977, 3.488085684573048]], [[[1, 18.398273354362416, -22.705102332550947]], [-19.693482634035977, 3.488085684573048]], [[[2, 2.789312482883833, -39.73720193121324]], [12.849049222879723, -15.326510824972983]], [[[1, 21.26897046581808, -10.121029799040915], [2, -11.917698965880655, -23.17711662602097], [3, -31.81167947898398, -16.7985673023331]], [12.849049222879723, -15.326510824972983]], [[[1, 10.48157743234859, 5.692957082575485], [2, -22.31488473554935, -5.389184118551409], [3, -40.81803984305378, -2.4703329790238118]], [12.849049222879723, -15.326510824972983]], [[[0, 10.591050242096598, -39.2051798967113], [1, -3.5675572049297553, 22.849456408289125], [2, -38.39251065320351, 7.288990306029511]], [12.849049222879723, -15.326510824972983]], [[[0, -3.6225556479370766, -25.58006865235512]], [-7.8874682868419965, -18.379005523261092]], [[[0, 1.9784503557879374, -6.5025974151499]], [-7.8874682868419965, -18.379005523261092]], [[[0, 10.050665232782423, 11.026385307998742]], [-17.82919359778298, 9.062000642947142]], [[[0, 26.526838150174818, -0.22563393232425621], [4, -33.70303936886652, 2.880339841013677]], [-17.82919359778298, 9.062000642947142]]] ## Test Case 1 ## # Estimated Pose(s): # [50.000, 50.000] # [37.858, 33.921] # [25.905, 18.268] # [13.524, 2.224] # [27.912, 16.886] # [42.250, 30.994] # [55.992, 44.886] # [70.749, 59.867] # [85.371, 75.230] # [73.831, 92.354] # [53.406, 96.465] # [34.370, 100.134] # [48.346, 83.952] # [60.494, 68.338] # [73.648, 53.082] # [86.733, 38.197] # [79.983, 20.324] # [72.515, 2.837] # [54.993, 13.221] # [37.164, 22.283] # Estimated Landmarks: # [82.679, 13.435] # [70.417, 74.203] # [36.688, 61.431] # [18.705, 66.136] # [20.437, 16.983] ### Uncomment the following three lines for test case 1 and compare the output to the values above ### mu_1 = slam(test_data1, 20, 5, 100.0, 2.0, 2.0) poses, landmarks = get_poses_landmarks(mu_1, 20) print_all(poses, landmarks) # Here is the data and estimated outputs for test case 2 test_data2 = [[[[0, 26.543274387283322, -6.262538160312672], [3, 9.937396825799755, -9.128540360867689]], [18.92765331253674, -6.460955043986683]], [[[0, 7.706544739722961, -3.758467215445748], [1, 17.03954411948937, 31.705489938553438], [3, -11.61731288777497, -6.64964096716416]], [18.92765331253674, -6.460955043986683]], [[[0, -12.35130507136378, 2.585119104239249], [1, -2.563534536165313, 38.22159657838369], [3, -26.961236804740935, -0.4802312626141525]], [-11.167066095509824, 16.592065417497455]], [[[0, 1.4138633151721272, -13.912454837810632], [1, 8.087721200818589, 20.51845934354381], [3, -17.091723454402302, -16.521500551709707], [4, -7.414211721400232, 38.09191602674439]], [-11.167066095509824, 16.592065417497455]], [[[0, 12.886743222179561, -28.703968411636318], [1, 21.660953298391387, 3.4912891084614914], [3, -6.401401414569506, -32.321583037341625], [4, 5.034079343639034, 23.102207946092893]], [-11.167066095509824, 16.592065417497455]], [[[1, 31.126317672358578, -10.036784369535214], [2, -38.70878528420893, 7.4987265861424595], [4, 17.977218575473767, 6.150889254289742]], [-6.595520680493778, -18.88118393939265]], [[[1, 41.82460922922086, 7.847527392202475], [3, 15.711709540417502, -30.34633659912818]], [-6.595520680493778, -18.88118393939265]], [[[0, 40.18454208294434, -6.710999804403755], [3, 23.019508919299156, -10.12110867290604]], [-6.595520680493778, -18.88118393939265]], [[[3, 27.18579315312821, 8.067219022708391]], [-6.595520680493778, -18.88118393939265]], [[], [11.492663265706092, 16.36822198838621]], [[[3, 24.57154567653098, 13.461499960708197]], [11.492663265706092, 16.36822198838621]], [[[0, 31.61945290413707, 0.4272295085799329], [3, 16.97392299158991, -5.274596836133088]], [11.492663265706092, 16.36822198838621]], [[[0, 22.407381798735177, -18.03500068379259], [1, 29.642444125196995, 17.3794951934614], [3, 4.7969752441371645, -21.07505361639969], [4, 14.726069092569372, 32.75999422300078]], [11.492663265706092, 16.36822198838621]], [[[0, 10.705527984670137, -34.589764174299596], [1, 18.58772336795603, -0.20109708164787765], [3, -4.839806195049413, -39.92208742305105], [4, 4.18824810165454, 14.146847823548889]], [11.492663265706092, 16.36822198838621]], [[[1, 5.878492140223764, -19.955352450942357], [4, -7.059505455306587, -0.9740849280550585]], [19.628527845173146, 3.83678180657467]], [[[1, -11.150789592446378, -22.736641053247872], [4, -28.832815721158255, -3.9462962046291388]], [-19.841703647091965, 2.5113335861604362]], [[[1, 8.64427397916182, -20.286336970889053], [4, -5.036917727942285, -6.311739993868336]], [-5.946642674882207, -19.09548221169787]], [[[0, 7.151866679283043, -39.56103232616369], [1, 16.01535401373368, -3.780995345194027], [4, -3.04801331832137, 13.697362774960865]], [-5.946642674882207, -19.09548221169787]], [[[0, 12.872879480504395, -19.707592098123207], [1, 22.236710716903136, 16.331770792606406], [3, -4.841206109583004, -21.24604435851242], [4, 4.27111163223552, 32.25309748614184]], [-5.946642674882207, -19.09548221169787]]] ## Test Case 2 ## # Estimated Pose(s): # [50.000, 50.000] # [69.035, 45.061] # [87.655, 38.971] # [76.084, 55.541] # [64.283, 71.684] # [52.396, 87.887] # [44.674, 68.948] # [37.532, 49.680] # [31.392, 30.893] # [24.796, 12.012] # [33.641, 26.440] # [43.858, 43.560] # [54.735, 60.659] # [65.884, 77.791] # [77.413, 94.554] # [96.740, 98.020] # [76.149, 99.586] # [70.211, 80.580] # [64.130, 61.270] # [58.183, 42.175] # Estimated Landmarks: # [76.777, 42.415] # [85.109, 76.850] # [13.687, 95.386] # [59.488, 39.149] # [69.283, 93.654] ### Uncomment the following three lines for test case 2 and compare to the values above ### mu_2 = slam(test_data2, 20, 5, 100.0, 2.0, 2.0) poses, landmarks = get_poses_landmarks(mu_2, 20) print_all(poses, landmarks)
Estimated Poses: [50.000, 50.000] [69.181, 45.665] [87.743, 39.703] [76.270, 56.311] [64.317, 72.176] [52.257, 88.154] [44.059, 69.401] [37.002, 49.918] [30.924, 30.955] [23.508, 11.419] [34.180, 27.133] [44.155, 43.846] [54.806, 60.920] [65.698, 78.546] [77.468, 95.626] [96.802, 98.821] [75.957, 99.971] [70.200, 81.181] [64.054, 61.723] [58.107, 42.628] Estimated Landmarks: [76.779, 42.887] [85.065, 77.438] [13.548, 95.652] [59.449, 39.595] [69.263, 94.240]
MIT
3. Landmark Detection and Tracking.ipynb
mitsunami/SLAM
In this notebook we investigate a designed simple Inception network on PDU data
%reload_ext autoreload %autoreload 2 %matplotlib inline
_____no_output_____
MIT
Nets on Spectral data/01_PDU_Total_Designed_Inception.ipynb
Saman689/Weed-sensing-basics
Importing the libraries
import torch import torch.nn as nn import torch.utils.data as Data from torch.autograd import Function, Variable from torch.optim import lr_scheduler import torchvision import torchvision.transforms as transforms import torch.backends.cudnn as cudnn from pathlib import Path import os import copy import math import matplotlib.pyplot as plt import numpy as np from datetime import datetime import time as time import warnings
_____no_output_____
MIT
Nets on Spectral data/01_PDU_Total_Designed_Inception.ipynb
Saman689/Weed-sensing-basics
Checking whether the GPU is active
torch.backends.cudnn.enabled torch.cuda.is_available() torch.cuda.init()
_____no_output_____
MIT
Nets on Spectral data/01_PDU_Total_Designed_Inception.ipynb
Saman689/Weed-sensing-basics
Dataset paths
PATH = Path("/home/saman/Saman/data/PDU_Raw_Data01/Test06_600x30/") train_path = PATH / 'train' / 'Total' valid_path = PATH / 'valid' / 'Total' test_path = PATH / 'test' / 'Total'
_____no_output_____
MIT
Nets on Spectral data/01_PDU_Total_Designed_Inception.ipynb
Saman689/Weed-sensing-basics
Model parameters
Num_Filter1= 16 Num_Filter2= 64 Ker_Sz1 = 5 Ker_Sz2 = 5 learning_rate= 0.0001 Dropout= 0.2 BchSz= 32 EPOCH= 5
_____no_output_____
MIT
Nets on Spectral data/01_PDU_Total_Designed_Inception.ipynb
Saman689/Weed-sensing-basics
Data Augmenation
# Mode of transformation transformation = transforms.Compose([ transforms.RandomVerticalFlip(), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0,0,0), (0.5,0.5,0.5)), ]) transformation2 = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0,0,0), (0.5,0.5,0.5)), ]) # Loss calculator criterion = nn.CrossEntropyLoss() # cross entropy loss
_____no_output_____
MIT
Nets on Spectral data/01_PDU_Total_Designed_Inception.ipynb
Saman689/Weed-sensing-basics
Defining models Defining a class of our simple model
class ConvNet(nn.Module): def __init__(self, Num_Filter1 , Num_Filter2, Ker_Sz1, Ker_Sz2, Dropout, num_classes=2): super(ConvNet, self).__init__() self.layer1 = nn.Sequential( nn.Conv2d( # input shape (3, 30, 600) in_channels=3, # input height out_channels=Num_Filter1, # n_filters kernel_size=Ker_Sz1, # Kernel size stride=1, # filter movement/step padding=int((Ker_Sz1-1)/2), # if want same width and length of this image after con2d, ), # padding=(kernel_size-1)/2 if stride=1 nn.BatchNorm2d(Num_Filter1), # Batch Normalization nn.ReLU(), # Rectified linear activation nn.MaxPool2d(kernel_size=2, stride=2)) # choose max value in 2x2 area, # Visualizing this in https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md self.layer2 = nn.Sequential( nn.Conv2d(Num_Filter1, Num_Filter2, kernel_size=Ker_Sz2, stride=1, padding=int((Ker_Sz2-1)/2)), nn.BatchNorm2d(Num_Filter2), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2), # output shape (64, 38, 38) nn.Dropout2d(p=Dropout)) self.fc = nn.Linear(1050*Num_Filter2, num_classes) # fully connected layer, output 2 classes def forward(self, x): # Forwarding the data to classifier out = self.layer1(x) out = self.layer2(out) out = out.reshape(out.size(0), -1) # flatten the output of conv2 to (batch_size, 64*38*38) out = self.fc(out) return out
_____no_output_____
MIT
Nets on Spectral data/01_PDU_Total_Designed_Inception.ipynb
Saman689/Weed-sensing-basics
Defining inception classes
class BasicConv2d(nn.Module): def __init__(self, in_planes, out_planes, **kwargs): super(BasicConv2d, self).__init__() self.conv = nn.Conv2d(in_planes, out_planes, bias=False, **kwargs) self.bn = nn.BatchNorm2d(out_planes, eps=0.001) self.relu = nn.ReLU(inplace=True) def forward(self, x): x = self.conv(x) x = self.bn(x) out = self.relu(x) return x class Inception(nn.Module): def __init__(self, in_channels): super(Inception, self).__init__() self.branch3x3 = BasicConv2d(in_channels, 384, kernel_size=3, stride=2) self.branch3x3dbl_1 = BasicConv2d(in_channels, 64, kernel_size=1) self.branch3x3dbl_2 = BasicConv2d(64, 96, kernel_size=3, padding=1) self.branch3x3dbl_3 = BasicConv2d(96, 96, kernel_size=3, stride=2) self.avgpool = nn.AvgPool2d(kernel_size=3, stride=2) def forward(self, x): branch3x3 = self.branch3x3(x) branch3x3dbl = self.branch3x3dbl_1(x) branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl) branch_pool = self.avgpool(x) outputs = [branch3x3, branch3x3dbl, branch_pool] return torch.cat(outputs, 1) class Inception_Net(nn.Module): def __init__(self, Num_Filter1 , Num_Filter2, Ker_Sz1, Ker_Sz2, Dropout, num_classes=2): super(Inception_Net, self).__init__() self.layer1 = nn.Sequential( nn.Conv2d( # input shape (3, 30, 600) in_channels=3, # input height out_channels=Num_Filter1, # n_filters kernel_size=Ker_Sz1, # Kernel size stride=1, # filter movement/step padding=int((Ker_Sz1-1)/2), # if want same width and length of this image after con2d, ), # padding=(kernel_size-1)/2 if stride=1 nn.BatchNorm2d(Num_Filter1), # Batch Normalization nn.ReLU(), # Rectified linear activation nn.MaxPool2d(kernel_size=2, stride=2)) # choose max value in 2x2 area, # Visualizing this in https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md self.layer2 = nn.Sequential( nn.Conv2d(Num_Filter1, Num_Filter2, kernel_size=Ker_Sz2, stride=1, padding=int((Ker_Sz2-1)/2)), nn.BatchNorm2d(Num_Filter2), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2), # output shape (64, 38, 38) nn.Dropout2d(p=Dropout)) self.Inception = Inception(Num_Filter2) self.fc = nn.Linear(120768, num_classes) # fully connected layer, output 2 classes def forward(self, x): # Forwarding the data to classifier out = self.layer1(x) out = self.layer2(out) out = self.Inception(out) out = out.reshape(out.size(0), -1) # flatten the output of conv2 to (batch_size, 64*38*38) out = self.fc(out) return out
_____no_output_____
MIT
Nets on Spectral data/01_PDU_Total_Designed_Inception.ipynb
Saman689/Weed-sensing-basics
Finding number of parameter in our model
def print_num_params(model): TotalParam=0 for param in list(model.parameters()): print("Individual parameters are:") nn=1 for size in list(param.size()): print(size) nn = nn*size print("Total parameters: {}" .format(param.numel())) TotalParam += nn print('-' * 10) print("Sum of all Parameters is: {}" .format(TotalParam)) def get_num_params(model): TotalParam=0 for param in list(model.parameters()): nn=1 for size in list(param.size()): nn = nn*size TotalParam += nn return TotalParam
_____no_output_____
MIT
Nets on Spectral data/01_PDU_Total_Designed_Inception.ipynb
Saman689/Weed-sensing-basics
Training and Validating Training and validation function
def train_model(model, criterion, optimizer, Dropout, learning_rate, BATCHSIZE, num_epochs): print(str(datetime.now()).split('.')[0], "Starting training and validation...\n") print("====================Data and Hyperparameter Overview====================\n") print("Number of training examples: {} , Number of validation examples: {} \n".format(len(train_data), len(valid_data))) print("Dropout:{:,.2f}, Learning rate: {:,.5f} " .format( Dropout, learning_rate )) print("Batch size: {}, Number of epochs: {} " .format(BATCHSIZE, num_epochs)) print("Number of parameter in the model: {}". format(get_num_params(model))) print("================================Results...==============================\n") since = time.time() #record the beginning time best_model = model best_acc = 0.0 acc_vect =[] for epoch in range(num_epochs): for i, (images, labels) in enumerate(train_loader): images = Variable(images).cuda() labels = Variable(labels).cuda() # Forward pass outputs = model(images) # model output loss = criterion(outputs, labels) # cross entropy loss # Trying binary cross entropy #loss = criterion(torch.max(outputs.data, 1), labels) #loss = torch.nn.functional.binary_cross_entropy(outputs, labels) # Backward and optimize optimizer.zero_grad() # clear gradients for this training step loss.backward() # backpropagation, compute gradients optimizer.step() # apply gradients if (i+1) % 1000 == 0: # Reporting the loss and progress every 50 step print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}' .format(epoch+1, num_epochs, i+1, len(train_loader), loss.item())) model.eval() # eval mode (batchnorm uses moving mean/variance instead of mini-batch mean/variance) with torch.no_grad(): correct = 0 total = 0 for images, labels in valid_loader: images = Variable(images).cuda() labels = Variable(labels).cuda() outputs = model(images) _, predicted = torch.max(outputs.data, 1) loss = criterion(outputs, labels) loss += loss.item() total += labels.size(0) correct += (predicted == labels).sum().item() epoch_loss= loss / total epoch_acc = 100 * correct / total acc_vect.append(epoch_acc) if epoch_acc > best_acc: best_acc = epoch_acc best_model = copy.deepcopy(model) print('Validation accuracy and loss of the model on {} images: {} %, {:.5f}' .format(len(valid_data), 100 * correct / total, loss)) correct = 0 total = 0 for images, labels in train_loader: images = Variable(images).cuda() labels = Variable(labels).cuda() outputs = model(images) _, predicted = torch.max(outputs.data, 1) loss = criterion(outputs, labels) loss += loss.item() total += labels.size(0) correct += (predicted == labels).sum().item() epoch_loss= loss / total epoch_acc = 100 * correct / total print('Train accuracy and loss of the model on {} images: {} %, {:.5f}' .format(len(train_data), epoch_acc, loss)) print('-' * 10) time_elapsed = time.time() - since print('Training complete in {:.0f}m {:.0f}s'.format( time_elapsed // 60, time_elapsed % 60)) print('Best validation Acc: {:4f}'.format(best_acc)) mean_acc = np.mean(acc_vect) print('Average accuracy on the validation {} images: {}' .format(len(train_data),mean_acc)) print('-' * 10) return best_model, mean_acc
_____no_output_____
MIT
Nets on Spectral data/01_PDU_Total_Designed_Inception.ipynb
Saman689/Weed-sensing-basics
Testing function
def test_model(model, test_loader): print("Starting testing...\n") model.eval() # eval mode (batchnorm uses moving mean/variance instead of mini-batch mean/variance) with torch.no_grad(): correct = 0 total = 0 test_loss_vect=[] test_acc_vect=[] since = time.time() #record the beginning time for i in range(10): Indx = torch.randperm(len(test_data)) Cut=int(len(Indx)/10) # Here 10% showing the proportion of data is chosen for pooling indices=Indx[:Cut] Sampler = Data.SubsetRandomSampler(indices) pooled_data = torch.utils.data.DataLoader(test_data , batch_size=BchSz,sampler=Sampler) for images, labels in pooled_data: images = Variable(images).cuda() labels = Variable(labels).cuda() outputs = model(images) _, predicted = torch.max(outputs.data, 1) loss = criterion(outputs, labels) total += labels.size(0) correct += (predicted == labels).sum().item() test_loss= loss / total test_accuracy= 100 * correct / total test_loss_vect.append(test_loss) test_acc_vect.append(test_accuracy) # print('Test accuracy and loss for the {}th pool: {:.2f} %, {:.5f}' # .format(i+1, test_accuracy, test_loss)) mean_test_loss = np.mean(test_loss_vect) mean_test_acc = np.mean(test_acc_vect) std_test_acc = np.std(test_acc_vect) print('-' * 10) print('Average test accuracy on test data: {:.2f} %, loss: {:.5f}, Standard deviion of accuracy: {:.4f}' .format(mean_test_acc, mean_test_loss, std_test_acc)) print('-' * 10) time_elapsed = time.time() - since print('Testing complete in {:.1f}m {:.4f}s'.format(time_elapsed // 60, time_elapsed % 60)) print('-' * 10) return mean_test_acc, mean_test_loss, std_test_acc
_____no_output_____
MIT
Nets on Spectral data/01_PDU_Total_Designed_Inception.ipynb
Saman689/Weed-sensing-basics
Applying aumentation and batch size
## Using batch size to load data train_data = torchvision.datasets.ImageFolder(train_path,transform=transformation) train_loader =torch.utils.data.DataLoader(train_data, batch_size=BchSz, shuffle=True, num_workers=8) valid_data = torchvision.datasets.ImageFolder(valid_path,transform=transformation) valid_loader =torch.utils.data.DataLoader(valid_data, batch_size=BchSz, shuffle=True, num_workers=8) test_data = torchvision.datasets.ImageFolder(test_path,transform=transformation2) test_loader =torch.utils.data.DataLoader(test_data, batch_size=BchSz, shuffle=True, num_workers=8) model = Inception_Net(Num_Filter1 , Num_Filter2, Ker_Sz1, Ker_Sz2, Dropout, num_classes=2) model = model.cuda() print(model) # Defining optimizer with variable learning rate optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) optimizer.scheduler=lr_scheduler.ReduceLROnPlateau(optimizer, 'min') get_num_params(model) seed= [1, 3, 7, 19, 22] val_acc_vect=[] test_acc_vect=[] for ii in seed: torch.cuda.manual_seed(ii) torch.manual_seed(ii) model, val_acc= train_model(model, criterion, optimizer, Dropout, learning_rate, BchSz, EPOCH) testing = test_model (model, test_loader) test_acc= testing[0] val_acc_vect.append( val_acc ) test_acc_vect.append(test_acc) mean_val_acc = np.mean(val_acc_vect) mean_test_acc = np.mean(test_acc_vect) print('-' * 10) print('-' * 10) print('Average of validation accuracies on 5 different random seed: {:.2f} %, Average of testing accuracies on 5 different random seed: {:.2f} %' .format(mean_val_acc, mean_test_acc))
2019-03-01 15:11:27 Starting training and validation... ====================Data and Hyperparameter Overview==================== Number of training examples: 24000 , Number of validation examples: 8000 Dropout:0.20, Learning rate: 0.00010 Batch size: 32, Number of epochs: 5 Number of parameter in the model: 633378 ================================Results...============================== Validation accuracy and loss of the model on 8000 images: 64.9 %, 1.33086 Train accuracy and loss of the model on 24000 images: 62.7375 %, 1.01242 ---------- Validation accuracy and loss of the model on 8000 images: 75.4 %, 0.76369 Train accuracy and loss of the model on 24000 images: 77.225 %, 1.38264 ---------- Validation accuracy and loss of the model on 8000 images: 77.35 %, 1.22606 Train accuracy and loss of the model on 24000 images: 87.25833333333334 %, 0.64452 ---------- Validation accuracy and loss of the model on 8000 images: 72.8875 %, 0.65668 Train accuracy and loss of the model on 24000 images: 88.3125 %, 0.52884 ---------- Validation accuracy and loss of the model on 8000 images: 79.6875 %, 1.17200 Train accuracy and loss of the model on 24000 images: 95.64583333333333 %, 0.63624 ---------- Training complete in 1m 55s Best validation Acc: 79.687500 Average accuracy on the validation 24000 images: 74.045 ---------- Starting testing... ---------- Average test accuracy on test data: 77.27 %, loss: 0.00026, Standard deviion of accuracy: 0.7046 ---------- Testing complete in 0.0m 5.8832s ---------- 2019-03-01 15:13:28 Starting training and validation... ====================Data and Hyperparameter Overview==================== Number of training examples: 24000 , Number of validation examples: 8000 Dropout:0.20, Learning rate: 0.00010 Batch size: 32, Number of epochs: 5 Number of parameter in the model: 633378 ================================Results...============================== Validation accuracy and loss of the model on 8000 images: 80.275 %, 0.75893 Train accuracy and loss of the model on 24000 images: 95.59583333333333 %, 0.11324 ---------- Validation accuracy and loss of the model on 8000 images: 79.4 %, 1.01741 Train accuracy and loss of the model on 24000 images: 95.62916666666666 %, 0.20947 ---------- Validation accuracy and loss of the model on 8000 images: 80.3875 %, 0.54221 Train accuracy and loss of the model on 24000 images: 95.6375 %, 0.08113 ---------- Validation accuracy and loss of the model on 8000 images: 79.375 %, 0.50299 Train accuracy and loss of the model on 24000 images: 95.59583333333333 %, 0.42088 ---------- Validation accuracy and loss of the model on 8000 images: 80.075 %, 2.54078 Train accuracy and loss of the model on 24000 images: 95.75416666666666 %, 0.24887 ---------- Training complete in 1m 55s Best validation Acc: 80.387500 Average accuracy on the validation 24000 images: 79.9025 ---------- Starting testing... ---------- Average test accuracy on test data: 76.61 %, loss: 0.00041, Standard deviion of accuracy: 0.4764 ---------- Testing complete in 0.0m 5.7241s ---------- 2019-03-01 15:15:28 Starting training and validation... ====================Data and Hyperparameter Overview==================== Number of training examples: 24000 , Number of validation examples: 8000 Dropout:0.20, Learning rate: 0.00010 Batch size: 32, Number of epochs: 5 Number of parameter in the model: 633378 ================================Results...============================== Validation accuracy and loss of the model on 8000 images: 80.0625 %, 1.32076 Train accuracy and loss of the model on 24000 images: 95.54166666666667 %, 0.43024 ---------- Validation accuracy and loss of the model on 8000 images: 79.8875 %, 0.41576 Train accuracy and loss of the model on 24000 images: 95.54166666666667 %, 0.24901 ---------- Validation accuracy and loss of the model on 8000 images: 79.575 %, 1.62173 Train accuracy and loss of the model on 24000 images: 95.81666666666666 %, 0.24963 ---------- Validation accuracy and loss of the model on 8000 images: 79.925 %, 2.40927 Train accuracy and loss of the model on 24000 images: 95.60833333333333 %, 0.15915 ---------- Validation accuracy and loss of the model on 8000 images: 80.1 %, 1.71480 Train accuracy and loss of the model on 24000 images: 95.70416666666667 %, 0.18263 ---------- Training complete in 1m 54s Best validation Acc: 80.100000 Average accuracy on the validation 24000 images: 79.91 ---------- Starting testing... ---------- Average test accuracy on test data: 76.58 %, loss: 0.00036, Standard deviion of accuracy: 0.3228 ---------- Testing complete in 0.0m 5.7930s ---------- 2019-03-01 15:17:29 Starting training and validation... ====================Data and Hyperparameter Overview==================== Number of training examples: 24000 , Number of validation examples: 8000 Dropout:0.20, Learning rate: 0.00010 Batch size: 32, Number of epochs: 5 Number of parameter in the model: 633378 ================================Results...============================== Validation accuracy and loss of the model on 8000 images: 79.85 %, 1.32361 Train accuracy and loss of the model on 24000 images: 95.53333333333333 %, 0.22441 ---------- Validation accuracy and loss of the model on 8000 images: 80.225 %, 1.95208 Train accuracy and loss of the model on 24000 images: 95.63333333333334 %, 0.08277 ---------- Validation accuracy and loss of the model on 8000 images: 79.425 %, 1.50681 Train accuracy and loss of the model on 24000 images: 95.70416666666667 %, 0.11324 ---------- Validation accuracy and loss of the model on 8000 images: 80.0625 %, 1.03933 Train accuracy and loss of the model on 24000 images: 95.58333333333333 %, 0.67020 ---------- Validation accuracy and loss of the model on 8000 images: 79.875 %, 0.84893 Train accuracy and loss of the model on 24000 images: 95.52083333333333 %, 0.12579 ---------- Training complete in 1m 55s Best validation Acc: 80.225000 Average accuracy on the validation 24000 images: 79.8875 ---------- Starting testing... ---------- Average test accuracy on test data: 76.76 %, loss: 0.00031, Standard deviion of accuracy: 0.6555 ---------- Testing complete in 0.0m 5.8354s ---------- 2019-03-01 15:19:29 Starting training and validation... ====================Data and Hyperparameter Overview==================== Number of training examples: 24000 , Number of validation examples: 8000 Dropout:0.20, Learning rate: 0.00010 Batch size: 32, Number of epochs: 5 Number of parameter in the model: 633378 ================================Results...============================== Validation accuracy and loss of the model on 8000 images: 79.7625 %, 1.31404 Train accuracy and loss of the model on 24000 images: 95.51666666666667 %, 0.21090 ---------- Validation accuracy and loss of the model on 8000 images: 79.3125 %, 0.71353 Train accuracy and loss of the model on 24000 images: 95.7 %, 0.29437 ---------- Validation accuracy and loss of the model on 8000 images: 79.975 %, 0.97653 Train accuracy and loss of the model on 24000 images: 95.67083333333333 %, 0.10430 ---------- Validation accuracy and loss of the model on 8000 images: 79.4375 %, 1.69258 Train accuracy and loss of the model on 24000 images: 95.55 %, 0.14140 ---------- Validation accuracy and loss of the model on 8000 images: 80.075 %, 1.34002 Train accuracy and loss of the model on 24000 images: 95.53333333333333 %, 0.33516 ---------- Training complete in 1m 57s Best validation Acc: 80.075000 Average accuracy on the validation 24000 images: 79.71249999999999 ---------- Starting testing... ---------- Average test accuracy on test data: 76.57 %, loss: 0.00025, Standard deviion of accuracy: 0.3669 ---------- Testing complete in 0.0m 5.8700s ---------- ---------- ---------- Average of validation accuracies on 5 different random seed: 78.69 %, Average of testing accuracies on 5 different random seed: 76.76 %
MIT
Nets on Spectral data/01_PDU_Total_Designed_Inception.ipynb
Saman689/Weed-sensing-basics
Import all needed package
import os import ast import numpy as np import pandas as pd from keras import optimizers from keras.models import Sequential from keras.layers import Dense, Activation, LSTM, Dropout from keras.utils import to_categorical from keras.datasets import mnist from sklearn.preprocessing import OneHotEncoder import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from tensorflow.python.keras.callbacks import ModelCheckpoint, TensorBoard import context build = context.build_promoter construct = context.construct_neural_net encode = context.encode_sequences organize = context.organize_data ROOT_DIR = os.getcwd()[:os.getcwd().rfind('Express')] + 'ExpressYeaself/' SAVE_DIR = ROOT_DIR + 'expressyeaself/models/lstm/saved_models/' ROOT_DIR
Using TensorFlow backend.
MIT
expressyeaself/models/lstm/LSTM_builder.ipynb
yeastpro/expressYeaself
Define the input data Using the full data set
sample_filename = ('10000_from_20190612130111781831_percentiles_els_binarized_homogeneous_deflanked_' 'sequences_with_exp_levels.txt.gz')
_____no_output_____
MIT
expressyeaself/models/lstm/LSTM_builder.ipynb
yeastpro/expressYeaself
Define the absolute path
sample_path = ROOT_DIR + 'example/processed_data/' + sample_filename
_____no_output_____
MIT
expressyeaself/models/lstm/LSTM_builder.ipynb
yeastpro/expressYeaself
Encode sequences
# Seems to give slightly better accuracy when expression level values aren't scaled. scale_els = False X_padded, y_scaled, abs_max_el = encode.encode_sequences_with_method(sample_path, method='One-Hot', scale_els=scale_els) num_seqs, max_sequence_len = organize.get_num_and_len_of_seqs_from_file(sample_path)
_____no_output_____
MIT
expressyeaself/models/lstm/LSTM_builder.ipynb
yeastpro/expressYeaself
Bulid the 3 dimensions LSTM model Reshape encoded sequences
X_padded = X_padded.reshape(-1) X_padded = X_padded.reshape(int(num_seqs), 1, 5 * int(max_sequence_len))
_____no_output_____
MIT
expressyeaself/models/lstm/LSTM_builder.ipynb
yeastpro/expressYeaself
Reshape expression levels
y_scaled = y_scaled.reshape(len(y_scaled), 1, 1)
_____no_output_____
MIT
expressyeaself/models/lstm/LSTM_builder.ipynb
yeastpro/expressYeaself
Perform a train-test split
test_size = 0.25 X_train, X_test, y_train, y_test = train_test_split(X_padded, y_scaled, test_size=test_size)
_____no_output_____
MIT
expressyeaself/models/lstm/LSTM_builder.ipynb
yeastpro/expressYeaself
Build the model
# Define the model parameters batch_size = int(len(y_scaled) * 0.01) # no bigger than 1 % of data epochs = 50 dropout = 0.3 learning_rate = 0.01 # Define the checkpointer to allow saving of models model_type = 'lstm_sequential_3d_onehot' save_path = SAVE_DIR + model_type + '.hdf5' checkpointer = ModelCheckpoint(monitor='val_acc', filepath=save_path, verbose=1, save_best_only=True) # Define the model model = Sequential() # Build up the layers model.add(Dense(1024, kernel_initializer='uniform', input_shape=(1,5*int(max_sequence_len),))) model.add(Activation('softmax')) model.add(Dropout(dropout)) # model.add(Dense(512, kernel_initializer='uniform', input_shape=(1,1024,))) # model.add(Activation('softmax')) # model.add(Dropout(dropout)) model.add(Dense(256, kernel_initializer='uniform', input_shape=(1,512,))) model.add(Activation('softmax')) model.add(Dropout(dropout)) # model.add(Dense(128, kernel_initializer='uniform', input_shape=(1,256,))) # model.add(Activation('softmax')) # model.add(Dropout(dropout)) # model.add(Dense(64, kernel_initializer='uniform', input_shape=(1,128,))) # model.add(Activation('softmax')) # model.add(Dropout(dropout)) # model.add(Dense(32, kernel_initializer='uniform', input_shape=(1,64,))) # model.add(Activation('softmax')) # model.add(Dropout(dropout)) # model.add(Dense(16, kernel_initializer='uniform', input_shape=(1,32,))) # model.add(Activation('softmax')) # model.add(Dropout(dropout)) # model.add(Dense(8, kernel_initializer='uniform', input_shape=(1,16,))) # model.add(Activation('softmax')) model.add(LSTM(units=1, return_sequences=True)) sgd = optimizers.SGD(lr=learning_rate, decay=1e-6, momentum=0.9, nesterov=True) # Compile the model model.compile(loss='mse', optimizer='rmsprop', metrics=['accuracy']) # Print model summary print(model.summary()) # model.add(LSTM(100,input_shape=(int(max_sequence_len), 5))) # model.add(Dropout(dropout)) # model.add(Dense(50, activation='sigmoid')) # # model.add(Dense(25, activation='sigmoid')) # # model.add(Dense(12, activation='sigmoid')) # # model.add(Dense(6, activation='sigmoid')) # # model.add(Dense(3, activation='sigmoid')) # model.add(Dense(1, activation='sigmoid')) # model.compile(loss='mse', # optimizer='rmsprop', # metrics=['accuracy']) # print(model.summary())
_________________________________________________________________ Layer (type) Output Shape Param # ================================================================= dense_87 (Dense) (None, 1, 1024) 410624 _________________________________________________________________ activation_69 (Activation) (None, 1, 1024) 0 _________________________________________________________________ dropout_72 (Dropout) (None, 1, 1024) 0 _________________________________________________________________ dense_88 (Dense) (None, 1, 256) 262400 _________________________________________________________________ activation_70 (Activation) (None, 1, 256) 0 _________________________________________________________________ dropout_73 (Dropout) (None, 1, 256) 0 _________________________________________________________________ lstm_25 (LSTM) (None, 1, 1) 1032 ================================================================= Total params: 674,056 Trainable params: 674,056 Non-trainable params: 0 _________________________________________________________________ None
MIT
expressyeaself/models/lstm/LSTM_builder.ipynb
yeastpro/expressYeaself
Fit and Evaluate the model
# Fit history = model.fit(X_train, y_train, batch_size=batch_size, epochs=eposhs,verbose=1, validation_data=(X_test, y_test), callbacks=[checkpointer]) # Evaluate score = max(history.history['val_acc']) print("%s: %.2f%%" % (model.metrics_names[1], score*100)) plt = construct.plot_results(history.history) plt.show()
Train on 7500 samples, validate on 2500 samples Epoch 1/500 7500/7500 [==============================] - 4s 594us/step - loss: 0.4805 - acc: 0.4929 - val_loss: 0.4735 - val_acc: 0.4740 Epoch 00001: val_acc improved from -inf to 0.47400, saving model to C:\Users\Lisboa\011019\ExpressYeaself/expressyeaself/models/lstm/saved_models/lstm_sequential_3d_onehot.hdf5 Epoch 2/500 7500/7500 [==============================] - 2s 252us/step - loss: 0.4334 - acc: 0.4929 - val_loss: 0.4249 - val_acc: 0.4740 Epoch 00002: val_acc did not improve from 0.47400 Epoch 3/500 7500/7500 [==============================] - 2s 283us/step - loss: 0.3886 - acc: 0.4929 - val_loss: 0.3805 - val_acc: 0.4740 Epoch 00003: val_acc did not improve from 0.47400 Epoch 4/500 7500/7500 [==============================] - 2s 263us/step - loss: 0.3497 - acc: 0.4929 - val_loss: 0.3427 - val_acc: 0.4740 Epoch 00004: val_acc did not improve from 0.47400 Epoch 5/500 7500/7500 [==============================] - 2s 291us/step - loss: 0.3178 - acc: 0.4929 - val_loss: 0.3123 - val_acc: 0.4740 Epoch 00005: val_acc did not improve from 0.47400 Epoch 6/500 7500/7500 [==============================] - 2s 281us/step - loss: 0.2933 - acc: 0.4929 - val_loss: 0.2895 - val_acc: 0.4740 Epoch 00006: val_acc did not improve from 0.47400 Epoch 7/500 7500/7500 [==============================] - 2s 281us/step - loss: 0.2750 - acc: 0.4929 - val_loss: 0.2725 - val_acc: 0.4740 Epoch 00007: val_acc did not improve from 0.47400 Epoch 8/500 7500/7500 [==============================] - 2s 295us/step - loss: 0.2625 - acc: 0.4929 - val_loss: 0.2615 - val_acc: 0.4740 Epoch 00008: val_acc did not improve from 0.47400 Epoch 9/500 7500/7500 [==============================] - 2s 240us/step - loss: 0.2555 - acc: 0.4929 - val_loss: 0.2549 - val_acc: 0.4740 Epoch 00009: val_acc did not improve from 0.47400 Epoch 10/500 7500/7500 [==============================] - 2s 250us/step - loss: 0.2520 - acc: 0.4923 - val_loss: 0.2518 - val_acc: 0.4740 Epoch 00010: val_acc did not improve from 0.47400 Epoch 11/500 7500/7500 [==============================] - 2s 225us/step - loss: 0.2506 - acc: 0.4968 - val_loss: 0.2504 - val_acc: 0.4740 Epoch 00011: val_acc did not improve from 0.47400 Epoch 12/500 7500/7500 [==============================] - 2s 247us/step - loss: 0.2500 - acc: 0.5005 - val_loss: 0.2500 - val_acc: 0.5260 Epoch 00012: val_acc improved from 0.47400 to 0.52600, saving model to C:\Users\Lisboa\011019\ExpressYeaself/expressyeaself/models/lstm/saved_models/lstm_sequential_3d_onehot.hdf5 Epoch 13/500 7500/7500 [==============================] - 2s 263us/step - loss: 0.2499 - acc: 0.5023 - val_loss: 0.2498 - val_acc: 0.5260 Epoch 00013: val_acc did not improve from 0.52600 Epoch 14/500 7500/7500 [==============================] - 2s 272us/step - loss: 0.2503 - acc: 0.4987 - val_loss: 0.2497 - val_acc: 0.5260 Epoch 00014: val_acc did not improve from 0.52600 Epoch 15/500 7500/7500 [==============================] - 2s 281us/step - loss: 0.2502 - acc: 0.4951 - val_loss: 0.2497 - val_acc: 0.5260 Epoch 00015: val_acc did not improve from 0.52600 Epoch 16/500 7500/7500 [==============================] - 2s 221us/step - loss: 0.2500 - acc: 0.5064 - val_loss: 0.2497 - val_acc: 0.5260 Epoch 00016: val_acc did not improve from 0.52600 Epoch 17/500 7500/7500 [==============================] - 2s 214us/step - loss: 0.2502 - acc: 0.5005 - val_loss: 0.2497 - val_acc: 0.5260 Epoch 00017: val_acc did not improve from 0.52600 Epoch 18/500 7500/7500 [==============================] - 2s 214us/step - loss: 0.2501 - acc: 0.5081 - val_loss: 0.2497 - val_acc: 0.5260 Epoch 00018: val_acc did not improve from 0.52600 Epoch 19/500 7500/7500 [==============================] - 2s 217us/step - loss: 0.2499 - acc: 0.5017 - val_loss: 0.2497 - val_acc: 0.5260 Epoch 00019: val_acc did not improve from 0.52600 Epoch 20/500 7500/7500 [==============================] - 2s 213us/step - loss: 0.2504 - acc: 0.4905 - val_loss: 0.2496 - val_acc: 0.5260 Epoch 00020: val_acc did not improve from 0.52600 Epoch 21/500 7500/7500 [==============================] - 2s 215us/step - loss: 0.2497 - acc: 0.5159 - val_loss: 0.2493 - val_acc: 0.5260 Epoch 00021: val_acc did not improve from 0.52600 Epoch 22/500 7500/7500 [==============================] - 2s 214us/step - loss: 0.2497 - acc: 0.5107 - val_loss: 0.2491 - val_acc: 0.5260 Epoch 00022: val_acc did not improve from 0.52600 Epoch 23/500 7500/7500 [==============================] - 2s 213us/step - loss: 0.2491 - acc: 0.5211 - val_loss: 0.2486 - val_acc: 0.5260 Epoch 00023: val_acc did not improve from 0.52600 Epoch 24/500 7500/7500 [==============================] - 2s 258us/step - loss: 0.2485 - acc: 0.5396 - val_loss: 0.2478 - val_acc: 0.5260 Epoch 00024: val_acc did not improve from 0.52600 Epoch 25/500 7500/7500 [==============================] - 2s 264us/step - loss: 0.2474 - acc: 0.5551 - val_loss: 0.2466 - val_acc: 0.6284 Epoch 00025: val_acc improved from 0.52600 to 0.62840, saving model to C:\Users\Lisboa\011019\ExpressYeaself/expressyeaself/models/lstm/saved_models/lstm_sequential_3d_onehot.hdf5 Epoch 26/500 7500/7500 [==============================] - 2s 236us/step - loss: 0.2456 - acc: 0.5913 - val_loss: 0.2449 - val_acc: 0.7040 Epoch 00026: val_acc improved from 0.62840 to 0.70400, saving model to C:\Users\Lisboa\011019\ExpressYeaself/expressyeaself/models/lstm/saved_models/lstm_sequential_3d_onehot.hdf5 Epoch 27/500 7500/7500 [==============================] - 2s 242us/step - loss: 0.2435 - acc: 0.6288 - val_loss: 0.2425 - val_acc: 0.7100 Epoch 00027: val_acc improved from 0.70400 to 0.71000, saving model to C:\Users\Lisboa\011019\ExpressYeaself/expressyeaself/models/lstm/saved_models/lstm_sequential_3d_onehot.hdf5 Epoch 28/500 7500/7500 [==============================] - 2s 259us/step - loss: 0.2404 - acc: 0.6519 - val_loss: 0.2394 - val_acc: 0.7168 Epoch 00028: val_acc improved from 0.71000 to 0.71680, saving model to C:\Users\Lisboa\011019\ExpressYeaself/expressyeaself/models/lstm/saved_models/lstm_sequential_3d_onehot.hdf5 Epoch 29/500 7500/7500 [==============================] - 2s 245us/step - loss: 0.2368 - acc: 0.6575 - val_loss: 0.2355 - val_acc: 0.7160 Epoch 00029: val_acc did not improve from 0.71680 Epoch 30/500 7500/7500 [==============================] - 2s 231us/step - loss: 0.2324 - acc: 0.6643 - val_loss: 0.2312 - val_acc: 0.7220 Epoch 00030: val_acc improved from 0.71680 to 0.72200, saving model to C:\Users\Lisboa\011019\ExpressYeaself/expressyeaself/models/lstm/saved_models/lstm_sequential_3d_onehot.hdf5 Epoch 31/500 7500/7500 [==============================] - 2s 247us/step - loss: 0.2273 - acc: 0.6667 - val_loss: 0.2258 - val_acc: 0.7208 Epoch 00031: val_acc did not improve from 0.72200 Epoch 32/500 7500/7500 [==============================] - 2s 234us/step - loss: 0.2228 - acc: 0.6655 - val_loss: 0.2205 - val_acc: 0.7228 Epoch 00032: val_acc improved from 0.72200 to 0.72280, saving model to C:\Users\Lisboa\011019\ExpressYeaself/expressyeaself/models/lstm/saved_models/lstm_sequential_3d_onehot.hdf5 Epoch 33/500 7500/7500 [==============================] - 2s 245us/step - loss: 0.2178 - acc: 0.6604 - val_loss: 0.2146 - val_acc: 0.7216 Epoch 00033: val_acc did not improve from 0.72280 Epoch 34/500 7500/7500 [==============================] - 2s 219us/step - loss: 0.2124 - acc: 0.6667 - val_loss: 0.2095 - val_acc: 0.7196 Epoch 00034: val_acc did not improve from 0.72280 Epoch 35/500 7500/7500 [==============================] - 2s 222us/step - loss: 0.2074 - acc: 0.6747 - val_loss: 0.2049 - val_acc: 0.7208 Epoch 00035: val_acc did not improve from 0.72280 Epoch 36/500 7500/7500 [==============================] - 2s 245us/step - loss: 0.2043 - acc: 0.6691 - val_loss: 0.2012 - val_acc: 0.7232 Epoch 00036: val_acc improved from 0.72280 to 0.72320, saving model to C:\Users\Lisboa\011019\ExpressYeaself/expressyeaself/models/lstm/saved_models/lstm_sequential_3d_onehot.hdf5 Epoch 37/500 7500/7500 [==============================] - 2s 253us/step - loss: 0.2041 - acc: 0.6649 - val_loss: 0.1989 - val_acc: 0.7212 Epoch 00037: val_acc did not improve from 0.72320 Epoch 38/500 7500/7500 [==============================] - 2s 227us/step - loss: 0.2022 - acc: 0.6648 - val_loss: 0.1971 - val_acc: 0.7224 Epoch 00038: val_acc did not improve from 0.72320 Epoch 39/500 7500/7500 [==============================] - 2s 240us/step - loss: 0.2037 - acc: 0.6533 - val_loss: 0.1962 - val_acc: 0.7212 Epoch 00039: val_acc did not improve from 0.72320 Epoch 40/500 7500/7500 [==============================] - 2s 234us/step - loss: 0.1982 - acc: 0.6713 - val_loss: 0.1954 - val_acc: 0.7180 Epoch 00040: val_acc did not improve from 0.72320 Epoch 41/500 7500/7500 [==============================] - 2s 226us/step - loss: 0.2015 - acc: 0.6603 - val_loss: 0.1952 - val_acc: 0.7196 Epoch 00041: val_acc did not improve from 0.72320 Epoch 42/500 7500/7500 [==============================] - 2s 217us/step - loss: 0.2021 - acc: 0.6643 - val_loss: 0.1951 - val_acc: 0.7192 Epoch 00042: val_acc did not improve from 0.72320 Epoch 43/500 7500/7500 [==============================] - 2s 224us/step - loss: 0.2004 - acc: 0.6581 - val_loss: 0.1956 - val_acc: 0.7176 Epoch 00043: val_acc did not improve from 0.72320 Epoch 44/500 7500/7500 [==============================] - 2s 244us/step - loss: 0.2001 - acc: 0.6664 - val_loss: 0.1946 - val_acc: 0.7196 Epoch 00044: val_acc did not improve from 0.72320 Epoch 45/500 7500/7500 [==============================] - 2s 239us/step - loss: 0.2017 - acc: 0.6600 - val_loss: 0.1946 - val_acc: 0.7172 Epoch 00045: val_acc did not improve from 0.72320 Epoch 46/500 7500/7500 [==============================] - 2s 220us/step - loss: 0.2000 - acc: 0.6664 - val_loss: 0.1943 - val_acc: 0.7180 Epoch 00046: val_acc did not improve from 0.72320 Epoch 47/500 7500/7500 [==============================] - 2s 226us/step - loss: 0.2006 - acc: 0.6607 - val_loss: 0.1943 - val_acc: 0.7184 Epoch 00047: val_acc did not improve from 0.72320 Epoch 48/500 7500/7500 [==============================] - 2s 259us/step - loss: 0.2004 - acc: 0.6565 - val_loss: 0.1944 - val_acc: 0.7192 Epoch 00048: val_acc did not improve from 0.72320 Epoch 49/500 7500/7500 [==============================] - 2s 253us/step - loss: 0.1986 - acc: 0.6668 - val_loss: 0.1944 - val_acc: 0.7188 Epoch 00049: val_acc did not improve from 0.72320 Epoch 50/500 7500/7500 [==============================] - 2s 276us/step - loss: 0.1977 - acc: 0.6681 - val_loss: 0.1942 - val_acc: 0.7212 Epoch 00050: val_acc did not improve from 0.72320 Epoch 51/500 7500/7500 [==============================] - 2s 295us/step - loss: 0.1985 - acc: 0.6689 - val_loss: 0.1944 - val_acc: 0.7188 Epoch 00051: val_acc did not improve from 0.72320 Epoch 52/500 7500/7500 [==============================] - 2s 281us/step - loss: 0.1985 - acc: 0.6636 - val_loss: 0.1943 - val_acc: 0.7212 Epoch 00052: val_acc did not improve from 0.72320 Epoch 53/500 7500/7500 [==============================] - 2s 254us/step - loss: 0.1988 - acc: 0.6692 - val_loss: 0.1942 - val_acc: 0.7192 Epoch 00053: val_acc did not improve from 0.72320 Epoch 54/500 7500/7500 [==============================] - 2s 275us/step - loss: 0.1969 - acc: 0.6717 - val_loss: 0.1941 - val_acc: 0.7176 Epoch 00054: val_acc did not improve from 0.72320 Epoch 55/500 7500/7500 [==============================] - 2s 274us/step - loss: 0.1967 - acc: 0.6757 - val_loss: 0.1941 - val_acc: 0.7200 Epoch 00055: val_acc did not improve from 0.72320 Epoch 56/500 7500/7500 [==============================] - 2s 240us/step - loss: 0.1969 - acc: 0.6785 - val_loss: 0.1941 - val_acc: 0.7172 Epoch 00056: val_acc did not improve from 0.72320 Epoch 57/500 7500/7500 [==============================] - 2s 244us/step - loss: 0.1966 - acc: 0.6799 - val_loss: 0.1933 - val_acc: 0.7180 Epoch 00057: val_acc did not improve from 0.72320 Epoch 58/500 7500/7500 [==============================] - 2s 254us/step - loss: 0.1947 - acc: 0.6933 - val_loss: 0.1930 - val_acc: 0.7188 Epoch 00058: val_acc did not improve from 0.72320 Epoch 59/500 7500/7500 [==============================] - 2s 241us/step - loss: 0.1942 - acc: 0.6880 - val_loss: 0.1933 - val_acc: 0.7204 Epoch 00059: val_acc did not improve from 0.72320 Epoch 60/500 7500/7500 [==============================] - 2s 248us/step - loss: 0.1936 - acc: 0.6952 - val_loss: 0.1936 - val_acc: 0.7248 Epoch 00060: val_acc improved from 0.72320 to 0.72480, saving model to C:\Users\Lisboa\011019\ExpressYeaself/expressyeaself/models/lstm/saved_models/lstm_sequential_3d_onehot.hdf5 Epoch 61/500 7500/7500 [==============================] - 2s 255us/step - loss: 0.1913 - acc: 0.7027 - val_loss: 0.1932 - val_acc: 0.7216 Epoch 00061: val_acc did not improve from 0.72480 Epoch 62/500 7500/7500 [==============================] - 2s 276us/step - loss: 0.1934 - acc: 0.6943 - val_loss: 0.1934 - val_acc: 0.7164 Epoch 00062: val_acc did not improve from 0.72480 Epoch 63/500 7500/7500 [==============================] - 2s 234us/step - loss: 0.1897 - acc: 0.7065 - val_loss: 0.1929 - val_acc: 0.7156 Epoch 00063: val_acc did not improve from 0.72480 Epoch 64/500 7500/7500 [==============================] - 2s 236us/step - loss: 0.1911 - acc: 0.7065 - val_loss: 0.1926 - val_acc: 0.7204 Epoch 00064: val_acc did not improve from 0.72480 Epoch 65/500 7500/7500 [==============================] - 2s 236us/step - loss: 0.1914 - acc: 0.7072 - val_loss: 0.1925 - val_acc: 0.7208 Epoch 00065: val_acc did not improve from 0.72480 Epoch 66/500 7500/7500 [==============================] - 2s 244us/step - loss: 0.1902 - acc: 0.7104 - val_loss: 0.1932 - val_acc: 0.7176 Epoch 00066: val_acc did not improve from 0.72480 Epoch 67/500 7500/7500 [==============================] - 2s 252us/step - loss: 0.1928 - acc: 0.7051 - val_loss: 0.1937 - val_acc: 0.7196 Epoch 00067: val_acc did not improve from 0.72480 Epoch 68/500 7500/7500 [==============================] - 2s 229us/step - loss: 0.1933 - acc: 0.7027 - val_loss: 0.1930 - val_acc: 0.7208 Epoch 00068: val_acc did not improve from 0.72480 Epoch 69/500 7500/7500 [==============================] - 2s 229us/step - loss: 0.1893 - acc: 0.7131 - val_loss: 0.1931 - val_acc: 0.7196 Epoch 00069: val_acc did not improve from 0.72480 Epoch 70/500 7500/7500 [==============================] - 2s 230us/step - loss: 0.1910 - acc: 0.7108 - val_loss: 0.1935 - val_acc: 0.7188 Epoch 00070: val_acc did not improve from 0.72480 Epoch 71/500 7500/7500 [==============================] - 2s 233us/step - loss: 0.1881 - acc: 0.7227 - val_loss: 0.1933 - val_acc: 0.7160 Epoch 00071: val_acc did not improve from 0.72480 Epoch 72/500 7500/7500 [==============================] - 2s 248us/step - loss: 0.1895 - acc: 0.7092 - val_loss: 0.1933 - val_acc: 0.7176 Epoch 00072: val_acc did not improve from 0.72480 Epoch 73/500 7500/7500 [==============================] - 2s 227us/step - loss: 0.1893 - acc: 0.7139 - val_loss: 0.1935 - val_acc: 0.7164 Epoch 00073: val_acc did not improve from 0.72480 Epoch 74/500 7500/7500 [==============================] - 2s 247us/step - loss: 0.1877 - acc: 0.7148 - val_loss: 0.1929 - val_acc: 0.7160 Epoch 00074: val_acc did not improve from 0.72480 Epoch 75/500 7500/7500 [==============================] - 2s 246us/step - loss: 0.1902 - acc: 0.7151 - val_loss: 0.1933 - val_acc: 0.7180 Epoch 00075: val_acc did not improve from 0.72480 Epoch 76/500 7500/7500 [==============================] - 2s 223us/step - loss: 0.1899 - acc: 0.7136 - val_loss: 0.1931 - val_acc: 0.7176 Epoch 00076: val_acc did not improve from 0.72480 Epoch 77/500 7500/7500 [==============================] - 2s 253us/step - loss: 0.1880 - acc: 0.7207 - val_loss: 0.1943 - val_acc: 0.7144 Epoch 00077: val_acc did not improve from 0.72480 Epoch 78/500 7500/7500 [==============================] - 2s 245us/step - loss: 0.1894 - acc: 0.7212 - val_loss: 0.1936 - val_acc: 0.7172 Epoch 00078: val_acc did not improve from 0.72480 Epoch 79/500 7500/7500 [==============================] - 2s 236us/step - loss: 0.1871 - acc: 0.7185 - val_loss: 0.1936 - val_acc: 0.7156 Epoch 00079: val_acc did not improve from 0.72480 Epoch 80/500 7500/7500 [==============================] - 2s 236us/step - loss: 0.1892 - acc: 0.7160 - val_loss: 0.1937 - val_acc: 0.7148 Epoch 00080: val_acc did not improve from 0.72480 Epoch 81/500 7500/7500 [==============================] - 2s 234us/step - loss: 0.1876 - acc: 0.7256 - val_loss: 0.1936 - val_acc: 0.7132 Epoch 00081: val_acc did not improve from 0.72480 Epoch 82/500 7500/7500 [==============================] - 2s 227us/step - loss: 0.1879 - acc: 0.7249 - val_loss: 0.1938 - val_acc: 0.7192 Epoch 00082: val_acc did not improve from 0.72480 Epoch 83/500 7500/7500 [==============================] - 2s 235us/step - loss: 0.1903 - acc: 0.7188 - val_loss: 0.1939 - val_acc: 0.7172 Epoch 00083: val_acc did not improve from 0.72480 Epoch 84/500 7500/7500 [==============================] - 2s 246us/step - loss: 0.1873 - acc: 0.7216 - val_loss: 0.1935 - val_acc: 0.7160 Epoch 00084: val_acc did not improve from 0.72480 Epoch 85/500 7500/7500 [==============================] - 2s 226us/step - loss: 0.1903 - acc: 0.7247 - val_loss: 0.1937 - val_acc: 0.7200 Epoch 00085: val_acc did not improve from 0.72480 Epoch 86/500 7500/7500 [==============================] - 2s 248us/step - loss: 0.1903 - acc: 0.7229 - val_loss: 0.1938 - val_acc: 0.7168 Epoch 00086: val_acc did not improve from 0.72480 Epoch 87/500 7500/7500 [==============================] - 2s 259us/step - loss: 0.1889 - acc: 0.7256 - val_loss: 0.1938 - val_acc: 0.7148 Epoch 00087: val_acc did not improve from 0.72480 Epoch 88/500 7500/7500 [==============================] - 2s 261us/step - loss: 0.1884 - acc: 0.7219 - val_loss: 0.1941 - val_acc: 0.7180 Epoch 00088: val_acc did not improve from 0.72480 Epoch 89/500 7500/7500 [==============================] - 2s 236us/step - loss: 0.1874 - acc: 0.7259 - val_loss: 0.1940 - val_acc: 0.7156 Epoch 00089: val_acc did not improve from 0.72480 Epoch 90/500 7500/7500 [==============================] - 2s 237us/step - loss: 0.1885 - acc: 0.7272 - val_loss: 0.1938 - val_acc: 0.7184 Epoch 00090: val_acc did not improve from 0.72480 Epoch 91/500 7500/7500 [==============================] - 2s 240us/step - loss: 0.1876 - acc: 0.7280 - val_loss: 0.1939 - val_acc: 0.7192 Epoch 00091: val_acc did not improve from 0.72480 Epoch 92/500 7500/7500 [==============================] - 2s 229us/step - loss: 0.1865 - acc: 0.7309 - val_loss: 0.1936 - val_acc: 0.7204 Epoch 00092: val_acc did not improve from 0.72480 Epoch 93/500 7500/7500 [==============================] - 2s 221us/step - loss: 0.1850 - acc: 0.7353 - val_loss: 0.1939 - val_acc: 0.7120 Epoch 00093: val_acc did not improve from 0.72480 Epoch 94/500 7500/7500 [==============================] - 2s 219us/step - loss: 0.1878 - acc: 0.7281 - val_loss: 0.1938 - val_acc: 0.7172 Epoch 00094: val_acc did not improve from 0.72480 Epoch 95/500 7500/7500 [==============================] - 2s 220us/step - loss: 0.1863 - acc: 0.7312 - val_loss: 0.1938 - val_acc: 0.7164 Epoch 00095: val_acc did not improve from 0.72480 Epoch 96/500 7500/7500 [==============================] - 2s 235us/step - loss: 0.1889 - acc: 0.7267 - val_loss: 0.1938 - val_acc: 0.7176 Epoch 00096: val_acc did not improve from 0.72480 Epoch 97/500 7500/7500 [==============================] - 2s 236us/step - loss: 0.1847 - acc: 0.7335 - val_loss: 0.1937 - val_acc: 0.7160 Epoch 00097: val_acc did not improve from 0.72480 Epoch 98/500 7500/7500 [==============================] - 2s 231us/step - loss: 0.1850 - acc: 0.7331 - val_loss: 0.1938 - val_acc: 0.7204 Epoch 00098: val_acc did not improve from 0.72480 Epoch 99/500 7500/7500 [==============================] - 2s 238us/step - loss: 0.1850 - acc: 0.7289 - val_loss: 0.1939 - val_acc: 0.7212 Epoch 00099: val_acc did not improve from 0.72480 Epoch 100/500 7500/7500 [==============================] - 2s 238us/step - loss: 0.1850 - acc: 0.7371 - val_loss: 0.1937 - val_acc: 0.7184 Epoch 00100: val_acc did not improve from 0.72480 Epoch 101/500 7500/7500 [==============================] - 2s 230us/step - loss: 0.1860 - acc: 0.7321 - val_loss: 0.1940 - val_acc: 0.7192 Epoch 00101: val_acc did not improve from 0.72480 Epoch 102/500 7500/7500 [==============================] - 2s 230us/step - loss: 0.1858 - acc: 0.7388 - val_loss: 0.1940 - val_acc: 0.7156 Epoch 00102: val_acc did not improve from 0.72480 Epoch 103/500 7500/7500 [==============================] - 2s 236us/step - loss: 0.1847 - acc: 0.7345 - val_loss: 0.1942 - val_acc: 0.7184 Epoch 00103: val_acc did not improve from 0.72480 Epoch 104/500 7500/7500 [==============================] - 2s 231us/step - loss: 0.1842 - acc: 0.7397 - val_loss: 0.1942 - val_acc: 0.7184 Epoch 00104: val_acc did not improve from 0.72480 Epoch 105/500 7500/7500 [==============================] - 2s 230us/step - loss: 0.1843 - acc: 0.7343 - val_loss: 0.1944 - val_acc: 0.7184 Epoch 00105: val_acc did not improve from 0.72480 Epoch 106/500 7500/7500 [==============================] - 2s 236us/step - loss: 0.1852 - acc: 0.7363 - val_loss: 0.1942 - val_acc: 0.7148 Epoch 00106: val_acc did not improve from 0.72480 Epoch 107/500 7500/7500 [==============================] - 2s 230us/step - loss: 0.1831 - acc: 0.7353 - val_loss: 0.1950 - val_acc: 0.7192 Epoch 00107: val_acc did not improve from 0.72480 Epoch 108/500 7500/7500 [==============================] - 2s 232us/step - loss: 0.1845 - acc: 0.7384 - val_loss: 0.1943 - val_acc: 0.7168 Epoch 00108: val_acc did not improve from 0.72480 Epoch 109/500 7500/7500 [==============================] - 2s 231us/step - loss: 0.1855 - acc: 0.7385 - val_loss: 0.1945 - val_acc: 0.7192 Epoch 00109: val_acc did not improve from 0.72480 Epoch 110/500 7500/7500 [==============================] - 2s 230us/step - loss: 0.1833 - acc: 0.7376 - val_loss: 0.1943 - val_acc: 0.7176 Epoch 00110: val_acc did not improve from 0.72480 Epoch 111/500 7500/7500 [==============================] - 2s 236us/step - loss: 0.1848 - acc: 0.7385 - val_loss: 0.1950 - val_acc: 0.7188 Epoch 00111: val_acc did not improve from 0.72480 Epoch 112/500 7500/7500 [==============================] - 2s 233us/step - loss: 0.1842 - acc: 0.7401 - val_loss: 0.1947 - val_acc: 0.7168 Epoch 00112: val_acc did not improve from 0.72480 Epoch 113/500 7500/7500 [==============================] - 2s 233us/step - loss: 0.1839 - acc: 0.7416 - val_loss: 0.1948 - val_acc: 0.7176 Epoch 00113: val_acc did not improve from 0.72480 Epoch 114/500 7500/7500 [==============================] - 2s 235us/step - loss: 0.1832 - acc: 0.7441 - val_loss: 0.1947 - val_acc: 0.7176 Epoch 00114: val_acc did not improve from 0.72480 Epoch 115/500 7500/7500 [==============================] - 2s 234us/step - loss: 0.1850 - acc: 0.7363 - val_loss: 0.1947 - val_acc: 0.7180 Epoch 00115: val_acc did not improve from 0.72480 Epoch 116/500 7500/7500 [==============================] - 2s 233us/step - loss: 0.1837 - acc: 0.7436 - val_loss: 0.1948 - val_acc: 0.7184 Epoch 00116: val_acc did not improve from 0.72480 Epoch 117/500 7500/7500 [==============================] - 2s 245us/step - loss: 0.1838 - acc: 0.7408 - val_loss: 0.1950 - val_acc: 0.7184 Epoch 00117: val_acc did not improve from 0.72480 Epoch 118/500 7500/7500 [==============================] - 2s 233us/step - loss: 0.1823 - acc: 0.7420 - val_loss: 0.1949 - val_acc: 0.7176 Epoch 00118: val_acc did not improve from 0.72480 Epoch 119/500 7500/7500 [==============================] - 2s 233us/step - loss: 0.1815 - acc: 0.7457 - val_loss: 0.1953 - val_acc: 0.7172 Epoch 00119: val_acc did not improve from 0.72480 Epoch 120/500 7500/7500 [==============================] - 2s 237us/step - loss: 0.1830 - acc: 0.7444 - val_loss: 0.1950 - val_acc: 0.7176 Epoch 00120: val_acc did not improve from 0.72480 Epoch 121/500 7500/7500 [==============================] - 2s 233us/step - loss: 0.1820 - acc: 0.7460 - val_loss: 0.1956 - val_acc: 0.7188 Epoch 00121: val_acc did not improve from 0.72480 Epoch 122/500 7500/7500 [==============================] - 2s 236us/step - loss: 0.1831 - acc: 0.7445 - val_loss: 0.1956 - val_acc: 0.7188 Epoch 00122: val_acc did not improve from 0.72480 Epoch 123/500 7500/7500 [==============================] - 2s 236us/step - loss: 0.1834 - acc: 0.7404 - val_loss: 0.1952 - val_acc: 0.7212 Epoch 00123: val_acc did not improve from 0.72480 Epoch 124/500 7500/7500 [==============================] - 2s 233us/step - loss: 0.1840 - acc: 0.7419 - val_loss: 0.1958 - val_acc: 0.7220 Epoch 00124: val_acc did not improve from 0.72480 Epoch 125/500 7500/7500 [==============================] - 2s 235us/step - loss: 0.1808 - acc: 0.7491 - val_loss: 0.1961 - val_acc: 0.7216 Epoch 00125: val_acc did not improve from 0.72480 Epoch 126/500 7500/7500 [==============================] - 2s 237us/step - loss: 0.1805 - acc: 0.7465 - val_loss: 0.1959 - val_acc: 0.7220 Epoch 00126: val_acc did not improve from 0.72480 Epoch 127/500 7500/7500 [==============================] - 2s 231us/step - loss: 0.1829 - acc: 0.7463 - val_loss: 0.1952 - val_acc: 0.7216 Epoch 00127: val_acc did not improve from 0.72480 Epoch 128/500 7500/7500 [==============================] - 2s 239us/step - loss: 0.1815 - acc: 0.7469 - val_loss: 0.1957 - val_acc: 0.7212 Epoch 00128: val_acc did not improve from 0.72480 Epoch 129/500 7500/7500 [==============================] - 2s 232us/step - loss: 0.1808 - acc: 0.7471 - val_loss: 0.1960 - val_acc: 0.7196 Epoch 00129: val_acc did not improve from 0.72480 Epoch 130/500 7500/7500 [==============================] - 2s 237us/step - loss: 0.1815 - acc: 0.7443 - val_loss: 0.1964 - val_acc: 0.7212 Epoch 00130: val_acc did not improve from 0.72480 Epoch 131/500 7500/7500 [==============================] - 2s 235us/step - loss: 0.1803 - acc: 0.7536 - val_loss: 0.1970 - val_acc: 0.7208 Epoch 00131: val_acc did not improve from 0.72480 Epoch 132/500 7500/7500 [==============================] - 2s 235us/step - loss: 0.1807 - acc: 0.7520 - val_loss: 0.1968 - val_acc: 0.7216 Epoch 00132: val_acc did not improve from 0.72480 Epoch 133/500 7500/7500 [==============================] - 2s 235us/step - loss: 0.1815 - acc: 0.7456 - val_loss: 0.1976 - val_acc: 0.7172 Epoch 00133: val_acc did not improve from 0.72480 Epoch 134/500 7500/7500 [==============================] - 2s 249us/step - loss: 0.1824 - acc: 0.7455 - val_loss: 0.1961 - val_acc: 0.7200 Epoch 00134: val_acc did not improve from 0.72480 Epoch 135/500 7500/7500 [==============================] - 2s 237us/step - loss: 0.1798 - acc: 0.7511 - val_loss: 0.1962 - val_acc: 0.7220 Epoch 00135: val_acc did not improve from 0.72480 Epoch 136/500 7500/7500 [==============================] - 2s 235us/step - loss: 0.1804 - acc: 0.7505 - val_loss: 0.1966 - val_acc: 0.7208 Epoch 00136: val_acc did not improve from 0.72480 Epoch 137/500 7500/7500 [==============================] - 2s 237us/step - loss: 0.1807 - acc: 0.7475 - val_loss: 0.1970 - val_acc: 0.7192 Epoch 00137: val_acc did not improve from 0.72480 Epoch 138/500 7500/7500 [==============================] - 2s 236us/step - loss: 0.1796 - acc: 0.7529 - val_loss: 0.1987 - val_acc: 0.7216 Epoch 00138: val_acc did not improve from 0.72480 Epoch 139/500 7500/7500 [==============================] - 2s 239us/step - loss: 0.1810 - acc: 0.7476 - val_loss: 0.1981 - val_acc: 0.7204 Epoch 00139: val_acc did not improve from 0.72480 Epoch 140/500 7500/7500 [==============================] - 2s 239us/step - loss: 0.1807 - acc: 0.7505 - val_loss: 0.1982 - val_acc: 0.7196 Epoch 00140: val_acc did not improve from 0.72480 Epoch 141/500 7500/7500 [==============================] - 2s 236us/step - loss: 0.1783 - acc: 0.7600 - val_loss: 0.1978 - val_acc: 0.7168 Epoch 00141: val_acc did not improve from 0.72480 Epoch 142/500 7500/7500 [==============================] - 2s 237us/step - loss: 0.1788 - acc: 0.7532 - val_loss: 0.1982 - val_acc: 0.7168 Epoch 00142: val_acc did not improve from 0.72480 Epoch 143/500 7500/7500 [==============================] - 2s 238us/step - loss: 0.1793 - acc: 0.7540 - val_loss: 0.1992 - val_acc: 0.7176 Epoch 00143: val_acc did not improve from 0.72480 Epoch 144/500 7500/7500 [==============================] - 2s 234us/step - loss: 0.1785 - acc: 0.7532 - val_loss: 0.1987 - val_acc: 0.7168 Epoch 00144: val_acc did not improve from 0.72480 Epoch 145/500 7500/7500 [==============================] - 2s 242us/step - loss: 0.1814 - acc: 0.7477 - val_loss: 0.1981 - val_acc: 0.7192 Epoch 00145: val_acc did not improve from 0.72480 Epoch 146/500 7500/7500 [==============================] - 2s 249us/step - loss: 0.1769 - acc: 0.7605 - val_loss: 0.1989 - val_acc: 0.7192 Epoch 00146: val_acc did not improve from 0.72480 Epoch 147/500 7500/7500 [==============================] - 2s 238us/step - loss: 0.1777 - acc: 0.7547 - val_loss: 0.1992 - val_acc: 0.7172 Epoch 00147: val_acc did not improve from 0.72480 Epoch 148/500 7500/7500 [==============================] - 2s 239us/step - loss: 0.1806 - acc: 0.7521 - val_loss: 0.1994 - val_acc: 0.7168 Epoch 00148: val_acc did not improve from 0.72480 Epoch 149/500 7500/7500 [==============================] - 2s 234us/step - loss: 0.1777 - acc: 0.7611 - val_loss: 0.1997 - val_acc: 0.7192 Epoch 00149: val_acc did not improve from 0.72480 Epoch 150/500 7500/7500 [==============================] - 2s 234us/step - loss: 0.1760 - acc: 0.7571 - val_loss: 0.1998 - val_acc: 0.7156 Epoch 00150: val_acc did not improve from 0.72480 Epoch 151/500 7500/7500 [==============================] - 2s 238us/step - loss: 0.1777 - acc: 0.7573 - val_loss: 0.2003 - val_acc: 0.7188 Epoch 00151: val_acc did not improve from 0.72480 Epoch 152/500 7500/7500 [==============================] - 2s 239us/step - loss: 0.1774 - acc: 0.7567 - val_loss: 0.2008 - val_acc: 0.7176 Epoch 00152: val_acc did not improve from 0.72480 Epoch 153/500 7500/7500 [==============================] - 2s 237us/step - loss: 0.1778 - acc: 0.7552 - val_loss: 0.2027 - val_acc: 0.7160 Epoch 00153: val_acc did not improve from 0.72480 Epoch 154/500 7500/7500 [==============================] - 2s 241us/step - loss: 0.1773 - acc: 0.7545 - val_loss: 0.2007 - val_acc: 0.7160 Epoch 00154: val_acc did not improve from 0.72480 Epoch 155/500 7500/7500 [==============================] - 2s 240us/step - loss: 0.1754 - acc: 0.7615 - val_loss: 0.2003 - val_acc: 0.7180 Epoch 00155: val_acc did not improve from 0.72480 Epoch 156/500 7500/7500 [==============================] - 2s 241us/step - loss: 0.1768 - acc: 0.7595 - val_loss: 0.2037 - val_acc: 0.7156 Epoch 00156: val_acc did not improve from 0.72480 Epoch 157/500 7500/7500 [==============================] - 2s 237us/step - loss: 0.1763 - acc: 0.7585 - val_loss: 0.2012 - val_acc: 0.7160 Epoch 00157: val_acc did not improve from 0.72480 Epoch 158/500 7500/7500 [==============================] - 2s 246us/step - loss: 0.1766 - acc: 0.7556 - val_loss: 0.2003 - val_acc: 0.7136 Epoch 00158: val_acc did not improve from 0.72480 Epoch 159/500 7500/7500 [==============================] - 2s 235us/step - loss: 0.1757 - acc: 0.7575 - val_loss: 0.2028 - val_acc: 0.7140 Epoch 00159: val_acc did not improve from 0.72480 Epoch 160/500 7500/7500 [==============================] - 2s 239us/step - loss: 0.1768 - acc: 0.7580 - val_loss: 0.2027 - val_acc: 0.7132 Epoch 00160: val_acc did not improve from 0.72480 Epoch 161/500 7500/7500 [==============================] - 2s 261us/step - loss: 0.1765 - acc: 0.7599 - val_loss: 0.2018 - val_acc: 0.7160 Epoch 00161: val_acc did not improve from 0.72480 Epoch 162/500 7500/7500 [==============================] - 2s 235us/step - loss: 0.1769 - acc: 0.7561 - val_loss: 0.2022 - val_acc: 0.7160 Epoch 00162: val_acc did not improve from 0.72480 Epoch 163/500 7500/7500 [==============================] - 2s 275us/step - loss: 0.1774 - acc: 0.7541 - val_loss: 0.2026 - val_acc: 0.7140 Epoch 00163: val_acc did not improve from 0.72480 Epoch 164/500 7500/7500 [==============================] - 2s 287us/step - loss: 0.1776 - acc: 0.7541 - val_loss: 0.2013 - val_acc: 0.7136 Epoch 00164: val_acc did not improve from 0.72480 Epoch 165/500 7500/7500 [==============================] - 3s 337us/step - loss: 0.1744 - acc: 0.7643 - val_loss: 0.2012 - val_acc: 0.7156 Epoch 00165: val_acc did not improve from 0.72480 Epoch 166/500 7500/7500 [==============================] - 3s 349us/step - loss: 0.1747 - acc: 0.7597 - val_loss: 0.2051 - val_acc: 0.7128 Epoch 00166: val_acc did not improve from 0.72480 Epoch 167/500 7500/7500 [==============================] - 2s 324us/step - loss: 0.1758 - acc: 0.7597 - val_loss: 0.2035 - val_acc: 0.7152 Epoch 00167: val_acc did not improve from 0.72480 Epoch 168/500 7500/7500 [==============================] - 2s 315us/step - loss: 0.1764 - acc: 0.7553 - val_loss: 0.2025 - val_acc: 0.7156 Epoch 00168: val_acc did not improve from 0.72480 Epoch 169/500 7500/7500 [==============================] - 2s 309us/step - loss: 0.1754 - acc: 0.7640 - val_loss: 0.2034 - val_acc: 0.7148 Epoch 00169: val_acc did not improve from 0.72480 Epoch 170/500 7500/7500 [==============================] - 2s 308us/step - loss: 0.1765 - acc: 0.7592 - val_loss: 0.2025 - val_acc: 0.7136 Epoch 00170: val_acc did not improve from 0.72480 Epoch 171/500 7500/7500 [==============================] - 2s 299us/step - loss: 0.1743 - acc: 0.7621 - val_loss: 0.2032 - val_acc: 0.7124 Epoch 00171: val_acc did not improve from 0.72480 Epoch 172/500 7500/7500 [==============================] - 3s 354us/step - loss: 0.1747 - acc: 0.7601 - val_loss: 0.2030 - val_acc: 0.7132 Epoch 00172: val_acc did not improve from 0.72480 Epoch 173/500 7500/7500 [==============================] - 2s 301us/step - loss: 0.1748 - acc: 0.7604 - val_loss: 0.2027 - val_acc: 0.7140 Epoch 00173: val_acc did not improve from 0.72480 Epoch 174/500 7500/7500 [==============================] - 2s 259us/step - loss: 0.1757 - acc: 0.7569 - val_loss: 0.2042 - val_acc: 0.7136 Epoch 00174: val_acc did not improve from 0.72480 Epoch 175/500 7500/7500 [==============================] - 2s 262us/step - loss: 0.1759 - acc: 0.7617 - val_loss: 0.2050 - val_acc: 0.7132 Epoch 00175: val_acc did not improve from 0.72480 Epoch 176/500 7500/7500 [==============================] - 2s 260us/step - loss: 0.1744 - acc: 0.7601 - val_loss: 0.2050 - val_acc: 0.7148 Epoch 00176: val_acc did not improve from 0.72480 Epoch 177/500 7500/7500 [==============================] - 2s 265us/step - loss: 0.1739 - acc: 0.7637 - val_loss: 0.2057 - val_acc: 0.7140 Epoch 00177: val_acc did not improve from 0.72480 Epoch 178/500 7500/7500 [==============================] - 2s 260us/step - loss: 0.1733 - acc: 0.7645 - val_loss: 0.2036 - val_acc: 0.7144 Epoch 00178: val_acc did not improve from 0.72480 Epoch 179/500 7500/7500 [==============================] - 2s 259us/step - loss: 0.1736 - acc: 0.7607 - val_loss: 0.2060 - val_acc: 0.7140 Epoch 00179: val_acc did not improve from 0.72480 Epoch 180/500 7500/7500 [==============================] - 2s 261us/step - loss: 0.1752 - acc: 0.7585 - val_loss: 0.2038 - val_acc: 0.7148 Epoch 00180: val_acc did not improve from 0.72480 Epoch 181/500 7500/7500 [==============================] - 2s 260us/step - loss: 0.1744 - acc: 0.7589 - val_loss: 0.2064 - val_acc: 0.7144 Epoch 00181: val_acc did not improve from 0.72480 Epoch 182/500 7500/7500 [==============================] - 2s 257us/step - loss: 0.1741 - acc: 0.7612 - val_loss: 0.2051 - val_acc: 0.7128 Epoch 00182: val_acc did not improve from 0.72480 Epoch 183/500 7500/7500 [==============================] - 2s 258us/step - loss: 0.1737 - acc: 0.7605 - val_loss: 0.2048 - val_acc: 0.7140 Epoch 00183: val_acc did not improve from 0.72480 Epoch 184/500 7500/7500 [==============================] - 2s 259us/step - loss: 0.1746 - acc: 0.7625 - val_loss: 0.2066 - val_acc: 0.7128 Epoch 00184: val_acc did not improve from 0.72480 Epoch 185/500 7500/7500 [==============================] - 2s 260us/step - loss: 0.1752 - acc: 0.7616 - val_loss: 0.2050 - val_acc: 0.7152 Epoch 00185: val_acc did not improve from 0.72480 Epoch 186/500 7500/7500 [==============================] - 2s 261us/step - loss: 0.1754 - acc: 0.7552 - val_loss: 0.2051 - val_acc: 0.7132 Epoch 00186: val_acc did not improve from 0.72480 Epoch 187/500 7500/7500 [==============================] - 2s 258us/step - loss: 0.1753 - acc: 0.7595 - val_loss: 0.2087 - val_acc: 0.7164 Epoch 00187: val_acc did not improve from 0.72480 Epoch 188/500 7500/7500 [==============================] - 2s 293us/step - loss: 0.1735 - acc: 0.7637 - val_loss: 0.2080 - val_acc: 0.7096 Epoch 00188: val_acc did not improve from 0.72480 Epoch 189/500 7500/7500 [==============================] - 2s 283us/step - loss: 0.1741 - acc: 0.7628 - val_loss: 0.2067 - val_acc: 0.7140 Epoch 00189: val_acc did not improve from 0.72480 Epoch 190/500 7500/7500 [==============================] - 2s 268us/step - loss: 0.1730 - acc: 0.7643 - val_loss: 0.2043 - val_acc: 0.7152 Epoch 00190: val_acc did not improve from 0.72480 Epoch 191/500 7500/7500 [==============================] - 2s 266us/step - loss: 0.1738 - acc: 0.7624 - val_loss: 0.2080 - val_acc: 0.7120 Epoch 00191: val_acc did not improve from 0.72480 Epoch 192/500 7500/7500 [==============================] - 2s 268us/step - loss: 0.1733 - acc: 0.7631 - val_loss: 0.2078 - val_acc: 0.7144 Epoch 00192: val_acc did not improve from 0.72480 Epoch 193/500 7500/7500 [==============================] - 2s 270us/step - loss: 0.1733 - acc: 0.7645 - val_loss: 0.2062 - val_acc: 0.7144 Epoch 00193: val_acc did not improve from 0.72480 Epoch 194/500 7500/7500 [==============================] - 2s 262us/step - loss: 0.1744 - acc: 0.7600 - val_loss: 0.2067 - val_acc: 0.7144 Epoch 00194: val_acc did not improve from 0.72480 Epoch 195/500 7500/7500 [==============================] - 2s 269us/step - loss: 0.1735 - acc: 0.7625 - val_loss: 0.2086 - val_acc: 0.7116 Epoch 00195: val_acc did not improve from 0.72480 Epoch 196/500 7500/7500 [==============================] - 2s 275us/step - loss: 0.1739 - acc: 0.7621 - val_loss: 0.2079 - val_acc: 0.7148 Epoch 00196: val_acc did not improve from 0.72480 Epoch 197/500 7500/7500 [==============================] - 2s 267us/step - loss: 0.1754 - acc: 0.7564 - val_loss: 0.2091 - val_acc: 0.7128 Epoch 00197: val_acc did not improve from 0.72480 Epoch 198/500 7500/7500 [==============================] - 2s 272us/step - loss: 0.1747 - acc: 0.7608 - val_loss: 0.2112 - val_acc: 0.7136 Epoch 00198: val_acc did not improve from 0.72480 Epoch 199/500 7500/7500 [==============================] - 2s 266us/step - loss: 0.1742 - acc: 0.7597 - val_loss: 0.2091 - val_acc: 0.7140 Epoch 00199: val_acc did not improve from 0.72480 Epoch 200/500 7500/7500 [==============================] - 2s 263us/step - loss: 0.1721 - acc: 0.7679 - val_loss: 0.2092 - val_acc: 0.7128 Epoch 00200: val_acc did not improve from 0.72480 Epoch 201/500 7500/7500 [==============================] - 2s 258us/step - loss: 0.1718 - acc: 0.7665 - val_loss: 0.2115 - val_acc: 0.7152 Epoch 00201: val_acc did not improve from 0.72480 Epoch 202/500 7500/7500 [==============================] - 2s 260us/step - loss: 0.1720 - acc: 0.7687 - val_loss: 0.2114 - val_acc: 0.7120 Epoch 00202: val_acc did not improve from 0.72480 Epoch 203/500 7500/7500 [==============================] - 2s 265us/step - loss: 0.1728 - acc: 0.7639 - val_loss: 0.2105 - val_acc: 0.7148 Epoch 00203: val_acc did not improve from 0.72480 Epoch 204/500 7500/7500 [==============================] - 2s 263us/step - loss: 0.1718 - acc: 0.7699 - val_loss: 0.2104 - val_acc: 0.7124 Epoch 00204: val_acc did not improve from 0.72480 Epoch 205/500 7500/7500 [==============================] - 2s 266us/step - loss: 0.1715 - acc: 0.7644 - val_loss: 0.2114 - val_acc: 0.7096 Epoch 00205: val_acc did not improve from 0.72480 Epoch 206/500 7500/7500 [==============================] - 2s 265us/step - loss: 0.1723 - acc: 0.7641 - val_loss: 0.2124 - val_acc: 0.7112 Epoch 00206: val_acc did not improve from 0.72480 Epoch 207/500 7500/7500 [==============================] - 2s 269us/step - loss: 0.1727 - acc: 0.7641 - val_loss: 0.2089 - val_acc: 0.7108 Epoch 00207: val_acc did not improve from 0.72480 Epoch 208/500 7500/7500 [==============================] - 2s 261us/step - loss: 0.1731 - acc: 0.7605 - val_loss: 0.2121 - val_acc: 0.7104 Epoch 00208: val_acc did not improve from 0.72480 Epoch 209/500 7500/7500 [==============================] - 2s 270us/step - loss: 0.1732 - acc: 0.7632 - val_loss: 0.2115 - val_acc: 0.7120 Epoch 00209: val_acc did not improve from 0.72480 Epoch 210/500 7500/7500 [==============================] - 2s 266us/step - loss: 0.1720 - acc: 0.7649 - val_loss: 0.2105 - val_acc: 0.7100 Epoch 00210: val_acc did not improve from 0.72480 Epoch 211/500 7500/7500 [==============================] - 2s 264us/step - loss: 0.1729 - acc: 0.7616 - val_loss: 0.2106 - val_acc: 0.7116 Epoch 00211: val_acc did not improve from 0.72480 Epoch 212/500 7500/7500 [==============================] - 2s 260us/step - loss: 0.1712 - acc: 0.7683 - val_loss: 0.2113 - val_acc: 0.7116 Epoch 00212: val_acc did not improve from 0.72480 Epoch 213/500 7500/7500 [==============================] - 2s 260us/step - loss: 0.1722 - acc: 0.7632 - val_loss: 0.2122 - val_acc: 0.7100 Epoch 00213: val_acc did not improve from 0.72480 Epoch 214/500 7500/7500 [==============================] - 2s 264us/step - loss: 0.1735 - acc: 0.7639 - val_loss: 0.2133 - val_acc: 0.7100 Epoch 00214: val_acc did not improve from 0.72480 Epoch 215/500 7500/7500 [==============================] - 2s 263us/step - loss: 0.1701 - acc: 0.7695 - val_loss: 0.2136 - val_acc: 0.7100 Epoch 00215: val_acc did not improve from 0.72480 Epoch 216/500 7500/7500 [==============================] - 2s 276us/step - loss: 0.1702 - acc: 0.7693 - val_loss: 0.2134 - val_acc: 0.7112 Epoch 00216: val_acc did not improve from 0.72480 Epoch 217/500 7500/7500 [==============================] - 2s 294us/step - loss: 0.1723 - acc: 0.7621 - val_loss: 0.2107 - val_acc: 0.7108 Epoch 00217: val_acc did not improve from 0.72480 Epoch 218/500 7500/7500 [==============================] - 2s 281us/step - loss: 0.1683 - acc: 0.7721 - val_loss: 0.2131 - val_acc: 0.7116 Epoch 00218: val_acc did not improve from 0.72480 Epoch 219/500 7500/7500 [==============================] - 2s 264us/step - loss: 0.1702 - acc: 0.7721 - val_loss: 0.2147 - val_acc: 0.7104 Epoch 00219: val_acc did not improve from 0.72480 Epoch 220/500 7500/7500 [==============================] - 2s 267us/step - loss: 0.1719 - acc: 0.7643 - val_loss: 0.2107 - val_acc: 0.7124 Epoch 00220: val_acc did not improve from 0.72480 Epoch 221/500 7500/7500 [==============================] - 2s 279us/step - loss: 0.1689 - acc: 0.7695 - val_loss: 0.2150 - val_acc: 0.7088 Epoch 00221: val_acc did not improve from 0.72480 Epoch 222/500 7500/7500 [==============================] - 2s 264us/step - loss: 0.1691 - acc: 0.7700 - val_loss: 0.2114 - val_acc: 0.7104 Epoch 00222: val_acc did not improve from 0.72480 Epoch 223/500 7500/7500 [==============================] - 2s 286us/step - loss: 0.1707 - acc: 0.7697 - val_loss: 0.2143 - val_acc: 0.7088 Epoch 00223: val_acc did not improve from 0.72480 Epoch 224/500 7500/7500 [==============================] - 2s 269us/step - loss: 0.1719 - acc: 0.7687 - val_loss: 0.2130 - val_acc: 0.7088 Epoch 00224: val_acc did not improve from 0.72480 Epoch 225/500 7500/7500 [==============================] - 2s 263us/step - loss: 0.1692 - acc: 0.7720 - val_loss: 0.2135 - val_acc: 0.7104 Epoch 00225: val_acc did not improve from 0.72480 Epoch 226/500 7500/7500 [==============================] - 2s 261us/step - loss: 0.1705 - acc: 0.7712 - val_loss: 0.2150 - val_acc: 0.7112 Epoch 00226: val_acc did not improve from 0.72480 Epoch 227/500 7500/7500 [==============================] - 2s 266us/step - loss: 0.1734 - acc: 0.7601 - val_loss: 0.2151 - val_acc: 0.7092 Epoch 00227: val_acc did not improve from 0.72480 Epoch 228/500 7500/7500 [==============================] - 2s 268us/step - loss: 0.1692 - acc: 0.7703 - val_loss: 0.2148 - val_acc: 0.7104 Epoch 00228: val_acc did not improve from 0.72480 Epoch 229/500 7500/7500 [==============================] - 2s 265us/step - loss: 0.1714 - acc: 0.7660 - val_loss: 0.2154 - val_acc: 0.7104 Epoch 00229: val_acc did not improve from 0.72480 Epoch 230/500 7500/7500 [==============================] - 2s 263us/step - loss: 0.1692 - acc: 0.7709 - val_loss: 0.2140 - val_acc: 0.7108 Epoch 00230: val_acc did not improve from 0.72480 Epoch 231/500 7500/7500 [==============================] - 2s 258us/step - loss: 0.1714 - acc: 0.7623 - val_loss: 0.2153 - val_acc: 0.7100 Epoch 00231: val_acc did not improve from 0.72480 Epoch 232/500 7500/7500 [==============================] - 2s 258us/step - loss: 0.1696 - acc: 0.7709 - val_loss: 0.2135 - val_acc: 0.7112 Epoch 00232: val_acc did not improve from 0.72480 Epoch 233/500 7500/7500 [==============================] - 2s 263us/step - loss: 0.1699 - acc: 0.7700 - val_loss: 0.2156 - val_acc: 0.7116 Epoch 00233: val_acc did not improve from 0.72480 Epoch 234/500 7500/7500 [==============================] - 2s 259us/step - loss: 0.1718 - acc: 0.7651 - val_loss: 0.2125 - val_acc: 0.7108 Epoch 00234: val_acc did not improve from 0.72480 Epoch 235/500 7500/7500 [==============================] - 2s 261us/step - loss: 0.1690 - acc: 0.7729 - val_loss: 0.2138 - val_acc: 0.7092 Epoch 00235: val_acc did not improve from 0.72480 Epoch 236/500 7500/7500 [==============================] - 2s 263us/step - loss: 0.1686 - acc: 0.7693 - val_loss: 0.2156 - val_acc: 0.7100 Epoch 00236: val_acc did not improve from 0.72480 Epoch 237/500 7500/7500 [==============================] - 2s 262us/step - loss: 0.1700 - acc: 0.7676 - val_loss: 0.2146 - val_acc: 0.7124 Epoch 00237: val_acc did not improve from 0.72480 Epoch 238/500 7500/7500 [==============================] - 2s 258us/step - loss: 0.1695 - acc: 0.7671 - val_loss: 0.2155 - val_acc: 0.7116 Epoch 00238: val_acc did not improve from 0.72480 Epoch 239/500 7500/7500 [==============================] - 2s 259us/step - loss: 0.1709 - acc: 0.7668 - val_loss: 0.2150 - val_acc: 0.7120 Epoch 00239: val_acc did not improve from 0.72480 Epoch 240/500 7500/7500 [==============================] - 2s 263us/step - loss: 0.1704 - acc: 0.7644 - val_loss: 0.2189 - val_acc: 0.7108 Epoch 00240: val_acc did not improve from 0.72480 Epoch 241/500 7500/7500 [==============================] - 2s 265us/step - loss: 0.1671 - acc: 0.7751 - val_loss: 0.2176 - val_acc: 0.7104 Epoch 00241: val_acc did not improve from 0.72480 Epoch 242/500 7500/7500 [==============================] - 2s 257us/step - loss: 0.1691 - acc: 0.7713 - val_loss: 0.2183 - val_acc: 0.7108 Epoch 00242: val_acc did not improve from 0.72480 Epoch 243/500 7500/7500 [==============================] - 2s 258us/step - loss: 0.1701 - acc: 0.7687 - val_loss: 0.2158 - val_acc: 0.7108 Epoch 00243: val_acc did not improve from 0.72480 Epoch 244/500 7500/7500 [==============================] - 2s 259us/step - loss: 0.1693 - acc: 0.7692 - val_loss: 0.2189 - val_acc: 0.7096 Epoch 00244: val_acc did not improve from 0.72480 Epoch 245/500 7500/7500 [==============================] - 2s 281us/step - loss: 0.1694 - acc: 0.7689 - val_loss: 0.2200 - val_acc: 0.7116 Epoch 00245: val_acc did not improve from 0.72480 Epoch 246/500 7500/7500 [==============================] - 2s 272us/step - loss: 0.1695 - acc: 0.7712 - val_loss: 0.2196 - val_acc: 0.7116 Epoch 00246: val_acc did not improve from 0.72480 Epoch 247/500 7500/7500 [==============================] - 2s 261us/step - loss: 0.1673 - acc: 0.7756 - val_loss: 0.2188 - val_acc: 0.7104 Epoch 00247: val_acc did not improve from 0.72480 Epoch 248/500 7500/7500 [==============================] - 2s 263us/step - loss: 0.1695 - acc: 0.7664 - val_loss: 0.2212 - val_acc: 0.7132 Epoch 00248: val_acc did not improve from 0.72480 Epoch 249/500 7500/7500 [==============================] - 2s 273us/step - loss: 0.1675 - acc: 0.7735 - val_loss: 0.2184 - val_acc: 0.7104 Epoch 00249: val_acc did not improve from 0.72480 Epoch 250/500 7500/7500 [==============================] - 2s 303us/step - loss: 0.1704 - acc: 0.7656 - val_loss: 0.2201 - val_acc: 0.7104 Epoch 00250: val_acc did not improve from 0.72480 Epoch 251/500 7500/7500 [==============================] - 2s 309us/step - loss: 0.1691 - acc: 0.7671 - val_loss: 0.2219 - val_acc: 0.7076 Epoch 00251: val_acc did not improve from 0.72480 Epoch 252/500 7500/7500 [==============================] - 2s 286us/step - loss: 0.1686 - acc: 0.7703 - val_loss: 0.2195 - val_acc: 0.7092 Epoch 00252: val_acc did not improve from 0.72480 Epoch 253/500 7500/7500 [==============================] - 2s 301us/step - loss: 0.1690 - acc: 0.7688 - val_loss: 0.2217 - val_acc: 0.7104 Epoch 00253: val_acc did not improve from 0.72480 Epoch 254/500 7500/7500 [==============================] - 2s 271us/step - loss: 0.1685 - acc: 0.7713 - val_loss: 0.2187 - val_acc: 0.7116 Epoch 00254: val_acc did not improve from 0.72480 Epoch 255/500 7500/7500 [==============================] - 2s 286us/step - loss: 0.1691 - acc: 0.7696 - val_loss: 0.2205 - val_acc: 0.7112 Epoch 00255: val_acc did not improve from 0.72480 Epoch 256/500 7500/7500 [==============================] - 2s 282us/step - loss: 0.1677 - acc: 0.7681 - val_loss: 0.2229 - val_acc: 0.7100 Epoch 00256: val_acc did not improve from 0.72480 Epoch 257/500 7500/7500 [==============================] - 2s 311us/step - loss: 0.1688 - acc: 0.7664 - val_loss: 0.2241 - val_acc: 0.7104 Epoch 00257: val_acc did not improve from 0.72480 Epoch 258/500 7500/7500 [==============================] - 2s 300us/step - loss: 0.1675 - acc: 0.7701 - val_loss: 0.2216 - val_acc: 0.7104 Epoch 00258: val_acc did not improve from 0.72480 Epoch 259/500 7500/7500 [==============================] - 2s 303us/step - loss: 0.1662 - acc: 0.7744 - val_loss: 0.2250 - val_acc: 0.7092 Epoch 00259: val_acc did not improve from 0.72480 Epoch 260/500 7500/7500 [==============================] - 2s 314us/step - loss: 0.1662 - acc: 0.7720 - val_loss: 0.2209 - val_acc: 0.7088 Epoch 00260: val_acc did not improve from 0.72480 Epoch 261/500 7500/7500 [==============================] - 2s 270us/step - loss: 0.1663 - acc: 0.7763 - val_loss: 0.2264 - val_acc: 0.7100 Epoch 00261: val_acc did not improve from 0.72480 Epoch 262/500 7500/7500 [==============================] - 2s 258us/step - loss: 0.1655 - acc: 0.7741 - val_loss: 0.2244 - val_acc: 0.7116 Epoch 00262: val_acc did not improve from 0.72480 Epoch 263/500 7500/7500 [==============================] - 2s 260us/step - loss: 0.1660 - acc: 0.7708 - val_loss: 0.2235 - val_acc: 0.7124 Epoch 00263: val_acc did not improve from 0.72480 Epoch 264/500 7500/7500 [==============================] - 2s 260us/step - loss: 0.1678 - acc: 0.7691 - val_loss: 0.2274 - val_acc: 0.7104 Epoch 00264: val_acc did not improve from 0.72480 Epoch 265/500 7500/7500 [==============================] - 2s 260us/step - loss: 0.1688 - acc: 0.7687 - val_loss: 0.2266 - val_acc: 0.7096 Epoch 00265: val_acc did not improve from 0.72480 Epoch 266/500 7500/7500 [==============================] - 2s 258us/step - loss: 0.1674 - acc: 0.7687 - val_loss: 0.2281 - val_acc: 0.7108 Epoch 00266: val_acc did not improve from 0.72480 Epoch 267/500 7500/7500 [==============================] - 2s 257us/step - loss: 0.1682 - acc: 0.7669 - val_loss: 0.2255 - val_acc: 0.7116 Epoch 00267: val_acc did not improve from 0.72480 Epoch 268/500 7500/7500 [==============================] - 2s 255us/step - loss: 0.1677 - acc: 0.7688 - val_loss: 0.2261 - val_acc: 0.7116 Epoch 00268: val_acc did not improve from 0.72480 Epoch 269/500 7500/7500 [==============================] - 2s 264us/step - loss: 0.1681 - acc: 0.7645 - val_loss: 0.2271 - val_acc: 0.7088 Epoch 00269: val_acc did not improve from 0.72480 Epoch 270/500 7500/7500 [==============================] - 2s 259us/step - loss: 0.1674 - acc: 0.7663 - val_loss: 0.2290 - val_acc: 0.7096 Epoch 00270: val_acc did not improve from 0.72480 Epoch 271/500 7500/7500 [==============================] - 2s 267us/step - loss: 0.1667 - acc: 0.7701 - val_loss: 0.2266 - val_acc: 0.7104 Epoch 00271: val_acc did not improve from 0.72480 Epoch 272/500 7500/7500 [==============================] - 2s 262us/step - loss: 0.1673 - acc: 0.7709 - val_loss: 0.2279 - val_acc: 0.7096 Epoch 00272: val_acc did not improve from 0.72480 Epoch 273/500 7500/7500 [==============================] - 2s 258us/step - loss: 0.1648 - acc: 0.7728 - val_loss: 0.2300 - val_acc: 0.7096 Epoch 00273: val_acc did not improve from 0.72480 Epoch 274/500 7500/7500 [==============================] - 2s 281us/step - loss: 0.1659 - acc: 0.7735 - val_loss: 0.2306 - val_acc: 0.7120 Epoch 00274: val_acc did not improve from 0.72480 Epoch 275/500 7500/7500 [==============================] - 2s 275us/step - loss: 0.1668 - acc: 0.7723 - val_loss: 0.2281 - val_acc: 0.7104 Epoch 00275: val_acc did not improve from 0.72480 Epoch 276/500 7500/7500 [==============================] - 2s 272us/step - loss: 0.1657 - acc: 0.7711 - val_loss: 0.2280 - val_acc: 0.7092 Epoch 00276: val_acc did not improve from 0.72480 Epoch 277/500 7500/7500 [==============================] - 2s 278us/step - loss: 0.1679 - acc: 0.7681 - val_loss: 0.2300 - val_acc: 0.7112 Epoch 00277: val_acc did not improve from 0.72480 Epoch 278/500 7500/7500 [==============================] - 2s 266us/step - loss: 0.1678 - acc: 0.7677 - val_loss: 0.2329 - val_acc: 0.7112 Epoch 00278: val_acc did not improve from 0.72480 Epoch 279/500 7500/7500 [==============================] - 2s 274us/step - loss: 0.1695 - acc: 0.7645 - val_loss: 0.2293 - val_acc: 0.7124 Epoch 00279: val_acc did not improve from 0.72480 Epoch 280/500 7500/7500 [==============================] - 2s 266us/step - loss: 0.1672 - acc: 0.7673 - val_loss: 0.2317 - val_acc: 0.7108 Epoch 00280: val_acc did not improve from 0.72480 Epoch 281/500 7500/7500 [==============================] - 2s 268us/step - loss: 0.1667 - acc: 0.7689 - val_loss: 0.2305 - val_acc: 0.7108 Epoch 00281: val_acc did not improve from 0.72480 Epoch 282/500 7500/7500 [==============================] - 2s 267us/step - loss: 0.1663 - acc: 0.7707 - val_loss: 0.2334 - val_acc: 0.7100 Epoch 00282: val_acc did not improve from 0.72480 Epoch 283/500 7500/7500 [==============================] - 2s 288us/step - loss: 0.1670 - acc: 0.7684 - val_loss: 0.2296 - val_acc: 0.7128 Epoch 00283: val_acc did not improve from 0.72480 Epoch 284/500 7500/7500 [==============================] - 2s 271us/step - loss: 0.1673 - acc: 0.7653 - val_loss: 0.2317 - val_acc: 0.7120 Epoch 00284: val_acc did not improve from 0.72480 Epoch 285/500 7500/7500 [==============================] - 2s 284us/step - loss: 0.1654 - acc: 0.7715 - val_loss: 0.2318 - val_acc: 0.7116 Epoch 00285: val_acc did not improve from 0.72480 Epoch 286/500 7500/7500 [==============================] - 2s 276us/step - loss: 0.1660 - acc: 0.7711 - val_loss: 0.2337 - val_acc: 0.7108 Epoch 00286: val_acc did not improve from 0.72480 Epoch 287/500 7500/7500 [==============================] - 2s 276us/step - loss: 0.1667 - acc: 0.7709 - val_loss: 0.2330 - val_acc: 0.7116 Epoch 00287: val_acc did not improve from 0.72480 Epoch 288/500 7500/7500 [==============================] - 2s 271us/step - loss: 0.1660 - acc: 0.7680 - val_loss: 0.2299 - val_acc: 0.7092 Epoch 00288: val_acc did not improve from 0.72480 Epoch 289/500 7500/7500 [==============================] - 2s 233us/step - loss: 0.1655 - acc: 0.7751 - val_loss: 0.2339 - val_acc: 0.7124 Epoch 00289: val_acc did not improve from 0.72480 Epoch 290/500 7500/7500 [==============================] - 2s 229us/step - loss: 0.1657 - acc: 0.7704 - val_loss: 0.2323 - val_acc: 0.7120 Epoch 00290: val_acc did not improve from 0.72480 Epoch 291/500 7500/7500 [==============================] - 2s 234us/step - loss: 0.1661 - acc: 0.7687 - val_loss: 0.2335 - val_acc: 0.7112 Epoch 00291: val_acc did not improve from 0.72480 Epoch 292/500 7500/7500 [==============================] - 2s 228us/step - loss: 0.1654 - acc: 0.7707 - val_loss: 0.2324 - val_acc: 0.7100 Epoch 00292: val_acc did not improve from 0.72480 Epoch 293/500 7500/7500 [==============================] - 2s 233us/step - loss: 0.1690 - acc: 0.7651 - val_loss: 0.2318 - val_acc: 0.7108 Epoch 00293: val_acc did not improve from 0.72480 Epoch 294/500 7500/7500 [==============================] - 2s 231us/step - loss: 0.1643 - acc: 0.7747 - val_loss: 0.2308 - val_acc: 0.7108 Epoch 00294: val_acc did not improve from 0.72480 Epoch 295/500 7500/7500 [==============================] - 2s 229us/step - loss: 0.1650 - acc: 0.7695 - val_loss: 0.2316 - val_acc: 0.7120 Epoch 00295: val_acc did not improve from 0.72480 Epoch 296/500 7500/7500 [==============================] - 2s 230us/step - loss: 0.1654 - acc: 0.7697 - val_loss: 0.2354 - val_acc: 0.7128 Epoch 00296: val_acc did not improve from 0.72480 Epoch 297/500 7500/7500 [==============================] - 2s 232us/step - loss: 0.1642 - acc: 0.7727 - val_loss: 0.2339 - val_acc: 0.7136 Epoch 00297: val_acc did not improve from 0.72480 Epoch 298/500 7500/7500 [==============================] - 2s 232us/step - loss: 0.1651 - acc: 0.7715 - val_loss: 0.2347 - val_acc: 0.7128 Epoch 00298: val_acc did not improve from 0.72480 Epoch 299/500 7500/7500 [==============================] - 2s 235us/step - loss: 0.1643 - acc: 0.7716 - val_loss: 0.2336 - val_acc: 0.7096 Epoch 00299: val_acc did not improve from 0.72480 Epoch 300/500 7500/7500 [==============================] - 2s 252us/step - loss: 0.1645 - acc: 0.7707 - val_loss: 0.2333 - val_acc: 0.7108 Epoch 00300: val_acc did not improve from 0.72480 Epoch 301/500 7500/7500 [==============================] - 2s 270us/step - loss: 0.1662 - acc: 0.7720 - val_loss: 0.2333 - val_acc: 0.7096 Epoch 00301: val_acc did not improve from 0.72480 Epoch 302/500 7500/7500 [==============================] - 2s 269us/step - loss: 0.1667 - acc: 0.7677 - val_loss: 0.2344 - val_acc: 0.7104 Epoch 00302: val_acc did not improve from 0.72480 Epoch 303/500 7500/7500 [==============================] - 2s 268us/step - loss: 0.1650 - acc: 0.7723 - val_loss: 0.2370 - val_acc: 0.7096 Epoch 00303: val_acc did not improve from 0.72480 Epoch 304/500 7500/7500 [==============================] - 2s 271us/step - loss: 0.1640 - acc: 0.7713 - val_loss: 0.2382 - val_acc: 0.7108 Epoch 00304: val_acc did not improve from 0.72480 Epoch 305/500 7500/7500 [==============================] - 2s 269us/step - loss: 0.1645 - acc: 0.7699 - val_loss: 0.2380 - val_acc: 0.7108 Epoch 00305: val_acc did not improve from 0.72480 Epoch 306/500 7500/7500 [==============================] - 2s 274us/step - loss: 0.1640 - acc: 0.7752 - val_loss: 0.2354 - val_acc: 0.7096 Epoch 00306: val_acc did not improve from 0.72480 Epoch 307/500 7500/7500 [==============================] - 2s 267us/step - loss: 0.1641 - acc: 0.7728 - val_loss: 0.2377 - val_acc: 0.7100 Epoch 00307: val_acc did not improve from 0.72480 Epoch 308/500 7500/7500 [==============================] - 2s 268us/step - loss: 0.1659 - acc: 0.7669 - val_loss: 0.2389 - val_acc: 0.7116 Epoch 00308: val_acc did not improve from 0.72480 Epoch 309/500 7500/7500 [==============================] - 2s 274us/step - loss: 0.1633 - acc: 0.7729 - val_loss: 0.2394 - val_acc: 0.7104 Epoch 00309: val_acc did not improve from 0.72480 Epoch 310/500 7500/7500 [==============================] - 2s 269us/step - loss: 0.1643 - acc: 0.7687 - val_loss: 0.2370 - val_acc: 0.7096 Epoch 00310: val_acc did not improve from 0.72480 Epoch 311/500 7500/7500 [==============================] - 2s 273us/step - loss: 0.1635 - acc: 0.7728 - val_loss: 0.2370 - val_acc: 0.7092 Epoch 00311: val_acc did not improve from 0.72480 Epoch 312/500 7500/7500 [==============================] - 2s 269us/step - loss: 0.1648 - acc: 0.7728 - val_loss: 0.2374 - val_acc: 0.7092 Epoch 00312: val_acc did not improve from 0.72480 Epoch 313/500 7500/7500 [==============================] - 2s 268us/step - loss: 0.1650 - acc: 0.7707 - val_loss: 0.2377 - val_acc: 0.7092 Epoch 00313: val_acc did not improve from 0.72480 Epoch 314/500 7500/7500 [==============================] - 2s 271us/step - loss: 0.1641 - acc: 0.7693 - val_loss: 0.2387 - val_acc: 0.7116 Epoch 00314: val_acc did not improve from 0.72480 Epoch 315/500 7500/7500 [==============================] - 2s 269us/step - loss: 0.1669 - acc: 0.7660 - val_loss: 0.2393 - val_acc: 0.7128 Epoch 00315: val_acc did not improve from 0.72480 Epoch 316/500 7500/7500 [==============================] - 2s 268us/step - loss: 0.1640 - acc: 0.7697 - val_loss: 0.2421 - val_acc: 0.7124 Epoch 00316: val_acc did not improve from 0.72480 Epoch 317/500 7500/7500 [==============================] - 2s 273us/step - loss: 0.1652 - acc: 0.7691 - val_loss: 0.2390 - val_acc: 0.7128 Epoch 00317: val_acc did not improve from 0.72480 Epoch 318/500 7500/7500 [==============================] - 2s 269us/step - loss: 0.1648 - acc: 0.7701 - val_loss: 0.2394 - val_acc: 0.7136 Epoch 00318: val_acc did not improve from 0.72480 Epoch 319/500 7500/7500 [==============================] - 2s 268us/step - loss: 0.1637 - acc: 0.7707 - val_loss: 0.2382 - val_acc: 0.7100 Epoch 00319: val_acc did not improve from 0.72480 Epoch 320/500 7500/7500 [==============================] - 2s 273us/step - loss: 0.1631 - acc: 0.7720 - val_loss: 0.2437 - val_acc: 0.7088 Epoch 00320: val_acc did not improve from 0.72480 Epoch 321/500 7500/7500 [==============================] - 2s 268us/step - loss: 0.1637 - acc: 0.7735 - val_loss: 0.2398 - val_acc: 0.7112 Epoch 00321: val_acc did not improve from 0.72480 Epoch 322/500 7500/7500 [==============================] - 2s 267us/step - loss: 0.1638 - acc: 0.7715 - val_loss: 0.2416 - val_acc: 0.7140 Epoch 00322: val_acc did not improve from 0.72480 Epoch 323/500 7500/7500 [==============================] - 2s 273us/step - loss: 0.1640 - acc: 0.7708 - val_loss: 0.2383 - val_acc: 0.7100 Epoch 00323: val_acc did not improve from 0.72480 Epoch 324/500 7500/7500 [==============================] - 2s 267us/step - loss: 0.1630 - acc: 0.7735 - val_loss: 0.2384 - val_acc: 0.7112 Epoch 00324: val_acc did not improve from 0.72480 Epoch 325/500 7500/7500 [==============================] - 2s 268us/step - loss: 0.1628 - acc: 0.7768 - val_loss: 0.2407 - val_acc: 0.7092 Epoch 00325: val_acc did not improve from 0.72480 Epoch 326/500 7500/7500 [==============================] - 2s 269us/step - loss: 0.1639 - acc: 0.7716 - val_loss: 0.2425 - val_acc: 0.7112 Epoch 00326: val_acc did not improve from 0.72480 Epoch 327/500 7500/7500 [==============================] - 2s 270us/step - loss: 0.1650 - acc: 0.7676 - val_loss: 0.2402 - val_acc: 0.7108 Epoch 00327: val_acc did not improve from 0.72480 Epoch 328/500 7500/7500 [==============================] - 2s 272us/step - loss: 0.1636 - acc: 0.7720 - val_loss: 0.2441 - val_acc: 0.7148 Epoch 00328: val_acc did not improve from 0.72480 Epoch 329/500 7500/7500 [==============================] - 2s 266us/step - loss: 0.1638 - acc: 0.7728 - val_loss: 0.2399 - val_acc: 0.7104 Epoch 00329: val_acc did not improve from 0.72480 Epoch 330/500 7500/7500 [==============================] - 2s 268us/step - loss: 0.1630 - acc: 0.7731 - val_loss: 0.2396 - val_acc: 0.7104 Epoch 00330: val_acc did not improve from 0.72480 Epoch 331/500 7500/7500 [==============================] - 2s 267us/step - loss: 0.1649 - acc: 0.7699 - val_loss: 0.2422 - val_acc: 0.7112 Epoch 00331: val_acc did not improve from 0.72480 Epoch 332/500 7500/7500 [==============================] - 2s 268us/step - loss: 0.1644 - acc: 0.7697 - val_loss: 0.2421 - val_acc: 0.7116 Epoch 00332: val_acc did not improve from 0.72480 Epoch 333/500 7500/7500 [==============================] - 2s 269us/step - loss: 0.1632 - acc: 0.7715 - val_loss: 0.2446 - val_acc: 0.7128 Epoch 00333: val_acc did not improve from 0.72480 Epoch 334/500 7500/7500 [==============================] - 2s 275us/step - loss: 0.1633 - acc: 0.7720 - val_loss: 0.2402 - val_acc: 0.7100 Epoch 00334: val_acc did not improve from 0.72480 Epoch 335/500 7500/7500 [==============================] - 2s 269us/step - loss: 0.1637 - acc: 0.7739 - val_loss: 0.2406 - val_acc: 0.7116 Epoch 00335: val_acc did not improve from 0.72480 Epoch 336/500 7500/7500 [==============================] - 2s 268us/step - loss: 0.1640 - acc: 0.7712 - val_loss: 0.2419 - val_acc: 0.7116 Epoch 00336: val_acc did not improve from 0.72480 Epoch 337/500 7500/7500 [==============================] - 2s 271us/step - loss: 0.1635 - acc: 0.7735 - val_loss: 0.2420 - val_acc: 0.7108 Epoch 00337: val_acc did not improve from 0.72480 Epoch 338/500 7500/7500 [==============================] - 2s 271us/step - loss: 0.1639 - acc: 0.7687 - val_loss: 0.2417 - val_acc: 0.7116 Epoch 00338: val_acc did not improve from 0.72480 Epoch 339/500 7500/7500 [==============================] - 2s 274us/step - loss: 0.1621 - acc: 0.7780 - val_loss: 0.2438 - val_acc: 0.7116 Epoch 00339: val_acc did not improve from 0.72480 Epoch 340/500 7500/7500 [==============================] - 2s 272us/step - loss: 0.1626 - acc: 0.7719 - val_loss: 0.2440 - val_acc: 0.7120 Epoch 00340: val_acc did not improve from 0.72480 Epoch 341/500 7500/7500 [==============================] - 2s 267us/step - loss: 0.1626 - acc: 0.7716 - val_loss: 0.2427 - val_acc: 0.7124 Epoch 00341: val_acc did not improve from 0.72480 Epoch 342/500 7500/7500 [==============================] - 2s 274us/step - loss: 0.1619 - acc: 0.7735 - val_loss: 0.2442 - val_acc: 0.7136 Epoch 00342: val_acc did not improve from 0.72480 Epoch 343/500 7500/7500 [==============================] - 2s 270us/step - loss: 0.1632 - acc: 0.7740 - val_loss: 0.2436 - val_acc: 0.7124 Epoch 00343: val_acc did not improve from 0.72480 Epoch 344/500 7500/7500 [==============================] - 2s 272us/step - loss: 0.1649 - acc: 0.7661 - val_loss: 0.2424 - val_acc: 0.7124 Epoch 00344: val_acc did not improve from 0.72480 Epoch 345/500 7500/7500 [==============================] - 2s 281us/step - loss: 0.1631 - acc: 0.7736 - val_loss: 0.2434 - val_acc: 0.7112 Epoch 00345: val_acc did not improve from 0.72480 Epoch 346/500 7500/7500 [==============================] - 2s 270us/step - loss: 0.1649 - acc: 0.7705 - val_loss: 0.2476 - val_acc: 0.7104 Epoch 00346: val_acc did not improve from 0.72480 Epoch 347/500 7500/7500 [==============================] - 2s 276us/step - loss: 0.1642 - acc: 0.7693 - val_loss: 0.2448 - val_acc: 0.7092 Epoch 00347: val_acc did not improve from 0.72480 Epoch 348/500 7500/7500 [==============================] - 2s 270us/step - loss: 0.1646 - acc: 0.7669 - val_loss: 0.2451 - val_acc: 0.7116 Epoch 00348: val_acc did not improve from 0.72480 Epoch 349/500 7500/7500 [==============================] - 2s 270us/step - loss: 0.1620 - acc: 0.7732 - val_loss: 0.2441 - val_acc: 0.7112 Epoch 00349: val_acc did not improve from 0.72480 Epoch 350/500 7500/7500 [==============================] - 2s 272us/step - loss: 0.1632 - acc: 0.7716 - val_loss: 0.2435 - val_acc: 0.7112 Epoch 00350: val_acc did not improve from 0.72480 Epoch 351/500 7500/7500 [==============================] - 2s 273us/step - loss: 0.1646 - acc: 0.7723 - val_loss: 0.2455 - val_acc: 0.7112 Epoch 00351: val_acc did not improve from 0.72480 Epoch 352/500 7500/7500 [==============================] - 2s 270us/step - loss: 0.1613 - acc: 0.7741 - val_loss: 0.2432 - val_acc: 0.7108 Epoch 00352: val_acc did not improve from 0.72480 Epoch 353/500 7500/7500 [==============================] - 2s 269us/step - loss: 0.1629 - acc: 0.7697 - val_loss: 0.2458 - val_acc: 0.7108 Epoch 00353: val_acc did not improve from 0.72480 Epoch 354/500 7500/7500 [==============================] - 2s 265us/step - loss: 0.1615 - acc: 0.7733 - val_loss: 0.2489 - val_acc: 0.7108 Epoch 00354: val_acc did not improve from 0.72480 Epoch 355/500 7500/7500 [==============================] - 2s 268us/step - loss: 0.1618 - acc: 0.7729 - val_loss: 0.2440 - val_acc: 0.7100 Epoch 00355: val_acc did not improve from 0.72480 Epoch 356/500 7500/7500 [==============================] - 2s 270us/step - loss: 0.1627 - acc: 0.7699 - val_loss: 0.2434 - val_acc: 0.7096 Epoch 00356: val_acc did not improve from 0.72480 Epoch 357/500 7500/7500 [==============================] - 2s 274us/step - loss: 0.1622 - acc: 0.7744 - val_loss: 0.2451 - val_acc: 0.7112 Epoch 00357: val_acc did not improve from 0.72480 Epoch 358/500 7500/7500 [==============================] - 2s 269us/step - loss: 0.1633 - acc: 0.7665 - val_loss: 0.2482 - val_acc: 0.7112 Epoch 00358: val_acc did not improve from 0.72480 Epoch 359/500 7500/7500 [==============================] - 2s 271us/step - loss: 0.1616 - acc: 0.7765 - val_loss: 0.2468 - val_acc: 0.7096 Epoch 00359: val_acc did not improve from 0.72480 Epoch 360/500 7500/7500 [==============================] - 2s 272us/step - loss: 0.1624 - acc: 0.7727 - val_loss: 0.2495 - val_acc: 0.7080 Epoch 00360: val_acc did not improve from 0.72480 Epoch 361/500 7500/7500 [==============================] - 2s 270us/step - loss: 0.1640 - acc: 0.7677 - val_loss: 0.2452 - val_acc: 0.7100 Epoch 00361: val_acc did not improve from 0.72480 Epoch 362/500 7500/7500 [==============================] - 2s 271us/step - loss: 0.1626 - acc: 0.7715 - val_loss: 0.2490 - val_acc: 0.7076 Epoch 00362: val_acc did not improve from 0.72480 Epoch 363/500 7500/7500 [==============================] - 2s 273us/step - loss: 0.1651 - acc: 0.7657 - val_loss: 0.2485 - val_acc: 0.7088 Epoch 00363: val_acc did not improve from 0.72480 Epoch 364/500 7500/7500 [==============================] - 2s 270us/step - loss: 0.1614 - acc: 0.7781 - val_loss: 0.2512 - val_acc: 0.7068 Epoch 00364: val_acc did not improve from 0.72480 Epoch 365/500 7500/7500 [==============================] - 2s 273us/step - loss: 0.1624 - acc: 0.7703 - val_loss: 0.2482 - val_acc: 0.7108 Epoch 00365: val_acc did not improve from 0.72480 Epoch 366/500 7500/7500 [==============================] - 2s 270us/step - loss: 0.1614 - acc: 0.7744 - val_loss: 0.2484 - val_acc: 0.7108 Epoch 00366: val_acc did not improve from 0.72480 Epoch 367/500 7500/7500 [==============================] - 2s 270us/step - loss: 0.1620 - acc: 0.7697 - val_loss: 0.2471 - val_acc: 0.7108 Epoch 00367: val_acc did not improve from 0.72480 Epoch 368/500 7500/7500 [==============================] - 2s 271us/step - loss: 0.1615 - acc: 0.7760 - val_loss: 0.2495 - val_acc: 0.7088 Epoch 00368: val_acc did not improve from 0.72480 Epoch 369/500 7500/7500 [==============================] - 2s 273us/step - loss: 0.1634 - acc: 0.7671 - val_loss: 0.2496 - val_acc: 0.7096 Epoch 00369: val_acc did not improve from 0.72480 Epoch 370/500 7500/7500 [==============================] - 2s 272us/step - loss: 0.1638 - acc: 0.7685 - val_loss: 0.2493 - val_acc: 0.7076 Epoch 00370: val_acc did not improve from 0.72480 Epoch 371/500 7500/7500 [==============================] - 2s 272us/step - loss: 0.1613 - acc: 0.7727 - val_loss: 0.2490 - val_acc: 0.7108 Epoch 00371: val_acc did not improve from 0.72480 Epoch 372/500 7500/7500 [==============================] - 2s 266us/step - loss: 0.1611 - acc: 0.7732 - val_loss: 0.2507 - val_acc: 0.7112 Epoch 00372: val_acc did not improve from 0.72480 Epoch 373/500 7500/7500 [==============================] - 2s 268us/step - loss: 0.1634 - acc: 0.7685 - val_loss: 0.2493 - val_acc: 0.7104 Epoch 00373: val_acc did not improve from 0.72480 Epoch 374/500 7500/7500 [==============================] - 2s 269us/step - loss: 0.1608 - acc: 0.7733 - val_loss: 0.2472 - val_acc: 0.7120 Epoch 00374: val_acc did not improve from 0.72480 Epoch 375/500 7500/7500 [==============================] - 2s 276us/step - loss: 0.1649 - acc: 0.7671 - val_loss: 0.2481 - val_acc: 0.7096 Epoch 00375: val_acc did not improve from 0.72480 Epoch 376/500 7500/7500 [==============================] - 2s 269us/step - loss: 0.1636 - acc: 0.7707 - val_loss: 0.2494 - val_acc: 0.7104 Epoch 00376: val_acc did not improve from 0.72480 Epoch 377/500 7500/7500 [==============================] - 2s 270us/step - loss: 0.1611 - acc: 0.7691 - val_loss: 0.2478 - val_acc: 0.7104 Epoch 00377: val_acc did not improve from 0.72480 Epoch 378/500 7500/7500 [==============================] - 2s 271us/step - loss: 0.1626 - acc: 0.7687 - val_loss: 0.2485 - val_acc: 0.7104 Epoch 00378: val_acc did not improve from 0.72480 Epoch 379/500 7500/7500 [==============================] - 2s 274us/step - loss: 0.1610 - acc: 0.7731 - val_loss: 0.2494 - val_acc: 0.7112 Epoch 00379: val_acc did not improve from 0.72480 Epoch 380/500 7500/7500 [==============================] - 2s 269us/step - loss: 0.1606 - acc: 0.7735 - val_loss: 0.2503 - val_acc: 0.7092 Epoch 00380: val_acc did not improve from 0.72480 Epoch 381/500 7500/7500 [==============================] - 2s 272us/step - loss: 0.1620 - acc: 0.7709 - val_loss: 0.2539 - val_acc: 0.7072 Epoch 00381: val_acc did not improve from 0.72480 Epoch 382/500 7500/7500 [==============================] - 2s 269us/step - loss: 0.1614 - acc: 0.7717 - val_loss: 0.2494 - val_acc: 0.7104 Epoch 00382: val_acc did not improve from 0.72480 Epoch 383/500 7500/7500 [==============================] - 2s 270us/step - loss: 0.1598 - acc: 0.7748 - val_loss: 0.2472 - val_acc: 0.7076 Epoch 00383: val_acc did not improve from 0.72480 Epoch 384/500 7500/7500 [==============================] - 2s 271us/step - loss: 0.1606 - acc: 0.7759 - val_loss: 0.2486 - val_acc: 0.7092 Epoch 00384: val_acc did not improve from 0.72480 Epoch 385/500 7500/7500 [==============================] - 2s 270us/step - loss: 0.1623 - acc: 0.7712 - val_loss: 0.2485 - val_acc: 0.7108 Epoch 00385: val_acc did not improve from 0.72480 Epoch 386/500 7500/7500 [==============================] - 2s 270us/step - loss: 0.1620 - acc: 0.7707 - val_loss: 0.2480 - val_acc: 0.7112 Epoch 00386: val_acc did not improve from 0.72480 Epoch 387/500 7500/7500 [==============================] - 2s 275us/step - loss: 0.1600 - acc: 0.7748 - val_loss: 0.2519 - val_acc: 0.7100 Epoch 00387: val_acc did not improve from 0.72480 Epoch 388/500 7500/7500 [==============================] - 2s 271us/step - loss: 0.1624 - acc: 0.7715 - val_loss: 0.2501 - val_acc: 0.7112 Epoch 00388: val_acc did not improve from 0.72480 Epoch 389/500 7500/7500 [==============================] - 2s 271us/step - loss: 0.1643 - acc: 0.7675 - val_loss: 0.2541 - val_acc: 0.7088 Epoch 00389: val_acc did not improve from 0.72480 Epoch 390/500 7500/7500 [==============================] - 2s 269us/step - loss: 0.1619 - acc: 0.7709 - val_loss: 0.2472 - val_acc: 0.7104 Epoch 00390: val_acc did not improve from 0.72480 Epoch 391/500 7500/7500 [==============================] - 2s 272us/step - loss: 0.1624 - acc: 0.7685 - val_loss: 0.2520 - val_acc: 0.7104 Epoch 00391: val_acc did not improve from 0.72480 Epoch 392/500 7500/7500 [==============================] - 2s 272us/step - loss: 0.1622 - acc: 0.7677 - val_loss: 0.2485 - val_acc: 0.7092 Epoch 00392: val_acc did not improve from 0.72480 Epoch 393/500 7500/7500 [==============================] - 2s 276us/step - loss: 0.1600 - acc: 0.7745 - val_loss: 0.2507 - val_acc: 0.7092 Epoch 00393: val_acc did not improve from 0.72480 Epoch 394/500 7500/7500 [==============================] - 2s 272us/step - loss: 0.1574 - acc: 0.7797 - val_loss: 0.2486 - val_acc: 0.7104 Epoch 00394: val_acc did not improve from 0.72480 Epoch 395/500 7500/7500 [==============================] - 2s 272us/step - loss: 0.1610 - acc: 0.7673 - val_loss: 0.2502 - val_acc: 0.7104 Epoch 00395: val_acc did not improve from 0.72480 Epoch 396/500 7500/7500 [==============================] - 2s 273us/step - loss: 0.1610 - acc: 0.7707 - val_loss: 0.2522 - val_acc: 0.7128 Epoch 00396: val_acc did not improve from 0.72480 Epoch 397/500 7500/7500 [==============================] - 2s 270us/step - loss: 0.1604 - acc: 0.7736 - val_loss: 0.2551 - val_acc: 0.7120 Epoch 00397: val_acc did not improve from 0.72480 Epoch 398/500 7500/7500 [==============================] - 2s 275us/step - loss: 0.1609 - acc: 0.7756 - val_loss: 0.2525 - val_acc: 0.7132 Epoch 00398: val_acc did not improve from 0.72480 Epoch 399/500 7500/7500 [==============================] - 2s 287us/step - loss: 0.1602 - acc: 0.7723 - val_loss: 0.2551 - val_acc: 0.7096 Epoch 00399: val_acc did not improve from 0.72480 Epoch 400/500 7500/7500 [==============================] - 2s 282us/step - loss: 0.1634 - acc: 0.7661 - val_loss: 0.2564 - val_acc: 0.7100 Epoch 00400: val_acc did not improve from 0.72480 Epoch 401/500 7500/7500 [==============================] - 2s 272us/step - loss: 0.1611 - acc: 0.7696 - val_loss: 0.2540 - val_acc: 0.7112 Epoch 00401: val_acc did not improve from 0.72480 Epoch 402/500 7500/7500 [==============================] - 2s 271us/step - loss: 0.1600 - acc: 0.7727 - val_loss: 0.2528 - val_acc: 0.7128 Epoch 00402: val_acc did not improve from 0.72480 Epoch 403/500 7500/7500 [==============================] - 2s 272us/step - loss: 0.1597 - acc: 0.7728 - val_loss: 0.2572 - val_acc: 0.7084 Epoch 00403: val_acc did not improve from 0.72480 Epoch 404/500 7500/7500 [==============================] - 2s 269us/step - loss: 0.1633 - acc: 0.7693 - val_loss: 0.2540 - val_acc: 0.7112 Epoch 00404: val_acc did not improve from 0.72480 Epoch 405/500 7500/7500 [==============================] - 2s 273us/step - loss: 0.1613 - acc: 0.7736 - val_loss: 0.2533 - val_acc: 0.7104 Epoch 00405: val_acc did not improve from 0.72480 Epoch 406/500 7500/7500 [==============================] - 2s 272us/step - loss: 0.1602 - acc: 0.7727 - val_loss: 0.2555 - val_acc: 0.7116 Epoch 00406: val_acc did not improve from 0.72480 Epoch 407/500 7500/7500 [==============================] - 2s 270us/step - loss: 0.1619 - acc: 0.7703 - val_loss: 0.2528 - val_acc: 0.7108 Epoch 00407: val_acc did not improve from 0.72480 Epoch 408/500 7500/7500 [==============================] - 2s 272us/step - loss: 0.1607 - acc: 0.7723 - val_loss: 0.2549 - val_acc: 0.7116 Epoch 00408: val_acc did not improve from 0.72480 Epoch 409/500 7500/7500 [==============================] - 2s 275us/step - loss: 0.1595 - acc: 0.7769 - val_loss: 0.2515 - val_acc: 0.7112 Epoch 00409: val_acc did not improve from 0.72480 Epoch 410/500 7500/7500 [==============================] - 2s 268us/step - loss: 0.1593 - acc: 0.7744 - val_loss: 0.2549 - val_acc: 0.7124 Epoch 00410: val_acc did not improve from 0.72480 Epoch 411/500 7500/7500 [==============================] - 2s 270us/step - loss: 0.1622 - acc: 0.7691 - val_loss: 0.2546 - val_acc: 0.7116 Epoch 00411: val_acc did not improve from 0.72480 Epoch 412/500 7500/7500 [==============================] - 2s 271us/step - loss: 0.1598 - acc: 0.7779 - val_loss: 0.2560 - val_acc: 0.7084 Epoch 00412: val_acc did not improve from 0.72480 Epoch 413/500 7500/7500 [==============================] - 2s 274us/step - loss: 0.1605 - acc: 0.7752 - val_loss: 0.2583 - val_acc: 0.7096 Epoch 00413: val_acc did not improve from 0.72480 Epoch 414/500 7500/7500 [==============================] - 2s 272us/step - loss: 0.1604 - acc: 0.7761 - val_loss: 0.2535 - val_acc: 0.7100 Epoch 00414: val_acc did not improve from 0.72480 Epoch 415/500 7500/7500 [==============================] - 2s 271us/step - loss: 0.1594 - acc: 0.7756 - val_loss: 0.2571 - val_acc: 0.7088 Epoch 00415: val_acc did not improve from 0.72480 Epoch 416/500 7500/7500 [==============================] - 2s 271us/step - loss: 0.1606 - acc: 0.7735 - val_loss: 0.2542 - val_acc: 0.7128 Epoch 00416: val_acc did not improve from 0.72480 Epoch 417/500 7500/7500 [==============================] - 2s 269us/step - loss: 0.1593 - acc: 0.7771 - val_loss: 0.2584 - val_acc: 0.7096 Epoch 00417: val_acc did not improve from 0.72480 Epoch 418/500 7500/7500 [==============================] - 2s 278us/step - loss: 0.1601 - acc: 0.7759 - val_loss: 0.2539 - val_acc: 0.7108 Epoch 00418: val_acc did not improve from 0.72480 Epoch 419/500 7500/7500 [==============================] - 2s 274us/step - loss: 0.1610 - acc: 0.7711 - val_loss: 0.2551 - val_acc: 0.7108 Epoch 00419: val_acc did not improve from 0.72480 Epoch 420/500 7500/7500 [==============================] - 2s 270us/step - loss: 0.1579 - acc: 0.7788 - val_loss: 0.2569 - val_acc: 0.7092 Epoch 00420: val_acc did not improve from 0.72480 Epoch 421/500 7500/7500 [==============================] - 2s 268us/step - loss: 0.1604 - acc: 0.7720 - val_loss: 0.2577 - val_acc: 0.7076 Epoch 00421: val_acc did not improve from 0.72480 Epoch 422/500 7500/7500 [==============================] - 2s 272us/step - loss: 0.1624 - acc: 0.7701 - val_loss: 0.2573 - val_acc: 0.7096 Epoch 00422: val_acc did not improve from 0.72480 Epoch 423/500 7500/7500 [==============================] - 2s 274us/step - loss: 0.1603 - acc: 0.7747 - val_loss: 0.2557 - val_acc: 0.7120 Epoch 00423: val_acc did not improve from 0.72480 Epoch 424/500 7500/7500 [==============================] - 2s 271us/step - loss: 0.1609 - acc: 0.7721 - val_loss: 0.2574 - val_acc: 0.7112 Epoch 00424: val_acc did not improve from 0.72480 Epoch 425/500 7500/7500 [==============================] - 2s 270us/step - loss: 0.1617 - acc: 0.7700 - val_loss: 0.2566 - val_acc: 0.7120 Epoch 00425: val_acc did not improve from 0.72480 Epoch 426/500 7500/7500 [==============================] - 2s 268us/step - loss: 0.1614 - acc: 0.7727 - val_loss: 0.2562 - val_acc: 0.7108 Epoch 00426: val_acc did not improve from 0.72480 Epoch 427/500 7500/7500 [==============================] - 2s 271us/step - loss: 0.1610 - acc: 0.7713 - val_loss: 0.2614 - val_acc: 0.7064 Epoch 00427: val_acc did not improve from 0.72480 Epoch 428/500 7500/7500 [==============================] - 2s 275us/step - loss: 0.1603 - acc: 0.7707 - val_loss: 0.2578 - val_acc: 0.7104 Epoch 00428: val_acc did not improve from 0.72480 Epoch 429/500 7500/7500 [==============================] - 2s 270us/step - loss: 0.1614 - acc: 0.7697 - val_loss: 0.2574 - val_acc: 0.7084 Epoch 00429: val_acc did not improve from 0.72480 Epoch 430/500 7500/7500 [==============================] - 2s 269us/step - loss: 0.1609 - acc: 0.7733 - val_loss: 0.2563 - val_acc: 0.7108 Epoch 00430: val_acc did not improve from 0.72480 Epoch 431/500 7500/7500 [==============================] - 2s 268us/step - loss: 0.1609 - acc: 0.7720 - val_loss: 0.2584 - val_acc: 0.7092 Epoch 00431: val_acc did not improve from 0.72480 Epoch 432/500 7500/7500 [==============================] - 2s 273us/step - loss: 0.1613 - acc: 0.7709 - val_loss: 0.2584 - val_acc: 0.7104 Epoch 00432: val_acc did not improve from 0.72480 Epoch 433/500 7500/7500 [==============================] - 2s 272us/step - loss: 0.1604 - acc: 0.7695 - val_loss: 0.2590 - val_acc: 0.7084 Epoch 00433: val_acc did not improve from 0.72480 Epoch 434/500 7500/7500 [==============================] - 2s 274us/step - loss: 0.1603 - acc: 0.7715 - val_loss: 0.2626 - val_acc: 0.7064 Epoch 00434: val_acc did not improve from 0.72480 Epoch 435/500 7500/7500 [==============================] - 2s 270us/step - loss: 0.1600 - acc: 0.7700 - val_loss: 0.2615 - val_acc: 0.7108 Epoch 00435: val_acc did not improve from 0.72480 Epoch 436/500 7500/7500 [==============================] - 2s 273us/step - loss: 0.1602 - acc: 0.7761 - val_loss: 0.2567 - val_acc: 0.7100 Epoch 00436: val_acc did not improve from 0.72480 Epoch 437/500 7500/7500 [==============================] - 2s 269us/step - loss: 0.1603 - acc: 0.7717 - val_loss: 0.2563 - val_acc: 0.7104 Epoch 00437: val_acc did not improve from 0.72480 Epoch 438/500 7500/7500 [==============================] - 2s 270us/step - loss: 0.1607 - acc: 0.7712 - val_loss: 0.2597 - val_acc: 0.7104 Epoch 00438: val_acc did not improve from 0.72480 Epoch 439/500 7500/7500 [==============================] - 2s 275us/step - loss: 0.1607 - acc: 0.7735 - val_loss: 0.2611 - val_acc: 0.7104 Epoch 00439: val_acc did not improve from 0.72480 Epoch 440/500 7500/7500 [==============================] - 2s 269us/step - loss: 0.1597 - acc: 0.7744 - val_loss: 0.2596 - val_acc: 0.7112 Epoch 00440: val_acc did not improve from 0.72480 Epoch 441/500 7500/7500 [==============================] - 2s 269us/step - loss: 0.1580 - acc: 0.7719 - val_loss: 0.2619 - val_acc: 0.7124 Epoch 00441: val_acc did not improve from 0.72480 Epoch 442/500 7500/7500 [==============================] - 2s 272us/step - loss: 0.1627 - acc: 0.7665 - val_loss: 0.2577 - val_acc: 0.7124 Epoch 00442: val_acc did not improve from 0.72480 Epoch 443/500 7500/7500 [==============================] - 2s 269us/step - loss: 0.1606 - acc: 0.7729 - val_loss: 0.2569 - val_acc: 0.7116 Epoch 00443: val_acc did not improve from 0.72480 Epoch 444/500 7500/7500 [==============================] - 2s 286us/step - loss: 0.1607 - acc: 0.7712 - val_loss: 0.2523 - val_acc: 0.7112 Epoch 00444: val_acc did not improve from 0.72480 Epoch 445/500 7500/7500 [==============================] - 2s 272us/step - loss: 0.1602 - acc: 0.7715 - val_loss: 0.2573 - val_acc: 0.7112 Epoch 00445: val_acc did not improve from 0.72480 Epoch 446/500 7500/7500 [==============================] - 2s 273us/step - loss: 0.1613 - acc: 0.7679 - val_loss: 0.2610 - val_acc: 0.7096 Epoch 00446: val_acc did not improve from 0.72480 Epoch 447/500 7500/7500 [==============================] - 2s 271us/step - loss: 0.1616 - acc: 0.7697 - val_loss: 0.2581 - val_acc: 0.7108 Epoch 00447: val_acc did not improve from 0.72480 Epoch 448/500 7500/7500 [==============================] - 2s 269us/step - loss: 0.1612 - acc: 0.7720 - val_loss: 0.2594 - val_acc: 0.7100 Epoch 00448: val_acc did not improve from 0.72480 Epoch 449/500 7500/7500 [==============================] - 2s 274us/step - loss: 0.1605 - acc: 0.7728 - val_loss: 0.2594 - val_acc: 0.7088 Epoch 00449: val_acc did not improve from 0.72480 Epoch 450/500 7500/7500 [==============================] - 2s 268us/step - loss: 0.1621 - acc: 0.7709 - val_loss: 0.2582 - val_acc: 0.7096 Epoch 00450: val_acc did not improve from 0.72480 Epoch 451/500 7500/7500 [==============================] - 2s 272us/step - loss: 0.1595 - acc: 0.7752 - val_loss: 0.2601 - val_acc: 0.7116 Epoch 00451: val_acc did not improve from 0.72480 Epoch 452/500 7500/7500 [==============================] - 2s 271us/step - loss: 0.1625 - acc: 0.7663 - val_loss: 0.2605 - val_acc: 0.7092 Epoch 00452: val_acc did not improve from 0.72480 Epoch 453/500 7500/7500 [==============================] - 2s 282us/step - loss: 0.1571 - acc: 0.7775 - val_loss: 0.2628 - val_acc: 0.7116 Epoch 00453: val_acc did not improve from 0.72480 Epoch 454/500 7500/7500 [==============================] - 2s 273us/step - loss: 0.1614 - acc: 0.7697 - val_loss: 0.2616 - val_acc: 0.7088 Epoch 00454: val_acc did not improve from 0.72480 Epoch 455/500 7500/7500 [==============================] - 2s 272us/step - loss: 0.1602 - acc: 0.7712 - val_loss: 0.2649 - val_acc: 0.7104 Epoch 00455: val_acc did not improve from 0.72480 Epoch 456/500 7500/7500 [==============================] - 2s 269us/step - loss: 0.1601 - acc: 0.7691 - val_loss: 0.2601 - val_acc: 0.7104 Epoch 00456: val_acc did not improve from 0.72480 Epoch 457/500 7500/7500 [==============================] - 2s 275us/step - loss: 0.1609 - acc: 0.7708 - val_loss: 0.2644 - val_acc: 0.7068 Epoch 00457: val_acc did not improve from 0.72480 Epoch 458/500 7500/7500 [==============================] - 2s 271us/step - loss: 0.1597 - acc: 0.7735 - val_loss: 0.2658 - val_acc: 0.7060 Epoch 00458: val_acc did not improve from 0.72480 Epoch 459/500 7500/7500 [==============================] - 2s 269us/step - loss: 0.1595 - acc: 0.7728 - val_loss: 0.2651 - val_acc: 0.7104 Epoch 00459: val_acc did not improve from 0.72480 Epoch 460/500 7500/7500 [==============================] - 2s 269us/step - loss: 0.1608 - acc: 0.7737 - val_loss: 0.2613 - val_acc: 0.7096 Epoch 00460: val_acc did not improve from 0.72480 Epoch 461/500 7500/7500 [==============================] - 2s 274us/step - loss: 0.1587 - acc: 0.7747 - val_loss: 0.2648 - val_acc: 0.7084 Epoch 00461: val_acc did not improve from 0.72480 Epoch 462/500 7500/7500 [==============================] - 2s 269us/step - loss: 0.1596 - acc: 0.7732 - val_loss: 0.2693 - val_acc: 0.7076 Epoch 00462: val_acc did not improve from 0.72480 Epoch 463/500 7500/7500 [==============================] - 2s 271us/step - loss: 0.1600 - acc: 0.7696 - val_loss: 0.2661 - val_acc: 0.7064 Epoch 00463: val_acc did not improve from 0.72480 Epoch 464/500 7500/7500 [==============================] - 2s 268us/step - loss: 0.1600 - acc: 0.7740 - val_loss: 0.2622 - val_acc: 0.7128 Epoch 00464: val_acc did not improve from 0.72480 Epoch 465/500 7500/7500 [==============================] - 2s 273us/step - loss: 0.1588 - acc: 0.7749 - val_loss: 0.2657 - val_acc: 0.7076 Epoch 00465: val_acc did not improve from 0.72480 Epoch 466/500 7500/7500 [==============================] - 2s 274us/step - loss: 0.1610 - acc: 0.7707 - val_loss: 0.2673 - val_acc: 0.7068 Epoch 00466: val_acc did not improve from 0.72480 Epoch 467/500 7500/7500 [==============================] - 2s 271us/step - loss: 0.1594 - acc: 0.7741 - val_loss: 0.2629 - val_acc: 0.7088 Epoch 00467: val_acc did not improve from 0.72480 Epoch 468/500 7500/7500 [==============================] - 2s 271us/step - loss: 0.1607 - acc: 0.7675 - val_loss: 0.2636 - val_acc: 0.7080 Epoch 00468: val_acc did not improve from 0.72480 Epoch 469/500 7500/7500 [==============================] - 2s 270us/step - loss: 0.1583 - acc: 0.7748 - val_loss: 0.2645 - val_acc: 0.7088 Epoch 00469: val_acc did not improve from 0.72480 Epoch 470/500 7500/7500 [==============================] - 2s 268us/step - loss: 0.1597 - acc: 0.7721 - val_loss: 0.2623 - val_acc: 0.7088 Epoch 00470: val_acc did not improve from 0.72480 Epoch 471/500 7500/7500 [==============================] - 2s 274us/step - loss: 0.1581 - acc: 0.7736 - val_loss: 0.2569 - val_acc: 0.7100 Epoch 00471: val_acc did not improve from 0.72480 Epoch 472/500 7500/7500 [==============================] - 2s 271us/step - loss: 0.1581 - acc: 0.7735 - val_loss: 0.2552 - val_acc: 0.7104 Epoch 00472: val_acc did not improve from 0.72480 Epoch 473/500 7500/7500 [==============================] - 2s 273us/step - loss: 0.1590 - acc: 0.7729 - val_loss: 0.2572 - val_acc: 0.7100 Epoch 00473: val_acc did not improve from 0.72480 Epoch 474/500 7500/7500 [==============================] - 2s 270us/step - loss: 0.1601 - acc: 0.7700 - val_loss: 0.2568 - val_acc: 0.7112 Epoch 00474: val_acc did not improve from 0.72480 Epoch 475/500 7500/7500 [==============================] - 2s 275us/step - loss: 0.1586 - acc: 0.7709 - val_loss: 0.2591 - val_acc: 0.7092 Epoch 00475: val_acc did not improve from 0.72480 Epoch 476/500 7500/7500 [==============================] - 2s 271us/step - loss: 0.1583 - acc: 0.7753 - val_loss: 0.2535 - val_acc: 0.7120 Epoch 00476: val_acc did not improve from 0.72480 Epoch 477/500 7500/7500 [==============================] - 2s 271us/step - loss: 0.1580 - acc: 0.7771 - val_loss: 0.2562 - val_acc: 0.7104 Epoch 00477: val_acc did not improve from 0.72480 Epoch 478/500 7500/7500 [==============================] - 2s 267us/step - loss: 0.1569 - acc: 0.7776 - val_loss: 0.2549 - val_acc: 0.7100 Epoch 00478: val_acc did not improve from 0.72480 Epoch 479/500 7500/7500 [==============================] - 2s 269us/step - loss: 0.1564 - acc: 0.7753 - val_loss: 0.2558 - val_acc: 0.7116 Epoch 00479: val_acc did not improve from 0.72480 Epoch 480/500 7500/7500 [==============================] - 2s 274us/step - loss: 0.1580 - acc: 0.7707 - val_loss: 0.2524 - val_acc: 0.7124 Epoch 00480: val_acc did not improve from 0.72480 Epoch 481/500 7500/7500 [==============================] - 2s 269us/step - loss: 0.1569 - acc: 0.7760 - val_loss: 0.2564 - val_acc: 0.7092 Epoch 00481: val_acc did not improve from 0.72480 Epoch 482/500 7500/7500 [==============================] - 2s 271us/step - loss: 0.1564 - acc: 0.7781 - val_loss: 0.2499 - val_acc: 0.7120 Epoch 00482: val_acc did not improve from 0.72480 Epoch 483/500 7500/7500 [==============================] - 2s 269us/step - loss: 0.1579 - acc: 0.7723 - val_loss: 0.2533 - val_acc: 0.7092 Epoch 00483: val_acc did not improve from 0.72480 Epoch 484/500 7500/7500 [==============================] - 2s 269us/step - loss: 0.1563 - acc: 0.7764 - val_loss: 0.2541 - val_acc: 0.7124 Epoch 00484: val_acc did not improve from 0.72480 Epoch 485/500 7500/7500 [==============================] - 2s 271us/step - loss: 0.1564 - acc: 0.7785 - val_loss: 0.2530 - val_acc: 0.7140 Epoch 00485: val_acc did not improve from 0.72480 Epoch 486/500 7500/7500 [==============================] - 2s 270us/step - loss: 0.1558 - acc: 0.7748 - val_loss: 0.2498 - val_acc: 0.7120 Epoch 00486: val_acc did not improve from 0.72480 Epoch 487/500 7500/7500 [==============================] - 2s 272us/step - loss: 0.1565 - acc: 0.7779 - val_loss: 0.2520 - val_acc: 0.7132 Epoch 00487: val_acc did not improve from 0.72480 Epoch 488/500 7500/7500 [==============================] - 2s 272us/step - loss: 0.1560 - acc: 0.7765 - val_loss: 0.2504 - val_acc: 0.7124 Epoch 00488: val_acc did not improve from 0.72480 Epoch 489/500 7500/7500 [==============================] - 2s 268us/step - loss: 0.1552 - acc: 0.7769 - val_loss: 0.2523 - val_acc: 0.7120 Epoch 00489: val_acc did not improve from 0.72480 Epoch 490/500 7500/7500 [==============================] - 2s 275us/step - loss: 0.1555 - acc: 0.7765 - val_loss: 0.2506 - val_acc: 0.7112 Epoch 00490: val_acc did not improve from 0.72480 Epoch 491/500 7500/7500 [==============================] - 2s 269us/step - loss: 0.1563 - acc: 0.7749 - val_loss: 0.2520 - val_acc: 0.7120 Epoch 00491: val_acc did not improve from 0.72480 Epoch 492/500 7500/7500 [==============================] - 2s 269us/step - loss: 0.1571 - acc: 0.7737 - val_loss: 0.2518 - val_acc: 0.7104 Epoch 00492: val_acc did not improve from 0.72480 Epoch 493/500 7500/7500 [==============================] - 2s 269us/step - loss: 0.1554 - acc: 0.7785 - val_loss: 0.2530 - val_acc: 0.7128 Epoch 00493: val_acc did not improve from 0.72480 Epoch 494/500 7500/7500 [==============================] - 2s 274us/step - loss: 0.1544 - acc: 0.7799 - val_loss: 0.2570 - val_acc: 0.7104 Epoch 00494: val_acc did not improve from 0.72480 Epoch 495/500 7500/7500 [==============================] - 2s 270us/step - loss: 0.1560 - acc: 0.7768 - val_loss: 0.2531 - val_acc: 0.7116 Epoch 00495: val_acc did not improve from 0.72480 Epoch 496/500 7500/7500 [==============================] - 2s 269us/step - loss: 0.1551 - acc: 0.7784 - val_loss: 0.2563 - val_acc: 0.7096 Epoch 00496: val_acc did not improve from 0.72480 Epoch 497/500 7500/7500 [==============================] - 2s 268us/step - loss: 0.1568 - acc: 0.7759 - val_loss: 0.2539 - val_acc: 0.7120 Epoch 00497: val_acc did not improve from 0.72480 Epoch 498/500 7500/7500 [==============================] - 2s 267us/step - loss: 0.1554 - acc: 0.7765 - val_loss: 0.2509 - val_acc: 0.7124 Epoch 00498: val_acc did not improve from 0.72480 Epoch 499/500 7500/7500 [==============================] - 2s 273us/step - loss: 0.1536 - acc: 0.7797 - val_loss: 0.2508 - val_acc: 0.7120 Epoch 00499: val_acc did not improve from 0.72480 Epoch 500/500 7500/7500 [==============================] - 2s 270us/step - loss: 0.1539 - acc: 0.7824 - val_loss: 0.2529 - val_acc: 0.7100 Epoch 00500: val_acc did not improve from 0.72480 acc: 72.48%
MIT
expressyeaself/models/lstm/LSTM_builder.ipynb
yeastpro/expressYeaself
Bulid the 2 dimensions LSTM model As for the data we have, we only have 1 output and that means we only have 1 time step, if we can delete that dimension in that model, then we can have a 2 dimensions LSTM model. Load the data again
X_padded, y_scaled, abs_max_el = encode.encode_sequences_with_method(sample_path, method='One-Hot', scale_els=scale_els) num_seqs, max_sequence_len = organize.get_num_and_len_of_seqs_from_file(sample_path) test_size = 0.25 X_train, X_test, y_train, y_test = train_test_split(X_padded, y_scaled, test_size=test_size)
_____no_output_____
MIT
expressyeaself/models/lstm/LSTM_builder.ipynb
yeastpro/expressYeaself
Build up the model
# Define the model parameters batch_size = int(len(y_scaled) * 0.01) # no bigger than 1 % of data epochs = 50 dropout = 0.3 learning_rate = 0.01 # Define the checkpointer to allow saving of models model_type = 'lstm_sequential_2d_onehot' save_path = SAVE_DIR + model_type + '.hdf5' checkpointer = ModelCheckpoint(monitor='val_acc', filepath=save_path, verbose=1, save_best_only=True) # Define the model model = Sequential() # Build up the layers model.add(LSTM(100,input_shape=(int(max_sequence_len), 5))) model.add(Dropout(dropout)) model.add(Dense(50, activation='sigmoid')) # model.add(Dense(25, activation='sigmoid')) # model.add(Dense(12, activation='sigmoid')) # model.add(Dense(6, activation='sigmoid')) # model.add(Dense(3, activation='sigmoid')) model.add(Dense(1, activation='sigmoid')) model.compile(loss='mse', optimizer='rmsprop', metrics=['accuracy']) print(model.summary())
WARNING:tensorflow:From C:\Users\Lisboa\Anaconda3\lib\site-packages\tensorflow\python\framework\op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version. Instructions for updating: Colocations handled automatically by placer. WARNING:tensorflow:From C:\Users\Lisboa\Anaconda3\lib\site-packages\keras\backend\tensorflow_backend.py:3445: calling dropout (from tensorflow.python.ops.nn_ops) with keep_prob is deprecated and will be removed in a future version. Instructions for updating: Please use `rate` instead of `keep_prob`. Rate should be set to `rate = 1 - keep_prob`. _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= lstm_1 (LSTM) (None, 100) 42400 _________________________________________________________________ dropout_1 (Dropout) (None, 100) 0 _________________________________________________________________ dense_1 (Dense) (None, 50) 5050 _________________________________________________________________ dense_2 (Dense) (None, 1) 51 ================================================================= Total params: 47,501 Trainable params: 47,501 Non-trainable params: 0 _________________________________________________________________ None
MIT
expressyeaself/models/lstm/LSTM_builder.ipynb
yeastpro/expressYeaself
Fit and Evaluate the model
# Fit history = model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs,verbose=1, validation_data=(X_test, y_test), callbacks=[checkpointer]) # Evaluate score = max(history.history['val_acc']) print("%s: %.2f%%" % (model.metrics_names[1], score*100)) plt = construct.plot_results(history.history) plt.show()
WARNING:tensorflow:From C:\Users\Lisboa\Anaconda3\lib\site-packages\tensorflow\python\ops\math_ops.py:3066: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version. Instructions for updating: Use tf.cast instead. Train on 7500 samples, validate on 2500 samples Epoch 1/500 7500/7500 [==============================] - 6s 855us/step - loss: 0.2107 - acc: 0.6719 - val_loss: 0.1957 - val_acc: 0.7008 Epoch 00001: val_acc improved from -inf to 0.70080, saving model to C:\Users\Lisboa\011019\ExpressYeaself/expressyeaself/models/lstm/saved_models/lstm_sequential_2d_onehot.hdf5 Epoch 2/500 7500/7500 [==============================] - 6s 755us/step - loss: 0.1912 - acc: 0.7187 - val_loss: 0.1911 - val_acc: 0.7304 Epoch 00002: val_acc improved from 0.70080 to 0.73040, saving model to C:\Users\Lisboa\011019\ExpressYeaself/expressyeaself/models/lstm/saved_models/lstm_sequential_2d_onehot.hdf5 Epoch 3/500 7500/7500 [==============================] - 6s 735us/step - loss: 0.1859 - acc: 0.7241 - val_loss: 0.1872 - val_acc: 0.7116 Epoch 00003: val_acc did not improve from 0.73040 Epoch 4/500 7500/7500 [==============================] - 5s 730us/step - loss: 0.1807 - acc: 0.7387 - val_loss: 0.1804 - val_acc: 0.7344 Epoch 00004: val_acc improved from 0.73040 to 0.73440, saving model to C:\Users\Lisboa\011019\ExpressYeaself/expressyeaself/models/lstm/saved_models/lstm_sequential_2d_onehot.hdf5 Epoch 5/500 7500/7500 [==============================] - 5s 710us/step - loss: 0.1771 - acc: 0.7419 - val_loss: 0.1632 - val_acc: 0.7628 Epoch 00005: val_acc improved from 0.73440 to 0.76280, saving model to C:\Users\Lisboa\011019\ExpressYeaself/expressyeaself/models/lstm/saved_models/lstm_sequential_2d_onehot.hdf5 Epoch 6/500 7500/7500 [==============================] - 5s 685us/step - loss: 0.1732 - acc: 0.7492 - val_loss: 0.1672 - val_acc: 0.7528 Epoch 00006: val_acc did not improve from 0.76280 Epoch 7/500 7500/7500 [==============================] - 5s 691us/step - loss: 0.1692 - acc: 0.7588 - val_loss: 0.1605 - val_acc: 0.7716 Epoch 00007: val_acc improved from 0.76280 to 0.77160, saving model to C:\Users\Lisboa\011019\ExpressYeaself/expressyeaself/models/lstm/saved_models/lstm_sequential_2d_onehot.hdf5 Epoch 8/500 7500/7500 [==============================] - 5s 680us/step - loss: 0.1668 - acc: 0.7659 - val_loss: 0.1562 - val_acc: 0.7824 Epoch 00008: val_acc improved from 0.77160 to 0.78240, saving model to C:\Users\Lisboa\011019\ExpressYeaself/expressyeaself/models/lstm/saved_models/lstm_sequential_2d_onehot.hdf5 Epoch 9/500 7500/7500 [==============================] - 5s 663us/step - loss: 0.1624 - acc: 0.7704 - val_loss: 0.1764 - val_acc: 0.7528 Epoch 00009: val_acc did not improve from 0.78240 Epoch 10/500 7500/7500 [==============================] - 5s 660us/step - loss: 0.1589 - acc: 0.7749 - val_loss: 0.1555 - val_acc: 0.7796 Epoch 00010: val_acc did not improve from 0.78240 Epoch 11/500 7500/7500 [==============================] - 5s 654us/step - loss: 0.1566 - acc: 0.7779 - val_loss: 0.1450 - val_acc: 0.7932 Epoch 00011: val_acc improved from 0.78240 to 0.79320, saving model to C:\Users\Lisboa\011019\ExpressYeaself/expressyeaself/models/lstm/saved_models/lstm_sequential_2d_onehot.hdf5 Epoch 12/500 7500/7500 [==============================] - 5s 659us/step - loss: 0.1494 - acc: 0.7923 - val_loss: 0.1880 - val_acc: 0.7312 Epoch 00012: val_acc did not improve from 0.79320 Epoch 13/500 7500/7500 [==============================] - 5s 650us/step - loss: 0.1491 - acc: 0.7901 - val_loss: 0.1461 - val_acc: 0.7980 Epoch 00013: val_acc improved from 0.79320 to 0.79800, saving model to C:\Users\Lisboa\011019\ExpressYeaself/expressyeaself/models/lstm/saved_models/lstm_sequential_2d_onehot.hdf5 Epoch 14/500 7500/7500 [==============================] - 5s 652us/step - loss: 0.1450 - acc: 0.7987 - val_loss: 0.1365 - val_acc: 0.8124 Epoch 00014: val_acc improved from 0.79800 to 0.81240, saving model to C:\Users\Lisboa\011019\ExpressYeaself/expressyeaself/models/lstm/saved_models/lstm_sequential_2d_onehot.hdf5 Epoch 15/500 7500/7500 [==============================] - 5s 661us/step - loss: 0.1455 - acc: 0.7984 - val_loss: 0.1490 - val_acc: 0.7948 Epoch 00015: val_acc did not improve from 0.81240 Epoch 16/500 7500/7500 [==============================] - 5s 652us/step - loss: 0.1411 - acc: 0.8060 - val_loss: 0.1462 - val_acc: 0.7960 Epoch 00016: val_acc did not improve from 0.81240 Epoch 17/500 7500/7500 [==============================] - 5s 645us/step - loss: 0.1394 - acc: 0.8064 - val_loss: 0.1446 - val_acc: 0.7908 Epoch 00017: val_acc did not improve from 0.81240 Epoch 18/500 7500/7500 [==============================] - 5s 644us/step - loss: 0.1390 - acc: 0.8063 - val_loss: 0.1290 - val_acc: 0.8244 Epoch 00018: val_acc improved from 0.81240 to 0.82440, saving model to C:\Users\Lisboa\011019\ExpressYeaself/expressyeaself/models/lstm/saved_models/lstm_sequential_2d_onehot.hdf5 Epoch 19/500 7500/7500 [==============================] - 5s 643us/step - loss: 0.1400 - acc: 0.8059 - val_loss: 0.1333 - val_acc: 0.8128 Epoch 00019: val_acc did not improve from 0.82440 Epoch 20/500 7500/7500 [==============================] - 5s 645us/step - loss: 0.1376 - acc: 0.8093 - val_loss: 0.1475 - val_acc: 0.7948 Epoch 00020: val_acc did not improve from 0.82440 Epoch 21/500 7500/7500 [==============================] - 5s 642us/step - loss: 0.1347 - acc: 0.8155 - val_loss: 0.1319 - val_acc: 0.8136 Epoch 00021: val_acc did not improve from 0.82440 Epoch 22/500 7500/7500 [==============================] - 5s 629us/step - loss: 0.1323 - acc: 0.8172 - val_loss: 0.1340 - val_acc: 0.8080 Epoch 00022: val_acc did not improve from 0.82440 Epoch 23/500 7500/7500 [==============================] - 5s 637us/step - loss: 0.1306 - acc: 0.8225 - val_loss: 0.1524 - val_acc: 0.7848 Epoch 00023: val_acc did not improve from 0.82440 Epoch 24/500 7500/7500 [==============================] - 5s 638us/step - loss: 0.1322 - acc: 0.8167 - val_loss: 0.1321 - val_acc: 0.8156 Epoch 00024: val_acc did not improve from 0.82440 Epoch 25/500 7500/7500 [==============================] - 5s 632us/step - loss: 0.1312 - acc: 0.8196 - val_loss: 0.2003 - val_acc: 0.7308 Epoch 00025: val_acc did not improve from 0.82440 Epoch 26/500 7500/7500 [==============================] - 5s 627us/step - loss: 0.1299 - acc: 0.8277 - val_loss: 0.1260 - val_acc: 0.8212 Epoch 00026: val_acc did not improve from 0.82440 Epoch 27/500 7500/7500 [==============================] - 5s 634us/step - loss: 0.1287 - acc: 0.8293 - val_loss: 0.1286 - val_acc: 0.8188 Epoch 00027: val_acc did not improve from 0.82440 Epoch 28/500 7500/7500 [==============================] - 5s 722us/step - loss: 0.1280 - acc: 0.8244 - val_loss: 0.1257 - val_acc: 0.8276 Epoch 00028: val_acc improved from 0.82440 to 0.82760, saving model to C:\Users\Lisboa\011019\ExpressYeaself/expressyeaself/models/lstm/saved_models/lstm_sequential_2d_onehot.hdf5 Epoch 29/500 7500/7500 [==============================] - 6s 740us/step - loss: 0.1251 - acc: 0.8317 - val_loss: 0.1204 - val_acc: 0.8336 Epoch 00029: val_acc improved from 0.82760 to 0.83360, saving model to C:\Users\Lisboa\011019\ExpressYeaself/expressyeaself/models/lstm/saved_models/lstm_sequential_2d_onehot.hdf5 Epoch 30/500 7500/7500 [==============================] - 5s 647us/step - loss: 0.1267 - acc: 0.8276 - val_loss: 0.1213 - val_acc: 0.8356 Epoch 00030: val_acc improved from 0.83360 to 0.83560, saving model to C:\Users\Lisboa\011019\ExpressYeaself/expressyeaself/models/lstm/saved_models/lstm_sequential_2d_onehot.hdf5 Epoch 31/500 7500/7500 [==============================] - 5s 644us/step - loss: 0.1243 - acc: 0.8339 - val_loss: 0.1483 - val_acc: 0.7948 Epoch 00031: val_acc did not improve from 0.83560 Epoch 32/500 7500/7500 [==============================] - 5s 703us/step - loss: 0.1248 - acc: 0.8328 - val_loss: 0.1208 - val_acc: 0.8328 Epoch 00032: val_acc did not improve from 0.83560 Epoch 33/500 7500/7500 [==============================] - 5s 680us/step - loss: 0.1232 - acc: 0.8328 - val_loss: 0.1271 - val_acc: 0.8296 Epoch 00033: val_acc did not improve from 0.83560 Epoch 34/500 7500/7500 [==============================] - 5s 647us/step - loss: 0.1227 - acc: 0.8347 - val_loss: 0.1294 - val_acc: 0.8224 Epoch 00034: val_acc did not improve from 0.83560 Epoch 35/500 7500/7500 [==============================] - 5s 727us/step - loss: 0.1203 - acc: 0.8385 - val_loss: 0.1238 - val_acc: 0.8292 Epoch 00035: val_acc did not improve from 0.83560 Epoch 36/500 7500/7500 [==============================] - 5s 671us/step - loss: 0.1217 - acc: 0.8352 - val_loss: 0.1247 - val_acc: 0.8240 Epoch 00036: val_acc did not improve from 0.83560 Epoch 37/500 7500/7500 [==============================] - 5s 710us/step - loss: 0.1201 - acc: 0.8377 - val_loss: 0.1198 - val_acc: 0.8352 Epoch 00037: val_acc did not improve from 0.83560 Epoch 38/500 7500/7500 [==============================] - 5s 650us/step - loss: 0.1191 - acc: 0.8423 - val_loss: 0.1190 - val_acc: 0.8392 Epoch 00038: val_acc improved from 0.83560 to 0.83920, saving model to C:\Users\Lisboa\011019\ExpressYeaself/expressyeaself/models/lstm/saved_models/lstm_sequential_2d_onehot.hdf5 Epoch 39/500 7500/7500 [==============================] - 5s 684us/step - loss: 0.1170 - acc: 0.8437 - val_loss: 0.1232 - val_acc: 0.8320 Epoch 00039: val_acc did not improve from 0.83920 Epoch 40/500 7500/7500 [==============================] - 5s 671us/step - loss: 0.1166 - acc: 0.8481 - val_loss: 0.1167 - val_acc: 0.8416 Epoch 00040: val_acc improved from 0.83920 to 0.84160, saving model to C:\Users\Lisboa\011019\ExpressYeaself/expressyeaself/models/lstm/saved_models/lstm_sequential_2d_onehot.hdf5 Epoch 41/500 7500/7500 [==============================] - 5s 678us/step - loss: 0.1155 - acc: 0.8457 - val_loss: 0.1204 - val_acc: 0.8340 Epoch 00041: val_acc did not improve from 0.84160 Epoch 42/500 7500/7500 [==============================] - 5s 629us/step - loss: 0.1162 - acc: 0.8461 - val_loss: 0.1291 - val_acc: 0.8240 Epoch 00042: val_acc did not improve from 0.84160 Epoch 43/500 7500/7500 [==============================] - 5s 633us/step - loss: 0.1144 - acc: 0.8484 - val_loss: 0.1208 - val_acc: 0.8344 Epoch 00043: val_acc did not improve from 0.84160 Epoch 44/500 7500/7500 [==============================] - 5s 650us/step - loss: 0.1125 - acc: 0.8524 - val_loss: 0.1253 - val_acc: 0.8288 Epoch 00044: val_acc did not improve from 0.84160 Epoch 45/500 7500/7500 [==============================] - 5s 641us/step - loss: 0.1136 - acc: 0.8492 - val_loss: 0.1170 - val_acc: 0.8400 Epoch 00045: val_acc did not improve from 0.84160 Epoch 46/500 7500/7500 [==============================] - 5s 646us/step - loss: 0.1134 - acc: 0.8475 - val_loss: 0.1445 - val_acc: 0.7992 Epoch 00046: val_acc did not improve from 0.84160 Epoch 47/500 7500/7500 [==============================] - 5s 653us/step - loss: 0.1100 - acc: 0.8556 - val_loss: 0.1169 - val_acc: 0.8420 Epoch 00047: val_acc improved from 0.84160 to 0.84200, saving model to C:\Users\Lisboa\011019\ExpressYeaself/expressyeaself/models/lstm/saved_models/lstm_sequential_2d_onehot.hdf5 Epoch 48/500 7500/7500 [==============================] - 5s 642us/step - loss: 0.1105 - acc: 0.8520 - val_loss: 0.1244 - val_acc: 0.8284 Epoch 00048: val_acc did not improve from 0.84200 Epoch 49/500 7500/7500 [==============================] - 5s 652us/step - loss: 0.1105 - acc: 0.8555 - val_loss: 0.1208 - val_acc: 0.8452 Epoch 00049: val_acc improved from 0.84200 to 0.84520, saving model to C:\Users\Lisboa\011019\ExpressYeaself/expressyeaself/models/lstm/saved_models/lstm_sequential_2d_onehot.hdf5 Epoch 50/500 7500/7500 [==============================] - 5s 640us/step - loss: 0.1080 - acc: 0.8541 - val_loss: 0.1176 - val_acc: 0.8456 Epoch 00050: val_acc improved from 0.84520 to 0.84560, saving model to C:\Users\Lisboa\011019\ExpressYeaself/expressyeaself/models/lstm/saved_models/lstm_sequential_2d_onehot.hdf5 Epoch 51/500 7500/7500 [==============================] - 5s 634us/step - loss: 0.1077 - acc: 0.8592 - val_loss: 0.1267 - val_acc: 0.8288 Epoch 00051: val_acc did not improve from 0.84560 Epoch 52/500 7500/7500 [==============================] - 5s 640us/step - loss: 0.1093 - acc: 0.8572 - val_loss: 0.1211 - val_acc: 0.8376 Epoch 00052: val_acc did not improve from 0.84560 Epoch 53/500 7500/7500 [==============================] - 5s 692us/step - loss: 0.1069 - acc: 0.8597 - val_loss: 0.1179 - val_acc: 0.8460 Epoch 00053: val_acc improved from 0.84560 to 0.84600, saving model to C:\Users\Lisboa\011019\ExpressYeaself/expressyeaself/models/lstm/saved_models/lstm_sequential_2d_onehot.hdf5 Epoch 54/500 7500/7500 [==============================] - 5s 677us/step - loss: 0.1059 - acc: 0.8583 - val_loss: 0.1441 - val_acc: 0.7984 Epoch 00054: val_acc did not improve from 0.84600 Epoch 55/500 7500/7500 [==============================] - 5s 689us/step - loss: 0.1045 - acc: 0.8636 - val_loss: 0.1591 - val_acc: 0.7872 Epoch 00055: val_acc did not improve from 0.84600 Epoch 56/500 7500/7500 [==============================] - 6s 734us/step - loss: 0.1026 - acc: 0.8647 - val_loss: 0.1213 - val_acc: 0.8372 Epoch 00056: val_acc did not improve from 0.84600 Epoch 57/500 7500/7500 [==============================] - 6s 756us/step - loss: 0.1041 - acc: 0.8624 - val_loss: 0.1211 - val_acc: 0.8368 Epoch 00057: val_acc did not improve from 0.84600 Epoch 58/500 7500/7500 [==============================] - 5s 650us/step - loss: 0.1030 - acc: 0.8643 - val_loss: 0.1216 - val_acc: 0.8368 Epoch 00058: val_acc did not improve from 0.84600 Epoch 59/500 7500/7500 [==============================] - 5s 649us/step - loss: 0.1021 - acc: 0.8669 - val_loss: 0.1189 - val_acc: 0.8428 Epoch 00059: val_acc did not improve from 0.84600 Epoch 60/500 7500/7500 [==============================] - 5s 645us/step - loss: 0.1012 - acc: 0.8687 - val_loss: 0.1474 - val_acc: 0.7988 Epoch 00060: val_acc did not improve from 0.84600 Epoch 61/500 7500/7500 [==============================] - 5s 664us/step - loss: 0.0995 - acc: 0.8700 - val_loss: 0.1229 - val_acc: 0.8360 Epoch 00061: val_acc did not improve from 0.84600 Epoch 62/500 7500/7500 [==============================] - 5s 694us/step - loss: 0.0993 - acc: 0.8717 - val_loss: 0.1248 - val_acc: 0.8384 Epoch 00062: val_acc did not improve from 0.84600 Epoch 63/500 7500/7500 [==============================] - 5s 679us/step - loss: 0.0975 - acc: 0.8739 - val_loss: 0.1263 - val_acc: 0.8328 Epoch 00063: val_acc did not improve from 0.84600 Epoch 64/500 7500/7500 [==============================] - 5s 722us/step - loss: 0.0949 - acc: 0.8765 - val_loss: 0.1365 - val_acc: 0.8124 Epoch 00064: val_acc did not improve from 0.84600 Epoch 65/500 7500/7500 [==============================] - 5s 708us/step - loss: 0.0950 - acc: 0.8776 - val_loss: 0.1364 - val_acc: 0.8168 Epoch 00065: val_acc did not improve from 0.84600 Epoch 66/500 7500/7500 [==============================] - 5s 695us/step - loss: 0.0961 - acc: 0.8755 - val_loss: 0.1274 - val_acc: 0.8344 Epoch 00066: val_acc did not improve from 0.84600 Epoch 67/500 7500/7500 [==============================] - 5s 680us/step - loss: 0.0930 - acc: 0.8809 - val_loss: 0.1314 - val_acc: 0.8368 Epoch 00067: val_acc did not improve from 0.84600 Epoch 68/500 7500/7500 [==============================] - 5s 671us/step - loss: 0.0929 - acc: 0.8792 - val_loss: 0.1286 - val_acc: 0.8280 Epoch 00068: val_acc did not improve from 0.84600 Epoch 69/500 7500/7500 [==============================] - 5s 670us/step - loss: 0.0906 - acc: 0.8833 - val_loss: 0.1342 - val_acc: 0.8288 Epoch 00069: val_acc did not improve from 0.84600 Epoch 70/500 7500/7500 [==============================] - 5s 687us/step - loss: 0.0906 - acc: 0.8815 - val_loss: 0.1328 - val_acc: 0.8208 Epoch 00070: val_acc did not improve from 0.84600 Epoch 71/500 7500/7500 [==============================] - 5s 662us/step - loss: 0.0884 - acc: 0.8863 - val_loss: 0.1300 - val_acc: 0.8316 Epoch 00071: val_acc did not improve from 0.84600 Epoch 72/500 7500/7500 [==============================] - 5s 681us/step - loss: 0.0893 - acc: 0.8865 - val_loss: 0.1374 - val_acc: 0.8128 Epoch 00072: val_acc did not improve from 0.84600 Epoch 73/500 7500/7500 [==============================] - 5s 669us/step - loss: 0.0865 - acc: 0.8905 - val_loss: 0.1324 - val_acc: 0.8168 Epoch 00073: val_acc did not improve from 0.84600 Epoch 74/500 7500/7500 [==============================] - 5s 668us/step - loss: 0.0898 - acc: 0.8872 - val_loss: 0.1345 - val_acc: 0.8204 Epoch 00074: val_acc did not improve from 0.84600 Epoch 75/500 7500/7500 [==============================] - 5s 662us/step - loss: 0.0844 - acc: 0.8956 - val_loss: 0.1428 - val_acc: 0.8180 Epoch 00075: val_acc did not improve from 0.84600 Epoch 76/500 7500/7500 [==============================] - 5s 675us/step - loss: 0.0840 - acc: 0.8955 - val_loss: 0.1374 - val_acc: 0.8272 Epoch 00076: val_acc did not improve from 0.84600 Epoch 77/500 7500/7500 [==============================] - 5s 684us/step - loss: 0.0818 - acc: 0.8959 - val_loss: 0.1405 - val_acc: 0.8212 Epoch 00077: val_acc did not improve from 0.84600 Epoch 78/500 7500/7500 [==============================] - 5s 658us/step - loss: 0.0818 - acc: 0.8991 - val_loss: 0.1362 - val_acc: 0.8296 Epoch 00078: val_acc did not improve from 0.84600 Epoch 79/500 7500/7500 [==============================] - 5s 667us/step - loss: 0.0821 - acc: 0.8969 - val_loss: 0.1396 - val_acc: 0.8240 Epoch 00079: val_acc did not improve from 0.84600 Epoch 80/500 7500/7500 [==============================] - 5s 663us/step - loss: 0.0796 - acc: 0.9016 - val_loss: 0.1527 - val_acc: 0.8020 Epoch 00080: val_acc did not improve from 0.84600 Epoch 81/500 7500/7500 [==============================] - 5s 673us/step - loss: 0.0820 - acc: 0.8963 - val_loss: 0.1492 - val_acc: 0.8048 Epoch 00081: val_acc did not improve from 0.84600 Epoch 82/500 7500/7500 [==============================] - 5s 671us/step - loss: 0.0803 - acc: 0.9007 - val_loss: 0.1426 - val_acc: 0.8216 Epoch 00082: val_acc did not improve from 0.84600 Epoch 83/500 7500/7500 [==============================] - 5s 666us/step - loss: 0.0764 - acc: 0.9063 - val_loss: 0.1358 - val_acc: 0.8252 Epoch 00083: val_acc did not improve from 0.84600 Epoch 84/500 7500/7500 [==============================] - 5s 657us/step - loss: 0.0753 - acc: 0.9061 - val_loss: 0.1397 - val_acc: 0.8216 Epoch 00084: val_acc did not improve from 0.84600 Epoch 85/500 7500/7500 [==============================] - 5s 665us/step - loss: 0.0737 - acc: 0.9079 - val_loss: 0.1450 - val_acc: 0.8156 Epoch 00085: val_acc did not improve from 0.84600 Epoch 86/500 7500/7500 [==============================] - 5s 673us/step - loss: 0.0732 - acc: 0.9096 - val_loss: 0.1459 - val_acc: 0.8080 Epoch 00086: val_acc did not improve from 0.84600 Epoch 87/500 7500/7500 [==============================] - 5s 664us/step - loss: 0.0730 - acc: 0.9088 - val_loss: 0.1535 - val_acc: 0.8108 Epoch 00087: val_acc did not improve from 0.84600 Epoch 88/500 7500/7500 [==============================] - 5s 659us/step - loss: 0.0719 - acc: 0.9117 - val_loss: 0.1426 - val_acc: 0.8140 Epoch 00088: val_acc did not improve from 0.84600 Epoch 89/500 7500/7500 [==============================] - 5s 662us/step - loss: 0.0696 - acc: 0.9159 - val_loss: 0.1416 - val_acc: 0.8208 Epoch 00089: val_acc did not improve from 0.84600 Epoch 90/500 7500/7500 [==============================] - 5s 661us/step - loss: 0.0701 - acc: 0.9136 - val_loss: 0.1448 - val_acc: 0.8200 Epoch 00090: val_acc did not improve from 0.84600 Epoch 91/500 7500/7500 [==============================] - 5s 651us/step - loss: 0.0702 - acc: 0.9128 - val_loss: 0.1534 - val_acc: 0.8160 Epoch 00091: val_acc did not improve from 0.84600 Epoch 92/500 7500/7500 [==============================] - 5s 649us/step - loss: 0.0663 - acc: 0.9192 - val_loss: 0.1568 - val_acc: 0.8028 Epoch 00092: val_acc did not improve from 0.84600 Epoch 93/500 7500/7500 [==============================] - 5s 647us/step - loss: 0.0660 - acc: 0.9175 - val_loss: 0.1468 - val_acc: 0.8176 Epoch 00093: val_acc did not improve from 0.84600 Epoch 94/500 7500/7500 [==============================] - 5s 648us/step - loss: 0.0643 - acc: 0.9219 - val_loss: 0.1532 - val_acc: 0.8096 Epoch 00094: val_acc did not improve from 0.84600 Epoch 95/500 7500/7500 [==============================] - 5s 657us/step - loss: 0.0652 - acc: 0.9207 - val_loss: 0.1494 - val_acc: 0.8100 Epoch 00095: val_acc did not improve from 0.84600 Epoch 96/500 7500/7500 [==============================] - 5s 656us/step - loss: 0.0634 - acc: 0.9224 - val_loss: 0.1468 - val_acc: 0.8192 Epoch 00096: val_acc did not improve from 0.84600 Epoch 97/500 7500/7500 [==============================] - 5s 649us/step - loss: 0.0642 - acc: 0.9215 - val_loss: 0.1455 - val_acc: 0.8192 Epoch 00097: val_acc did not improve from 0.84600 Epoch 98/500 7500/7500 [==============================] - 5s 651us/step - loss: 0.0608 - acc: 0.9260 - val_loss: 0.1606 - val_acc: 0.7996 Epoch 00098: val_acc did not improve from 0.84600 Epoch 99/500 7500/7500 [==============================] - 5s 649us/step - loss: 0.0608 - acc: 0.9275 - val_loss: 0.1490 - val_acc: 0.8120 Epoch 00099: val_acc did not improve from 0.84600 Epoch 100/500 7500/7500 [==============================] - 5s 652us/step - loss: 0.0606 - acc: 0.9252 - val_loss: 0.1508 - val_acc: 0.8160 Epoch 00100: val_acc did not improve from 0.84600 Epoch 101/500 7500/7500 [==============================] - 5s 653us/step - loss: 0.0591 - acc: 0.9281 - val_loss: 0.1485 - val_acc: 0.8136 Epoch 00101: val_acc did not improve from 0.84600 Epoch 102/500 7500/7500 [==============================] - 5s 649us/step - loss: 0.0569 - acc: 0.9316 - val_loss: 0.1509 - val_acc: 0.8148 Epoch 00102: val_acc did not improve from 0.84600 Epoch 103/500 7500/7500 [==============================] - 5s 651us/step - loss: 0.0566 - acc: 0.9332 - val_loss: 0.1566 - val_acc: 0.8100 Epoch 00103: val_acc did not improve from 0.84600 Epoch 104/500 7500/7500 [==============================] - 5s 648us/step - loss: 0.0563 - acc: 0.9309 - val_loss: 0.1525 - val_acc: 0.8104 Epoch 00104: val_acc did not improve from 0.84600 Epoch 105/500 7500/7500 [==============================] - 5s 652us/step - loss: 0.0558 - acc: 0.9327 - val_loss: 0.1655 - val_acc: 0.8024 Epoch 00105: val_acc did not improve from 0.84600 Epoch 106/500 7500/7500 [==============================] - 5s 649us/step - loss: 0.0552 - acc: 0.9352 - val_loss: 0.1774 - val_acc: 0.7936 Epoch 00106: val_acc did not improve from 0.84600 Epoch 107/500 7500/7500 [==============================] - 5s 654us/step - loss: 0.0545 - acc: 0.9345 - val_loss: 0.1568 - val_acc: 0.8100 Epoch 00107: val_acc did not improve from 0.84600 Epoch 108/500 7500/7500 [==============================] - 5s 652us/step - loss: 0.0552 - acc: 0.9336 - val_loss: 0.1540 - val_acc: 0.8124 Epoch 00108: val_acc did not improve from 0.84600 Epoch 109/500 7500/7500 [==============================] - 5s 669us/step - loss: 0.0519 - acc: 0.9384 - val_loss: 0.1626 - val_acc: 0.8096 Epoch 00109: val_acc did not improve from 0.84600 Epoch 110/500 7500/7500 [==============================] - 5s 669us/step - loss: 0.0517 - acc: 0.9388 - val_loss: 0.1588 - val_acc: 0.8124 Epoch 00110: val_acc did not improve from 0.84600 Epoch 111/500 7500/7500 [==============================] - 5s 670us/step - loss: 0.0518 - acc: 0.9385 - val_loss: 0.1669 - val_acc: 0.8028 Epoch 00111: val_acc did not improve from 0.84600 Epoch 112/500 7500/7500 [==============================] - 5s 659us/step - loss: 0.0523 - acc: 0.9375 - val_loss: 0.1603 - val_acc: 0.8080 Epoch 00112: val_acc did not improve from 0.84600 Epoch 113/500 7500/7500 [==============================] - 5s 645us/step - loss: 0.0530 - acc: 0.9372 - val_loss: 0.1615 - val_acc: 0.8044 Epoch 00113: val_acc did not improve from 0.84600 Epoch 114/500 7500/7500 [==============================] - 5s 644us/step - loss: 0.0487 - acc: 0.9429 - val_loss: 0.1583 - val_acc: 0.8104 Epoch 00114: val_acc did not improve from 0.84600 Epoch 115/500 7500/7500 [==============================] - 5s 639us/step - loss: 0.0499 - acc: 0.9425 - val_loss: 0.1616 - val_acc: 0.8052 Epoch 00115: val_acc did not improve from 0.84600 Epoch 116/500 7500/7500 [==============================] - 5s 638us/step - loss: 0.0480 - acc: 0.9453 - val_loss: 0.1607 - val_acc: 0.8104 Epoch 00116: val_acc did not improve from 0.84600 Epoch 117/500 7500/7500 [==============================] - 5s 641us/step - loss: 0.0478 - acc: 0.9444 - val_loss: 0.1741 - val_acc: 0.7844 Epoch 00117: val_acc did not improve from 0.84600 Epoch 118/500 7500/7500 [==============================] - 5s 633us/step - loss: 0.0468 - acc: 0.9451 - val_loss: 0.1607 - val_acc: 0.8064 Epoch 00118: val_acc did not improve from 0.84600 Epoch 119/500 7500/7500 [==============================] - 5s 656us/step - loss: 0.0462 - acc: 0.9461 - val_loss: 0.1635 - val_acc: 0.8012 Epoch 00119: val_acc did not improve from 0.84600 Epoch 120/500 7500/7500 [==============================] - 5s 632us/step - loss: 0.0450 - acc: 0.9489 - val_loss: 0.1610 - val_acc: 0.8076 Epoch 00120: val_acc did not improve from 0.84600 Epoch 121/500 7500/7500 [==============================] - 5s 660us/step - loss: 0.0437 - acc: 0.9501 - val_loss: 0.1553 - val_acc: 0.8156 Epoch 00121: val_acc did not improve from 0.84600 Epoch 122/500 7500/7500 [==============================] - 5s 647us/step - loss: 0.0436 - acc: 0.9495 - val_loss: 0.1667 - val_acc: 0.8024 Epoch 00122: val_acc did not improve from 0.84600 Epoch 123/500 7500/7500 [==============================] - 5s 709us/step - loss: 0.0426 - acc: 0.9504 - val_loss: 0.1654 - val_acc: 0.8068 Epoch 00123: val_acc did not improve from 0.84600 Epoch 124/500 7500/7500 [==============================] - 5s 700us/step - loss: 0.0441 - acc: 0.9483 - val_loss: 0.1639 - val_acc: 0.8084 Epoch 00124: val_acc did not improve from 0.84600 Epoch 125/500 7500/7500 [==============================] - 5s 688us/step - loss: 0.0425 - acc: 0.9515 - val_loss: 0.1652 - val_acc: 0.8084 Epoch 00125: val_acc did not improve from 0.84600 Epoch 126/500 7500/7500 [==============================] - 5s 652us/step - loss: 0.0411 - acc: 0.9541 - val_loss: 0.1615 - val_acc: 0.8092 Epoch 00126: val_acc did not improve from 0.84600 Epoch 127/500 7500/7500 [==============================] - 5s 649us/step - loss: 0.0423 - acc: 0.9512 - val_loss: 0.1697 - val_acc: 0.8028 Epoch 00127: val_acc did not improve from 0.84600 Epoch 128/500 7500/7500 [==============================] - 5s 633us/step - loss: 0.0399 - acc: 0.9557 - val_loss: 0.1695 - val_acc: 0.8076 Epoch 00128: val_acc did not improve from 0.84600 Epoch 129/500 7500/7500 [==============================] - 5s 637us/step - loss: 0.0395 - acc: 0.9544 - val_loss: 0.1667 - val_acc: 0.8024 Epoch 00129: val_acc did not improve from 0.84600 Epoch 130/500 7500/7500 [==============================] - 5s 636us/step - loss: 0.0402 - acc: 0.9541 - val_loss: 0.1760 - val_acc: 0.8012 Epoch 00130: val_acc did not improve from 0.84600 Epoch 131/500 7500/7500 [==============================] - 5s 636us/step - loss: 0.0384 - acc: 0.9581 - val_loss: 0.1634 - val_acc: 0.8100 Epoch 00131: val_acc did not improve from 0.84600 Epoch 132/500 7500/7500 [==============================] - 5s 636us/step - loss: 0.0389 - acc: 0.9555 - val_loss: 0.1680 - val_acc: 0.8056 Epoch 00132: val_acc did not improve from 0.84600 Epoch 133/500 7500/7500 [==============================] - 5s 634us/step - loss: 0.0424 - acc: 0.9517 - val_loss: 0.1702 - val_acc: 0.8060 Epoch 00133: val_acc did not improve from 0.84600 Epoch 134/500 7500/7500 [==============================] - 5s 642us/step - loss: 0.0365 - acc: 0.9592 - val_loss: 0.1714 - val_acc: 0.8052 Epoch 00134: val_acc did not improve from 0.84600 Epoch 135/500 7500/7500 [==============================] - 5s 636us/step - loss: 0.0369 - acc: 0.9592 - val_loss: 0.1654 - val_acc: 0.8116 Epoch 00135: val_acc did not improve from 0.84600 Epoch 136/500 7500/7500 [==============================] - 5s 636us/step - loss: 0.0382 - acc: 0.9577 - val_loss: 0.1785 - val_acc: 0.7944 Epoch 00136: val_acc did not improve from 0.84600 Epoch 137/500 7500/7500 [==============================] - 5s 632us/step - loss: 0.0396 - acc: 0.9556 - val_loss: 0.1672 - val_acc: 0.8064 Epoch 00137: val_acc did not improve from 0.84600 Epoch 138/500 7500/7500 [==============================] - 5s 638us/step - loss: 0.0345 - acc: 0.9624 - val_loss: 0.1655 - val_acc: 0.8136 Epoch 00138: val_acc did not improve from 0.84600 Epoch 139/500 7500/7500 [==============================] - 5s 634us/step - loss: 0.0370 - acc: 0.9568 - val_loss: 0.1703 - val_acc: 0.7988 Epoch 00139: val_acc did not improve from 0.84600 Epoch 140/500 7500/7500 [==============================] - 5s 632us/step - loss: 0.0376 - acc: 0.9580 - val_loss: 0.1716 - val_acc: 0.8016 Epoch 00140: val_acc did not improve from 0.84600 Epoch 141/500 7500/7500 [==============================] - 5s 636us/step - loss: 0.0350 - acc: 0.9603 - val_loss: 0.1798 - val_acc: 0.7952 Epoch 00141: val_acc did not improve from 0.84600 Epoch 142/500 7500/7500 [==============================] - 5s 640us/step - loss: 0.0355 - acc: 0.9603 - val_loss: 0.1731 - val_acc: 0.8040 Epoch 00142: val_acc did not improve from 0.84600 Epoch 143/500 7500/7500 [==============================] - 5s 634us/step - loss: 0.0352 - acc: 0.9592 - val_loss: 0.1872 - val_acc: 0.7888 Epoch 00143: val_acc did not improve from 0.84600 Epoch 144/500 7500/7500 [==============================] - 5s 701us/step - loss: 0.0374 - acc: 0.9569 - val_loss: 0.1749 - val_acc: 0.8000 Epoch 00144: val_acc did not improve from 0.84600 Epoch 145/500 7500/7500 [==============================] - 5s 678us/step - loss: 0.0334 - acc: 0.9633 - val_loss: 0.1763 - val_acc: 0.8040 Epoch 00145: val_acc did not improve from 0.84600 Epoch 146/500 7500/7500 [==============================] - 5s 666us/step - loss: 0.0341 - acc: 0.9633 - val_loss: 0.1757 - val_acc: 0.8080 Epoch 00146: val_acc did not improve from 0.84600 Epoch 147/500 7500/7500 [==============================] - 5s 680us/step - loss: 0.0383 - acc: 0.9577 - val_loss: 0.1810 - val_acc: 0.7952 Epoch 00147: val_acc did not improve from 0.84600 Epoch 148/500 7500/7500 [==============================] - 5s 673us/step - loss: 0.0365 - acc: 0.9588 - val_loss: 0.1694 - val_acc: 0.8052 Epoch 00148: val_acc did not improve from 0.84600 Epoch 149/500 7500/7500 [==============================] - 5s 719us/step - loss: 0.0342 - acc: 0.9615 - val_loss: 0.1848 - val_acc: 0.7908 Epoch 00149: val_acc did not improve from 0.84600 Epoch 150/500 7500/7500 [==============================] - 6s 780us/step - loss: 0.0345 - acc: 0.9613 - val_loss: 0.1774 - val_acc: 0.7992 Epoch 00150: val_acc did not improve from 0.84600 Epoch 151/500 7500/7500 [==============================] - 6s 791us/step - loss: 0.0328 - acc: 0.9635 - val_loss: 0.1721 - val_acc: 0.8028 Epoch 00151: val_acc did not improve from 0.84600 Epoch 152/500 7500/7500 [==============================] - 5s 706us/step - loss: 0.0364 - acc: 0.9596 - val_loss: 0.1732 - val_acc: 0.8040 Epoch 00152: val_acc did not improve from 0.84600 Epoch 153/500 7500/7500 [==============================] - 5s 715us/step - loss: 0.0332 - acc: 0.9631 - val_loss: 0.1768 - val_acc: 0.7980 Epoch 00153: val_acc did not improve from 0.84600 Epoch 154/500 7500/7500 [==============================] - 6s 830us/step - loss: 0.0323 - acc: 0.9644 - val_loss: 0.1791 - val_acc: 0.7976 Epoch 00154: val_acc did not improve from 0.84600 Epoch 155/500 7500/7500 [==============================] - 7s 883us/step - loss: 0.0319 - acc: 0.9647 - val_loss: 0.1761 - val_acc: 0.8044 Epoch 00155: val_acc did not improve from 0.84600 Epoch 156/500 7500/7500 [==============================] - 5s 691us/step - loss: 0.0332 - acc: 0.9640 - val_loss: 0.1730 - val_acc: 0.8048 Epoch 00156: val_acc did not improve from 0.84600 Epoch 157/500 7500/7500 [==============================] - 5s 692us/step - loss: 0.0319 - acc: 0.9644 - val_loss: 0.1709 - val_acc: 0.8080 Epoch 00157: val_acc did not improve from 0.84600 Epoch 158/500 7500/7500 [==============================] - 6s 808us/step - loss: 0.0309 - acc: 0.9660 - val_loss: 0.1719 - val_acc: 0.8048 Epoch 00158: val_acc did not improve from 0.84600 Epoch 159/500 7500/7500 [==============================] - 6s 787us/step - loss: 0.0331 - acc: 0.9644 - val_loss: 0.1746 - val_acc: 0.8040 Epoch 00159: val_acc did not improve from 0.84600 Epoch 160/500 7500/7500 [==============================] - 6s 735us/step - loss: 0.0328 - acc: 0.9643 - val_loss: 0.1740 - val_acc: 0.8032 Epoch 00160: val_acc did not improve from 0.84600 Epoch 161/500 7500/7500 [==============================] - 7s 872us/step - loss: 0.0296 - acc: 0.9673 - val_loss: 0.1822 - val_acc: 0.7980 Epoch 00161: val_acc did not improve from 0.84600 Epoch 162/500 7500/7500 [==============================] - 5s 711us/step - loss: 0.0327 - acc: 0.9637 - val_loss: 0.1735 - val_acc: 0.8024 Epoch 00162: val_acc did not improve from 0.84600 Epoch 163/500 7500/7500 [==============================] - 5s 641us/step - loss: 0.0307 - acc: 0.9664 - val_loss: 0.1791 - val_acc: 0.7968 Epoch 00163: val_acc did not improve from 0.84600 Epoch 164/500 7500/7500 [==============================] - 5s 642us/step - loss: 0.0313 - acc: 0.9643 - val_loss: 0.1734 - val_acc: 0.8080 Epoch 00164: val_acc did not improve from 0.84600 Epoch 165/500 7500/7500 [==============================] - 5s 642us/step - loss: 0.0314 - acc: 0.9655 - val_loss: 0.1837 - val_acc: 0.7940 Epoch 00165: val_acc did not improve from 0.84600 Epoch 166/500 7500/7500 [==============================] - 5s 642us/step - loss: 0.0336 - acc: 0.9621 - val_loss: 0.1715 - val_acc: 0.8104 Epoch 00166: val_acc did not improve from 0.84600 Epoch 167/500 7500/7500 [==============================] - 5s 640us/step - loss: 0.0286 - acc: 0.9679 - val_loss: 0.1726 - val_acc: 0.8064 Epoch 00167: val_acc did not improve from 0.84600 Epoch 168/500 7500/7500 [==============================] - 5s 653us/step - loss: 0.0305 - acc: 0.9667 - val_loss: 0.1762 - val_acc: 0.8020 Epoch 00168: val_acc did not improve from 0.84600 Epoch 169/500 7500/7500 [==============================] - 5s 656us/step - loss: 0.0285 - acc: 0.9692 - val_loss: 0.1801 - val_acc: 0.8004 Epoch 00169: val_acc did not improve from 0.84600 Epoch 170/500 7500/7500 [==============================] - 5s 648us/step - loss: 0.0296 - acc: 0.9677 - val_loss: 0.1774 - val_acc: 0.8028 Epoch 00170: val_acc did not improve from 0.84600 Epoch 171/500 7500/7500 [==============================] - 5s 648us/step - loss: 0.0311 - acc: 0.9659 - val_loss: 0.1814 - val_acc: 0.7964 Epoch 00171: val_acc did not improve from 0.84600 Epoch 172/500 7500/7500 [==============================] - 5s 658us/step - loss: 0.0289 - acc: 0.9689 - val_loss: 0.1724 - val_acc: 0.8040 Epoch 00172: val_acc did not improve from 0.84600 Epoch 173/500 7500/7500 [==============================] - 5s 651us/step - loss: 0.0290 - acc: 0.9691 - val_loss: 0.1689 - val_acc: 0.8124 Epoch 00173: val_acc did not improve from 0.84600 Epoch 174/500 7500/7500 [==============================] - 5s 644us/step - loss: 0.0301 - acc: 0.9679 - val_loss: 0.1758 - val_acc: 0.8016 Epoch 00174: val_acc did not improve from 0.84600 Epoch 175/500 7500/7500 [==============================] - 5s 680us/step - loss: 0.0278 - acc: 0.9693 - val_loss: 0.1801 - val_acc: 0.8028 Epoch 00175: val_acc did not improve from 0.84600 Epoch 176/500 7500/7500 [==============================] - 5s 656us/step - loss: 0.0286 - acc: 0.9699 - val_loss: 0.1800 - val_acc: 0.7980 Epoch 00176: val_acc did not improve from 0.84600 Epoch 177/500 7500/7500 [==============================] - 5s 656us/step - loss: 0.0278 - acc: 0.9691 - val_loss: 0.1769 - val_acc: 0.8012 Epoch 00177: val_acc did not improve from 0.84600 Epoch 178/500 7500/7500 [==============================] - 5s 663us/step - loss: 0.0281 - acc: 0.9692 - val_loss: 0.1892 - val_acc: 0.7912 Epoch 00178: val_acc did not improve from 0.84600 Epoch 179/500 7500/7500 [==============================] - 5s 696us/step - loss: 0.0270 - acc: 0.9700 - val_loss: 0.1791 - val_acc: 0.7996 Epoch 00179: val_acc did not improve from 0.84600 Epoch 180/500 7500/7500 [==============================] - 5s 658us/step - loss: 0.0275 - acc: 0.9704 - val_loss: 0.1872 - val_acc: 0.7904 Epoch 00180: val_acc did not improve from 0.84600 Epoch 181/500 7500/7500 [==============================] - 5s 666us/step - loss: 0.0282 - acc: 0.9696 - val_loss: 0.1777 - val_acc: 0.8064 Epoch 00181: val_acc did not improve from 0.84600 Epoch 182/500 7500/7500 [==============================] - 5s 680us/step - loss: 0.0280 - acc: 0.9692 - val_loss: 0.1793 - val_acc: 0.8004 Epoch 00182: val_acc did not improve from 0.84600 Epoch 183/500 7500/7500 [==============================] - 5s 669us/step - loss: 0.0271 - acc: 0.9699 - val_loss: 0.1815 - val_acc: 0.8012 Epoch 00183: val_acc did not improve from 0.84600 Epoch 184/500 7500/7500 [==============================] - 5s 649us/step - loss: 0.0288 - acc: 0.9691 - val_loss: 0.1801 - val_acc: 0.8028 Epoch 00184: val_acc did not improve from 0.84600 Epoch 185/500 7500/7500 [==============================] - 5s 651us/step - loss: 0.0280 - acc: 0.9699 - val_loss: 0.1795 - val_acc: 0.8020 Epoch 00185: val_acc did not improve from 0.84600 Epoch 186/500 7500/7500 [==============================] - 5s 649us/step - loss: 0.0287 - acc: 0.9684 - val_loss: 0.1861 - val_acc: 0.7980 Epoch 00186: val_acc did not improve from 0.84600 Epoch 187/500 7500/7500 [==============================] - 5s 657us/step - loss: 0.0260 - acc: 0.9716 - val_loss: 0.1761 - val_acc: 0.8112 Epoch 00187: val_acc did not improve from 0.84600 Epoch 188/500 7500/7500 [==============================] - 5s 662us/step - loss: 0.0296 - acc: 0.9679 - val_loss: 0.1892 - val_acc: 0.7932 Epoch 00188: val_acc did not improve from 0.84600 Epoch 189/500 7500/7500 [==============================] - 5s 648us/step - loss: 0.0299 - acc: 0.9657 - val_loss: 0.1745 - val_acc: 0.8080 Epoch 00189: val_acc did not improve from 0.84600 Epoch 190/500 7500/7500 [==============================] - 5s 657us/step - loss: 0.0265 - acc: 0.9704 - val_loss: 0.1807 - val_acc: 0.7968 Epoch 00190: val_acc did not improve from 0.84600 Epoch 191/500 7500/7500 [==============================] - 5s 652us/step - loss: 0.0256 - acc: 0.9716 - val_loss: 0.1792 - val_acc: 0.8052 Epoch 00191: val_acc did not improve from 0.84600 Epoch 192/500 7500/7500 [==============================] - 5s 646us/step - loss: 0.0263 - acc: 0.9711 - val_loss: 0.1762 - val_acc: 0.8036 Epoch 00192: val_acc did not improve from 0.84600 Epoch 193/500 7500/7500 [==============================] - 5s 650us/step - loss: 0.0274 - acc: 0.9695 - val_loss: 0.1849 - val_acc: 0.7956 Epoch 00193: val_acc did not improve from 0.84600 Epoch 194/500 7500/7500 [==============================] - 5s 650us/step - loss: 0.0253 - acc: 0.9729 - val_loss: 0.1807 - val_acc: 0.8040 Epoch 00194: val_acc did not improve from 0.84600 Epoch 195/500 7500/7500 [==============================] - 5s 645us/step - loss: 0.0245 - acc: 0.9735 - val_loss: 0.1757 - val_acc: 0.8064 Epoch 00195: val_acc did not improve from 0.84600 Epoch 196/500 7500/7500 [==============================] - 5s 714us/step - loss: 0.0287 - acc: 0.9681 - val_loss: 0.1806 - val_acc: 0.7984 Epoch 00196: val_acc did not improve from 0.84600 Epoch 197/500 7500/7500 [==============================] - 5s 721us/step - loss: 0.0256 - acc: 0.9721 - val_loss: 0.1830 - val_acc: 0.8000 Epoch 00197: val_acc did not improve from 0.84600 Epoch 198/500 7500/7500 [==============================] - 5s 685us/step - loss: 0.0277 - acc: 0.9699 - val_loss: 0.1777 - val_acc: 0.8028 Epoch 00198: val_acc did not improve from 0.84600 Epoch 199/500 7500/7500 [==============================] - 5s 663us/step - loss: 0.0248 - acc: 0.9724 - val_loss: 0.1807 - val_acc: 0.7984 Epoch 00199: val_acc did not improve from 0.84600 Epoch 200/500 7500/7500 [==============================] - 5s 660us/step - loss: 0.0250 - acc: 0.9729 - val_loss: 0.1744 - val_acc: 0.8064 Epoch 00200: val_acc did not improve from 0.84600 Epoch 201/500 7500/7500 [==============================] - 5s 680us/step - loss: 0.0246 - acc: 0.9729 - val_loss: 0.1795 - val_acc: 0.8028 Epoch 00201: val_acc did not improve from 0.84600 Epoch 202/500 7500/7500 [==============================] - 5s 668us/step - loss: 0.0254 - acc: 0.9723 - val_loss: 0.1823 - val_acc: 0.8000 Epoch 00202: val_acc did not improve from 0.84600 Epoch 203/500 7500/7500 [==============================] - 5s 647us/step - loss: 0.0240 - acc: 0.9744 - val_loss: 0.1800 - val_acc: 0.8016 Epoch 00203: val_acc did not improve from 0.84600 Epoch 204/500 7500/7500 [==============================] - 5s 652us/step - loss: 0.0284 - acc: 0.9692 - val_loss: 0.1859 - val_acc: 0.7964 Epoch 00204: val_acc did not improve from 0.84600 Epoch 205/500 7500/7500 [==============================] - 5s 654us/step - loss: 0.0250 - acc: 0.9731 - val_loss: 0.1736 - val_acc: 0.8088 Epoch 00205: val_acc did not improve from 0.84600 Epoch 206/500 7500/7500 [==============================] - 5s 653us/step - loss: 0.0257 - acc: 0.9716 - val_loss: 0.1794 - val_acc: 0.8040 Epoch 00206: val_acc did not improve from 0.84600 Epoch 207/500 7500/7500 [==============================] - 5s 650us/step - loss: 0.0252 - acc: 0.9720 - val_loss: 0.1792 - val_acc: 0.8024 Epoch 00207: val_acc did not improve from 0.84600 Epoch 208/500 7500/7500 [==============================] - 5s 663us/step - loss: 0.0240 - acc: 0.9737 - val_loss: 0.1874 - val_acc: 0.7956 Epoch 00208: val_acc did not improve from 0.84600 Epoch 209/500 7500/7500 [==============================] - 5s 660us/step - loss: 0.0240 - acc: 0.9740 - val_loss: 0.1852 - val_acc: 0.7956 Epoch 00209: val_acc did not improve from 0.84600 Epoch 210/500 7500/7500 [==============================] - 5s 654us/step - loss: 0.0241 - acc: 0.9740 - val_loss: 0.1806 - val_acc: 0.8012 Epoch 00210: val_acc did not improve from 0.84600 Epoch 211/500 7500/7500 [==============================] - 5s 648us/step - loss: 0.0238 - acc: 0.9744 - val_loss: 0.1870 - val_acc: 0.7996 Epoch 00211: val_acc did not improve from 0.84600 Epoch 212/500 7500/7500 [==============================] - 5s 659us/step - loss: 0.0255 - acc: 0.9712 - val_loss: 0.1857 - val_acc: 0.7976 Epoch 00212: val_acc did not improve from 0.84600 Epoch 213/500 7500/7500 [==============================] - 5s 649us/step - loss: 0.0232 - acc: 0.9752 - val_loss: 0.1817 - val_acc: 0.8004 Epoch 00213: val_acc did not improve from 0.84600 Epoch 214/500 7500/7500 [==============================] - 5s 647us/step - loss: 0.0246 - acc: 0.9732 - val_loss: 0.1806 - val_acc: 0.8052 Epoch 00214: val_acc did not improve from 0.84600 Epoch 215/500 7500/7500 [==============================] - 5s 673us/step - loss: 0.0241 - acc: 0.9737 - val_loss: 0.1842 - val_acc: 0.7992 Epoch 00215: val_acc did not improve from 0.84600 Epoch 216/500 7500/7500 [==============================] - 5s 657us/step - loss: 0.0244 - acc: 0.9743 - val_loss: 0.1927 - val_acc: 0.7912 Epoch 00216: val_acc did not improve from 0.84600 Epoch 217/500 7500/7500 [==============================] - 5s 656us/step - loss: 0.0229 - acc: 0.9763 - val_loss: 0.1863 - val_acc: 0.7956 Epoch 00217: val_acc did not improve from 0.84600 Epoch 218/500 7500/7500 [==============================] - 5s 646us/step - loss: 0.0245 - acc: 0.9739 - val_loss: 0.1835 - val_acc: 0.7988 Epoch 00218: val_acc did not improve from 0.84600 Epoch 219/500 7500/7500 [==============================] - 5s 650us/step - loss: 0.0250 - acc: 0.9729 - val_loss: 0.1848 - val_acc: 0.7980 Epoch 00219: val_acc did not improve from 0.84600 Epoch 220/500 7500/7500 [==============================] - 5s 646us/step - loss: 0.0269 - acc: 0.9697 - val_loss: 0.1806 - val_acc: 0.8020 Epoch 00220: val_acc did not improve from 0.84600 Epoch 221/500 7500/7500 [==============================] - 5s 651us/step - loss: 0.0257 - acc: 0.9721 - val_loss: 0.1787 - val_acc: 0.8048 Epoch 00221: val_acc did not improve from 0.84600 Epoch 222/500 7500/7500 [==============================] - 5s 684us/step - loss: 0.0225 - acc: 0.9761 - val_loss: 0.1814 - val_acc: 0.8012 Epoch 00222: val_acc did not improve from 0.84600 Epoch 223/500 7500/7500 [==============================] - 5s 721us/step - loss: 0.0245 - acc: 0.9731 - val_loss: 0.1845 - val_acc: 0.7992 Epoch 00223: val_acc did not improve from 0.84600 Epoch 224/500 7500/7500 [==============================] - 5s 713us/step - loss: 0.0235 - acc: 0.9745 - val_loss: 0.1778 - val_acc: 0.8096 Epoch 00224: val_acc did not improve from 0.84600 Epoch 225/500 7500/7500 [==============================] - 5s 697us/step - loss: 0.0225 - acc: 0.9751 - val_loss: 0.1828 - val_acc: 0.8004 Epoch 00225: val_acc did not improve from 0.84600 Epoch 226/500 7500/7500 [==============================] - 5s 653us/step - loss: 0.0262 - acc: 0.9719 - val_loss: 0.1819 - val_acc: 0.8036 Epoch 00226: val_acc did not improve from 0.84600 Epoch 227/500 7500/7500 [==============================] - 5s 663us/step - loss: 0.0233 - acc: 0.9756 - val_loss: 0.1782 - val_acc: 0.8040 Epoch 00227: val_acc did not improve from 0.84600 Epoch 228/500 7500/7500 [==============================] - 5s 666us/step - loss: 0.0226 - acc: 0.9761 - val_loss: 0.1845 - val_acc: 0.7936 Epoch 00228: val_acc did not improve from 0.84600 Epoch 229/500 7500/7500 [==============================] - 5s 637us/step - loss: 0.0244 - acc: 0.9736 - val_loss: 0.1829 - val_acc: 0.8012 Epoch 00229: val_acc did not improve from 0.84600 Epoch 230/500 7500/7500 [==============================] - 5s 634us/step - loss: 0.0229 - acc: 0.9761 - val_loss: 0.1805 - val_acc: 0.8000 Epoch 00230: val_acc did not improve from 0.84600 Epoch 231/500 7500/7500 [==============================] - 5s 646us/step - loss: 0.0222 - acc: 0.9768 - val_loss: 0.1786 - val_acc: 0.8084 Epoch 00231: val_acc did not improve from 0.84600 Epoch 232/500 7500/7500 [==============================] - 5s 660us/step - loss: 0.0222 - acc: 0.9771 - val_loss: 0.1815 - val_acc: 0.8016 Epoch 00232: val_acc did not improve from 0.84600 Epoch 233/500 7500/7500 [==============================] - 5s 640us/step - loss: 0.0243 - acc: 0.9745 - val_loss: 0.1815 - val_acc: 0.8044 Epoch 00233: val_acc did not improve from 0.84600 Epoch 234/500 7500/7500 [==============================] - 5s 668us/step - loss: 0.0229 - acc: 0.9745 - val_loss: 0.1953 - val_acc: 0.7868 Epoch 00234: val_acc did not improve from 0.84600 Epoch 235/500 7500/7500 [==============================] - 5s 665us/step - loss: 0.0242 - acc: 0.9748 - val_loss: 0.1833 - val_acc: 0.8020 Epoch 00235: val_acc did not improve from 0.84600 Epoch 236/500 7500/7500 [==============================] - 5s 665us/step - loss: 0.0220 - acc: 0.9772 - val_loss: 0.1824 - val_acc: 0.8020 Epoch 00236: val_acc did not improve from 0.84600 Epoch 237/500 7500/7500 [==============================] - 5s 645us/step - loss: 0.0231 - acc: 0.9749 - val_loss: 0.1848 - val_acc: 0.7964 Epoch 00237: val_acc did not improve from 0.84600 Epoch 238/500 7500/7500 [==============================] - 5s 641us/step - loss: 0.0243 - acc: 0.9735 - val_loss: 0.1848 - val_acc: 0.8020 Epoch 00238: val_acc did not improve from 0.84600 Epoch 239/500 7500/7500 [==============================] - 5s 639us/step - loss: 0.0229 - acc: 0.9756 - val_loss: 0.1871 - val_acc: 0.7936 Epoch 00239: val_acc did not improve from 0.84600 Epoch 240/500 7500/7500 [==============================] - 5s 641us/step - loss: 0.0222 - acc: 0.9765 - val_loss: 0.1838 - val_acc: 0.7984 Epoch 00240: val_acc did not improve from 0.84600 Epoch 241/500 7500/7500 [==============================] - 5s 646us/step - loss: 0.0227 - acc: 0.9757 - val_loss: 0.1872 - val_acc: 0.7992 Epoch 00241: val_acc did not improve from 0.84600 Epoch 242/500 7500/7500 [==============================] - 5s 636us/step - loss: 0.0227 - acc: 0.9756 - val_loss: 0.1794 - val_acc: 0.8004 Epoch 00242: val_acc did not improve from 0.84600 Epoch 243/500 7500/7500 [==============================] - 5s 634us/step - loss: 0.0213 - acc: 0.9777 - val_loss: 0.1876 - val_acc: 0.7972 Epoch 00243: val_acc did not improve from 0.84600 Epoch 244/500 7500/7500 [==============================] - 5s 640us/step - loss: 0.0215 - acc: 0.9775 - val_loss: 0.1910 - val_acc: 0.7924 Epoch 00244: val_acc did not improve from 0.84600 Epoch 245/500 7500/7500 [==============================] - 5s 643us/step - loss: 0.0215 - acc: 0.9767 - val_loss: 0.1883 - val_acc: 0.7968 Epoch 00245: val_acc did not improve from 0.84600 Epoch 246/500 7500/7500 [==============================] - 5s 639us/step - loss: 0.0215 - acc: 0.9767 - val_loss: 0.1980 - val_acc: 0.7876 Epoch 00246: val_acc did not improve from 0.84600 Epoch 247/500 7500/7500 [==============================] - 5s 638us/step - loss: 0.0201 - acc: 0.9793 - val_loss: 0.1848 - val_acc: 0.8024 Epoch 00247: val_acc did not improve from 0.84600 Epoch 248/500 7500/7500 [==============================] - 5s 634us/step - loss: 0.0230 - acc: 0.9760 - val_loss: 0.1851 - val_acc: 0.7996 Epoch 00248: val_acc did not improve from 0.84600 Epoch 249/500 7500/7500 [==============================] - 5s 641us/step - loss: 0.0220 - acc: 0.9771 - val_loss: 0.1867 - val_acc: 0.8004 Epoch 00249: val_acc did not improve from 0.84600 Epoch 250/500 7500/7500 [==============================] - 5s 640us/step - loss: 0.0213 - acc: 0.9776 - val_loss: 0.1871 - val_acc: 0.7956 Epoch 00250: val_acc did not improve from 0.84600 Epoch 251/500 7500/7500 [==============================] - 5s 640us/step - loss: 0.0223 - acc: 0.9760 - val_loss: 0.1798 - val_acc: 0.8060 Epoch 00251: val_acc did not improve from 0.84600 Epoch 252/500 7500/7500 [==============================] - 5s 637us/step - loss: 0.0220 - acc: 0.9769 - val_loss: 0.1847 - val_acc: 0.7968 Epoch 00252: val_acc did not improve from 0.84600 Epoch 253/500 7500/7500 [==============================] - 5s 642us/step - loss: 0.0218 - acc: 0.9768 - val_loss: 0.1833 - val_acc: 0.7972 Epoch 00253: val_acc did not improve from 0.84600 Epoch 254/500 7500/7500 [==============================] - 5s 639us/step - loss: 0.0212 - acc: 0.9777 - val_loss: 0.1821 - val_acc: 0.8056 Epoch 00254: val_acc did not improve from 0.84600 Epoch 255/500 7500/7500 [==============================] - 5s 645us/step - loss: 0.0213 - acc: 0.9773 - val_loss: 0.1853 - val_acc: 0.7964 Epoch 00255: val_acc did not improve from 0.84600 Epoch 256/500 7500/7500 [==============================] - 5s 635us/step - loss: 0.0235 - acc: 0.9747 - val_loss: 0.1822 - val_acc: 0.8008 Epoch 00256: val_acc did not improve from 0.84600 Epoch 257/500 7500/7500 [==============================] - 5s 637us/step - loss: 0.0195 - acc: 0.9800 - val_loss: 0.1908 - val_acc: 0.7948 Epoch 00257: val_acc did not improve from 0.84600 Epoch 258/500 7500/7500 [==============================] - 5s 641us/step - loss: 0.0213 - acc: 0.9783 - val_loss: 0.1841 - val_acc: 0.8016 Epoch 00258: val_acc did not improve from 0.84600 Epoch 259/500 7500/7500 [==============================] - 5s 643us/step - loss: 0.0234 - acc: 0.9747 - val_loss: 0.1837 - val_acc: 0.8028 Epoch 00259: val_acc did not improve from 0.84600 Epoch 260/500 7500/7500 [==============================] - 5s 638us/step - loss: 0.0225 - acc: 0.9760 - val_loss: 0.1893 - val_acc: 0.7980 Epoch 00260: val_acc did not improve from 0.84600 Epoch 261/500 7500/7500 [==============================] - 5s 635us/step - loss: 0.0217 - acc: 0.9771 - val_loss: 0.1844 - val_acc: 0.8000 Epoch 00261: val_acc did not improve from 0.84600 Epoch 262/500 7500/7500 [==============================] - 5s 642us/step - loss: 0.0226 - acc: 0.9763 - val_loss: 0.1840 - val_acc: 0.8032 Epoch 00262: val_acc did not improve from 0.84600 Epoch 263/500 7500/7500 [==============================] - 5s 644us/step - loss: 0.0224 - acc: 0.9761 - val_loss: 0.1836 - val_acc: 0.8004 Epoch 00263: val_acc did not improve from 0.84600 Epoch 264/500 7500/7500 [==============================] - 5s 641us/step - loss: 0.0230 - acc: 0.9753 - val_loss: 0.1819 - val_acc: 0.8040 Epoch 00264: val_acc did not improve from 0.84600 Epoch 265/500 7500/7500 [==============================] - 5s 635us/step - loss: 0.0211 - acc: 0.9785 - val_loss: 0.1891 - val_acc: 0.7984 Epoch 00265: val_acc did not improve from 0.84600 Epoch 266/500 7500/7500 [==============================] - 5s 648us/step - loss: 0.0213 - acc: 0.9783 - val_loss: 0.1865 - val_acc: 0.8012 Epoch 00266: val_acc did not improve from 0.84600 Epoch 267/500 7500/7500 [==============================] - 5s 633us/step - loss: 0.0212 - acc: 0.9772 - val_loss: 0.1886 - val_acc: 0.7984 Epoch 00267: val_acc did not improve from 0.84600 Epoch 268/500 7500/7500 [==============================] - 5s 637us/step - loss: 0.0217 - acc: 0.9771 - val_loss: 0.1813 - val_acc: 0.7984 Epoch 00268: val_acc did not improve from 0.84600 Epoch 269/500 7500/7500 [==============================] - 5s 638us/step - loss: 0.0207 - acc: 0.9784 - val_loss: 0.1836 - val_acc: 0.8008 Epoch 00269: val_acc did not improve from 0.84600 Epoch 270/500 7500/7500 [==============================] - 5s 637us/step - loss: 0.0221 - acc: 0.9772 - val_loss: 0.1711 - val_acc: 0.8200 Epoch 00270: val_acc did not improve from 0.84600 Epoch 271/500 7500/7500 [==============================] - 5s 635us/step - loss: 0.0203 - acc: 0.9791 - val_loss: 0.1800 - val_acc: 0.8064 Epoch 00271: val_acc did not improve from 0.84600 Epoch 272/500 7500/7500 [==============================] - 5s 636us/step - loss: 0.0196 - acc: 0.9803 - val_loss: 0.1817 - val_acc: 0.8028 Epoch 00272: val_acc did not improve from 0.84600 Epoch 273/500 7500/7500 [==============================] - 5s 640us/step - loss: 0.0203 - acc: 0.9787 - val_loss: 0.1884 - val_acc: 0.7984 Epoch 00273: val_acc did not improve from 0.84600 Epoch 274/500 7500/7500 [==============================] - 5s 642us/step - loss: 0.0208 - acc: 0.9784 - val_loss: 0.1779 - val_acc: 0.8084 Epoch 00274: val_acc did not improve from 0.84600 Epoch 275/500 7500/7500 [==============================] - 5s 633us/step - loss: 0.0202 - acc: 0.9787 - val_loss: 0.1840 - val_acc: 0.8084 Epoch 00275: val_acc did not improve from 0.84600 Epoch 276/500 7500/7500 [==============================] - 5s 639us/step - loss: 0.0207 - acc: 0.9779 - val_loss: 0.1832 - val_acc: 0.8036 Epoch 00276: val_acc did not improve from 0.84600 Epoch 277/500 7500/7500 [==============================] - 5s 636us/step - loss: 0.0215 - acc: 0.9768 - val_loss: 0.1786 - val_acc: 0.8092 Epoch 00277: val_acc did not improve from 0.84600 Epoch 278/500 7500/7500 [==============================] - 5s 640us/step - loss: 0.0205 - acc: 0.9787 - val_loss: 0.1822 - val_acc: 0.8040 Epoch 00278: val_acc did not improve from 0.84600 Epoch 279/500 7500/7500 [==============================] - 5s 639us/step - loss: 0.0204 - acc: 0.9791 - val_loss: 0.1827 - val_acc: 0.7992 Epoch 00279: val_acc did not improve from 0.84600 Epoch 280/500 7500/7500 [==============================] - 5s 640us/step - loss: 0.0211 - acc: 0.9779 - val_loss: 0.1806 - val_acc: 0.8044 Epoch 00280: val_acc did not improve from 0.84600 Epoch 281/500 7500/7500 [==============================] - 5s 635us/step - loss: 0.0198 - acc: 0.9795 - val_loss: 0.1790 - val_acc: 0.8100 Epoch 00281: val_acc did not improve from 0.84600 Epoch 282/500 7500/7500 [==============================] - 5s 635us/step - loss: 0.0221 - acc: 0.9773 - val_loss: 0.1820 - val_acc: 0.8016 Epoch 00282: val_acc did not improve from 0.84600 Epoch 283/500 7500/7500 [==============================] - 5s 643us/step - loss: 0.0210 - acc: 0.9779 - val_loss: 0.1792 - val_acc: 0.8096 Epoch 00283: val_acc did not improve from 0.84600 Epoch 284/500 7500/7500 [==============================] - 5s 639us/step - loss: 0.0206 - acc: 0.9777 - val_loss: 0.1793 - val_acc: 0.8072 Epoch 00284: val_acc did not improve from 0.84600 Epoch 285/500 7500/7500 [==============================] - 5s 642us/step - loss: 0.0204 - acc: 0.9788 - val_loss: 0.1822 - val_acc: 0.8028 Epoch 00285: val_acc did not improve from 0.84600 Epoch 286/500 7500/7500 [==============================] - 5s 639us/step - loss: 0.0219 - acc: 0.9768 - val_loss: 0.1849 - val_acc: 0.8020 Epoch 00286: val_acc did not improve from 0.84600 Epoch 287/500 7500/7500 [==============================] - 5s 634us/step - loss: 0.0199 - acc: 0.9791 - val_loss: 0.1804 - val_acc: 0.8092 Epoch 00287: val_acc did not improve from 0.84600 Epoch 288/500 7500/7500 [==============================] - 5s 640us/step - loss: 0.0198 - acc: 0.9793 - val_loss: 0.1922 - val_acc: 0.7960 Epoch 00288: val_acc did not improve from 0.84600 Epoch 289/500 7500/7500 [==============================] - 5s 639us/step - loss: 0.0218 - acc: 0.9771 - val_loss: 0.1848 - val_acc: 0.8008 Epoch 00289: val_acc did not improve from 0.84600 Epoch 290/500 7500/7500 [==============================] - 5s 641us/step - loss: 0.0209 - acc: 0.9783 - val_loss: 0.1808 - val_acc: 0.8044 Epoch 00290: val_acc did not improve from 0.84600 Epoch 291/500 7500/7500 [==============================] - 5s 638us/step - loss: 0.0210 - acc: 0.9773 - val_loss: 0.1805 - val_acc: 0.8076 Epoch 00291: val_acc did not improve from 0.84600 Epoch 292/500 7500/7500 [==============================] - 5s 639us/step - loss: 0.0204 - acc: 0.9787 - val_loss: 0.1846 - val_acc: 0.8000 Epoch 00292: val_acc did not improve from 0.84600 Epoch 293/500 7500/7500 [==============================] - 5s 640us/step - loss: 0.0205 - acc: 0.9783 - val_loss: 0.1906 - val_acc: 0.7936 Epoch 00293: val_acc did not improve from 0.84600 Epoch 294/500 7500/7500 [==============================] - 5s 637us/step - loss: 0.0192 - acc: 0.9804 - val_loss: 0.1862 - val_acc: 0.8016 Epoch 00294: val_acc did not improve from 0.84600 Epoch 295/500 7500/7500 [==============================] - 5s 645us/step - loss: 0.0202 - acc: 0.9791 - val_loss: 0.1802 - val_acc: 0.8060 Epoch 00295: val_acc did not improve from 0.84600 Epoch 296/500 7500/7500 [==============================] - 5s 639us/step - loss: 0.0207 - acc: 0.9776 - val_loss: 0.1866 - val_acc: 0.8000 Epoch 00296: val_acc did not improve from 0.84600 Epoch 297/500 7500/7500 [==============================] - 5s 640us/step - loss: 0.0202 - acc: 0.9791 - val_loss: 0.1783 - val_acc: 0.8092 Epoch 00297: val_acc did not improve from 0.84600 Epoch 298/500 7500/7500 [==============================] - 5s 640us/step - loss: 0.0189 - acc: 0.9803 - val_loss: 0.1804 - val_acc: 0.8080 Epoch 00298: val_acc did not improve from 0.84600 Epoch 299/500 7500/7500 [==============================] - 5s 646us/step - loss: 0.0205 - acc: 0.9780 - val_loss: 0.1825 - val_acc: 0.8016 Epoch 00299: val_acc did not improve from 0.84600 Epoch 300/500 7500/7500 [==============================] - 5s 638us/step - loss: 0.0214 - acc: 0.9773 - val_loss: 0.1839 - val_acc: 0.8012 Epoch 00300: val_acc did not improve from 0.84600 Epoch 301/500 7500/7500 [==============================] - 5s 638us/step - loss: 0.0200 - acc: 0.9783 - val_loss: 0.1836 - val_acc: 0.8036 Epoch 00301: val_acc did not improve from 0.84600 Epoch 302/500 7500/7500 [==============================] - 5s 640us/step - loss: 0.0202 - acc: 0.9788 - val_loss: 0.1854 - val_acc: 0.8052 Epoch 00302: val_acc did not improve from 0.84600 Epoch 303/500 7500/7500 [==============================] - 5s 638us/step - loss: 0.0195 - acc: 0.9797 - val_loss: 0.1833 - val_acc: 0.8048 Epoch 00303: val_acc did not improve from 0.84600 Epoch 304/500 7500/7500 [==============================] - 5s 644us/step - loss: 0.0200 - acc: 0.9791 - val_loss: 0.1858 - val_acc: 0.8004 Epoch 00304: val_acc did not improve from 0.84600 Epoch 305/500 7500/7500 [==============================] - 5s 640us/step - loss: 0.0210 - acc: 0.9779 - val_loss: 0.1840 - val_acc: 0.8044 Epoch 00305: val_acc did not improve from 0.84600 Epoch 306/500 7500/7500 [==============================] - 5s 636us/step - loss: 0.0190 - acc: 0.9803 - val_loss: 0.1796 - val_acc: 0.8080 Epoch 00306: val_acc did not improve from 0.84600 Epoch 307/500 7500/7500 [==============================] - 5s 638us/step - loss: 0.0208 - acc: 0.9776 - val_loss: 0.1860 - val_acc: 0.7996 Epoch 00307: val_acc did not improve from 0.84600 Epoch 308/500 7500/7500 [==============================] - 5s 641us/step - loss: 0.0183 - acc: 0.9812 - val_loss: 0.1894 - val_acc: 0.7960 Epoch 00308: val_acc did not improve from 0.84600 Epoch 309/500 7500/7500 [==============================] - 5s 634us/step - loss: 0.0199 - acc: 0.9787 - val_loss: 0.1833 - val_acc: 0.8052 Epoch 00309: val_acc did not improve from 0.84600 Epoch 310/500 7500/7500 [==============================] - 5s 637us/step - loss: 0.0197 - acc: 0.9791 - val_loss: 0.1868 - val_acc: 0.7984 Epoch 00310: val_acc did not improve from 0.84600 Epoch 311/500 7500/7500 [==============================] - 5s 635us/step - loss: 0.0189 - acc: 0.9805 - val_loss: 0.1883 - val_acc: 0.8000 Epoch 00311: val_acc did not improve from 0.84600 Epoch 312/500 7500/7500 [==============================] - 5s 639us/step - loss: 0.0204 - acc: 0.9783 - val_loss: 0.1832 - val_acc: 0.8036 Epoch 00312: val_acc did not improve from 0.84600 Epoch 313/500 7500/7500 [==============================] - 5s 643us/step - loss: 0.0191 - acc: 0.9801 - val_loss: 0.1843 - val_acc: 0.8004 Epoch 00313: val_acc did not improve from 0.84600 Epoch 314/500 7500/7500 [==============================] - 5s 639us/step - loss: 0.0189 - acc: 0.9805 - val_loss: 0.1780 - val_acc: 0.8088 Epoch 00314: val_acc did not improve from 0.84600 Epoch 315/500 7500/7500 [==============================] - 5s 637us/step - loss: 0.0185 - acc: 0.9808 - val_loss: 0.1871 - val_acc: 0.8004 Epoch 00315: val_acc did not improve from 0.84600 Epoch 316/500 7500/7500 [==============================] - 5s 639us/step - loss: 0.0202 - acc: 0.9785 - val_loss: 0.1897 - val_acc: 0.7948 Epoch 00316: val_acc did not improve from 0.84600 Epoch 317/500 7500/7500 [==============================] - 5s 640us/step - loss: 0.0197 - acc: 0.9795 - val_loss: 0.1841 - val_acc: 0.8016 Epoch 00317: val_acc did not improve from 0.84600 Epoch 318/500 7500/7500 [==============================] - 5s 634us/step - loss: 0.0193 - acc: 0.9799 - val_loss: 0.1841 - val_acc: 0.8040 Epoch 00318: val_acc did not improve from 0.84600 Epoch 319/500 7500/7500 [==============================] - 5s 640us/step - loss: 0.0215 - acc: 0.9775 - val_loss: 0.1829 - val_acc: 0.8060 Epoch 00319: val_acc did not improve from 0.84600 Epoch 320/500 7500/7500 [==============================] - 5s 641us/step - loss: 0.0211 - acc: 0.9781 - val_loss: 0.1874 - val_acc: 0.8016 Epoch 00320: val_acc did not improve from 0.84600 Epoch 321/500 7500/7500 [==============================] - 5s 639us/step - loss: 0.0207 - acc: 0.9784 - val_loss: 0.1862 - val_acc: 0.7984 Epoch 00321: val_acc did not improve from 0.84600 Epoch 322/500 7500/7500 [==============================] - 5s 639us/step - loss: 0.0198 - acc: 0.9789 - val_loss: 0.1906 - val_acc: 0.8000 Epoch 00322: val_acc did not improve from 0.84600 Epoch 323/500 7500/7500 [==============================] - 5s 640us/step - loss: 0.0190 - acc: 0.9796 - val_loss: 0.1890 - val_acc: 0.7992 Epoch 00323: val_acc did not improve from 0.84600 Epoch 324/500 7500/7500 [==============================] - 5s 638us/step - loss: 0.0183 - acc: 0.9808 - val_loss: 0.1905 - val_acc: 0.7996 Epoch 00324: val_acc did not improve from 0.84600 Epoch 325/500 7500/7500 [==============================] - 5s 638us/step - loss: 0.0188 - acc: 0.9807 - val_loss: 0.1797 - val_acc: 0.8068 Epoch 00325: val_acc did not improve from 0.84600 Epoch 326/500 7500/7500 [==============================] - 5s 642us/step - loss: 0.0190 - acc: 0.9803 - val_loss: 0.1876 - val_acc: 0.7980 Epoch 00326: val_acc did not improve from 0.84600 Epoch 327/500 7500/7500 [==============================] - 5s 640us/step - loss: 0.0192 - acc: 0.9796 - val_loss: 0.1882 - val_acc: 0.7968 Epoch 00327: val_acc did not improve from 0.84600 Epoch 328/500 7500/7500 [==============================] - 5s 639us/step - loss: 0.0193 - acc: 0.9801 - val_loss: 0.1841 - val_acc: 0.8024 Epoch 00328: val_acc did not improve from 0.84600 Epoch 329/500 7500/7500 [==============================] - 5s 635us/step - loss: 0.0182 - acc: 0.9811 - val_loss: 0.1814 - val_acc: 0.8040 Epoch 00329: val_acc did not improve from 0.84600 Epoch 330/500 7500/7500 [==============================] - 5s 637us/step - loss: 0.0185 - acc: 0.9808 - val_loss: 0.1899 - val_acc: 0.7988 Epoch 00330: val_acc did not improve from 0.84600 Epoch 331/500 7500/7500 [==============================] - 5s 642us/step - loss: 0.0202 - acc: 0.9797 - val_loss: 0.1869 - val_acc: 0.8004 Epoch 00331: val_acc did not improve from 0.84600 Epoch 332/500 7500/7500 [==============================] - 5s 637us/step - loss: 0.0185 - acc: 0.9809 - val_loss: 0.1874 - val_acc: 0.7984 Epoch 00332: val_acc did not improve from 0.84600 Epoch 333/500 7500/7500 [==============================] - 5s 638us/step - loss: 0.0176 - acc: 0.9816 - val_loss: 0.1782 - val_acc: 0.8092 Epoch 00333: val_acc did not improve from 0.84600 Epoch 334/500 7500/7500 [==============================] - 5s 642us/step - loss: 0.0195 - acc: 0.9793 - val_loss: 0.1795 - val_acc: 0.8100 Epoch 00334: val_acc did not improve from 0.84600 Epoch 335/500 7500/7500 [==============================] - 5s 641us/step - loss: 0.0180 - acc: 0.9808 - val_loss: 0.1855 - val_acc: 0.8032 Epoch 00335: val_acc did not improve from 0.84600 Epoch 336/500 7500/7500 [==============================] - 5s 639us/step - loss: 0.0200 - acc: 0.9789 - val_loss: 0.1875 - val_acc: 0.8008 Epoch 00336: val_acc did not improve from 0.84600 Epoch 337/500 7500/7500 [==============================] - 5s 643us/step - loss: 0.0197 - acc: 0.9789 - val_loss: 0.1881 - val_acc: 0.7960 Epoch 00337: val_acc did not improve from 0.84600 Epoch 338/500 7500/7500 [==============================] - 5s 639us/step - loss: 0.0181 - acc: 0.9811 - val_loss: 0.1873 - val_acc: 0.7976 Epoch 00338: val_acc did not improve from 0.84600 Epoch 339/500 7500/7500 [==============================] - 5s 636us/step - loss: 0.0180 - acc: 0.9809 - val_loss: 0.1907 - val_acc: 0.7952 Epoch 00339: val_acc did not improve from 0.84600 Epoch 340/500 7500/7500 [==============================] - 5s 639us/step - loss: 0.0196 - acc: 0.9791 - val_loss: 0.1836 - val_acc: 0.8044 Epoch 00340: val_acc did not improve from 0.84600 Epoch 341/500 7500/7500 [==============================] - 5s 636us/step - loss: 0.0186 - acc: 0.9807 - val_loss: 0.1777 - val_acc: 0.8116 Epoch 00341: val_acc did not improve from 0.84600 Epoch 342/500 7500/7500 [==============================] - 5s 638us/step - loss: 0.0189 - acc: 0.9801 - val_loss: 0.1892 - val_acc: 0.7936 Epoch 00342: val_acc did not improve from 0.84600 Epoch 343/500 7500/7500 [==============================] - 5s 644us/step - loss: 0.0185 - acc: 0.9808 - val_loss: 0.1858 - val_acc: 0.8008 Epoch 00343: val_acc did not improve from 0.84600 Epoch 344/500 7500/7500 [==============================] - 5s 635us/step - loss: 0.0191 - acc: 0.9799 - val_loss: 0.1825 - val_acc: 0.8060 Epoch 00344: val_acc did not improve from 0.84600 Epoch 345/500 7500/7500 [==============================] - 5s 638us/step - loss: 0.0189 - acc: 0.9800 - val_loss: 0.1863 - val_acc: 0.8000 Epoch 00345: val_acc did not improve from 0.84600 Epoch 346/500 7500/7500 [==============================] - 5s 636us/step - loss: 0.0183 - acc: 0.9811 - val_loss: 0.1845 - val_acc: 0.8040 Epoch 00346: val_acc did not improve from 0.84600 Epoch 347/500 7500/7500 [==============================] - 5s 641us/step - loss: 0.0185 - acc: 0.9800 - val_loss: 0.1767 - val_acc: 0.8080 Epoch 00347: val_acc did not improve from 0.84600 Epoch 348/500 7500/7500 [==============================] - 5s 638us/step - loss: 0.0176 - acc: 0.9817 - val_loss: 0.1776 - val_acc: 0.8100 Epoch 00348: val_acc did not improve from 0.84600 Epoch 349/500 7500/7500 [==============================] - 5s 635us/step - loss: 0.0188 - acc: 0.9804 - val_loss: 0.1796 - val_acc: 0.8088 Epoch 00349: val_acc did not improve from 0.84600 Epoch 350/500 7500/7500 [==============================] - 5s 640us/step - loss: 0.0179 - acc: 0.9813 - val_loss: 0.1819 - val_acc: 0.8060 Epoch 00350: val_acc did not improve from 0.84600 Epoch 351/500 7500/7500 [==============================] - 5s 640us/step - loss: 0.0174 - acc: 0.9821 - val_loss: 0.1833 - val_acc: 0.8048 Epoch 00351: val_acc did not improve from 0.84600 Epoch 352/500 7500/7500 [==============================] - 5s 639us/step - loss: 0.0167 - acc: 0.9831 - val_loss: 0.1824 - val_acc: 0.8024 Epoch 00352: val_acc did not improve from 0.84600 Epoch 353/500 7500/7500 [==============================] - 5s 636us/step - loss: 0.0183 - acc: 0.9805 - val_loss: 0.1802 - val_acc: 0.8088 Epoch 00353: val_acc did not improve from 0.84600 Epoch 354/500 7500/7500 [==============================] - 5s 640us/step - loss: 0.0172 - acc: 0.9824 - val_loss: 0.1810 - val_acc: 0.8064 Epoch 00354: val_acc did not improve from 0.84600 Epoch 355/500 7500/7500 [==============================] - 5s 641us/step - loss: 0.0187 - acc: 0.9803 - val_loss: 0.1797 - val_acc: 0.8076 Epoch 00355: val_acc did not improve from 0.84600 Epoch 356/500 7500/7500 [==============================] - 5s 635us/step - loss: 0.0180 - acc: 0.9811 - val_loss: 0.1849 - val_acc: 0.8028 Epoch 00356: val_acc did not improve from 0.84600 Epoch 357/500 7500/7500 [==============================] - 5s 640us/step - loss: 0.0190 - acc: 0.9804 - val_loss: 0.1891 - val_acc: 0.8004 Epoch 00357: val_acc did not improve from 0.84600 Epoch 358/500 7500/7500 [==============================] - 5s 644us/step - loss: 0.0195 - acc: 0.9792 - val_loss: 0.1853 - val_acc: 0.8032 Epoch 00358: val_acc did not improve from 0.84600 Epoch 359/500 7500/7500 [==============================] - 5s 640us/step - loss: 0.0173 - acc: 0.9819 - val_loss: 0.1864 - val_acc: 0.8016 Epoch 00359: val_acc did not improve from 0.84600 Epoch 360/500 7500/7500 [==============================] - 5s 653us/step - loss: 0.0180 - acc: 0.9820 - val_loss: 0.1813 - val_acc: 0.8068 Epoch 00360: val_acc did not improve from 0.84600 Epoch 361/500 7500/7500 [==============================] - 5s 682us/step - loss: 0.0176 - acc: 0.9821 - val_loss: 0.1809 - val_acc: 0.8048 Epoch 00361: val_acc did not improve from 0.84600 Epoch 362/500 7500/7500 [==============================] - 5s 698us/step - loss: 0.0187 - acc: 0.9803 - val_loss: 0.1894 - val_acc: 0.7984 Epoch 00362: val_acc did not improve from 0.84600 Epoch 363/500 7500/7500 [==============================] - 5s 693us/step - loss: 0.0178 - acc: 0.9819 - val_loss: 0.1963 - val_acc: 0.7904 Epoch 00363: val_acc did not improve from 0.84600 Epoch 364/500 7500/7500 [==============================] - 5s 644us/step - loss: 0.0167 - acc: 0.9827 - val_loss: 0.1868 - val_acc: 0.8000 Epoch 00364: val_acc did not improve from 0.84600 Epoch 365/500 7500/7500 [==============================] - 5s 646us/step - loss: 0.0185 - acc: 0.9805 - val_loss: 0.1828 - val_acc: 0.8056 Epoch 00365: val_acc did not improve from 0.84600 Epoch 366/500 7500/7500 [==============================] - 5s 643us/step - loss: 0.0174 - acc: 0.9820 - val_loss: 0.1905 - val_acc: 0.7916 Epoch 00366: val_acc did not improve from 0.84600 Epoch 367/500 7500/7500 [==============================] - 5s 641us/step - loss: 0.0190 - acc: 0.9805 - val_loss: 0.1823 - val_acc: 0.8076 Epoch 00367: val_acc did not improve from 0.84600 Epoch 368/500 7500/7500 [==============================] - 5s 636us/step - loss: 0.0182 - acc: 0.9812 - val_loss: 0.1856 - val_acc: 0.8040 Epoch 00368: val_acc did not improve from 0.84600 Epoch 369/500 7500/7500 [==============================] - 5s 634us/step - loss: 0.0192 - acc: 0.9803 - val_loss: 0.1892 - val_acc: 0.7964 Epoch 00369: val_acc did not improve from 0.84600 Epoch 370/500 7500/7500 [==============================] - 5s 636us/step - loss: 0.0182 - acc: 0.9811 - val_loss: 0.1829 - val_acc: 0.8028 Epoch 00370: val_acc did not improve from 0.84600 Epoch 371/500 7500/7500 [==============================] - 5s 636us/step - loss: 0.0176 - acc: 0.9821 - val_loss: 0.1935 - val_acc: 0.7940 Epoch 00371: val_acc did not improve from 0.84600 Epoch 372/500 7500/7500 [==============================] - 5s 637us/step - loss: 0.0177 - acc: 0.9819 - val_loss: 0.1812 - val_acc: 0.8060 Epoch 00372: val_acc did not improve from 0.84600 Epoch 373/500 7500/7500 [==============================] - 5s 633us/step - loss: 0.0176 - acc: 0.9821 - val_loss: 0.1796 - val_acc: 0.8092 Epoch 00373: val_acc did not improve from 0.84600 Epoch 374/500 7500/7500 [==============================] - 5s 633us/step - loss: 0.0185 - acc: 0.9801 - val_loss: 0.1896 - val_acc: 0.7972 Epoch 00374: val_acc did not improve from 0.84600 Epoch 375/500 7500/7500 [==============================] - 5s 636us/step - loss: 0.0186 - acc: 0.9805 - val_loss: 0.1850 - val_acc: 0.8032 Epoch 00375: val_acc did not improve from 0.84600 Epoch 376/500 7500/7500 [==============================] - 5s 635us/step - loss: 0.0168 - acc: 0.9828 - val_loss: 0.1793 - val_acc: 0.8060 Epoch 00376: val_acc did not improve from 0.84600 Epoch 377/500 7500/7500 [==============================] - 5s 634us/step - loss: 0.0177 - acc: 0.9816 - val_loss: 0.1836 - val_acc: 0.8016 Epoch 00377: val_acc did not improve from 0.84600 Epoch 378/500 7500/7500 [==============================] - 5s 636us/step - loss: 0.0178 - acc: 0.9812 - val_loss: 0.1855 - val_acc: 0.8024 Epoch 00378: val_acc did not improve from 0.84600 Epoch 379/500 7500/7500 [==============================] - 5s 636us/step - loss: 0.0173 - acc: 0.9820 - val_loss: 0.1878 - val_acc: 0.7972 Epoch 00379: val_acc did not improve from 0.84600 Epoch 380/500 7500/7500 [==============================] - 5s 630us/step - loss: 0.0160 - acc: 0.9833 - val_loss: 0.1824 - val_acc: 0.8060 Epoch 00380: val_acc did not improve from 0.84600 Epoch 381/500 7500/7500 [==============================] - 5s 635us/step - loss: 0.0171 - acc: 0.9823 - val_loss: 0.1873 - val_acc: 0.8020 Epoch 00381: val_acc did not improve from 0.84600 Epoch 382/500 7500/7500 [==============================] - 5s 638us/step - loss: 0.0174 - acc: 0.9819 - val_loss: 0.1784 - val_acc: 0.8124 Epoch 00382: val_acc did not improve from 0.84600 Epoch 383/500 7500/7500 [==============================] - 5s 636us/step - loss: 0.0167 - acc: 0.9821 - val_loss: 0.1825 - val_acc: 0.8080 Epoch 00383: val_acc did not improve from 0.84600 Epoch 384/500 7500/7500 [==============================] - 5s 634us/step - loss: 0.0175 - acc: 0.9821 - val_loss: 0.1875 - val_acc: 0.8004 Epoch 00384: val_acc did not improve from 0.84600 Epoch 385/500 7500/7500 [==============================] - 5s 637us/step - loss: 0.0184 - acc: 0.9804 - val_loss: 0.1847 - val_acc: 0.8036 Epoch 00385: val_acc did not improve from 0.84600 Epoch 386/500 7500/7500 [==============================] - 5s 638us/step - loss: 0.0171 - acc: 0.9824 - val_loss: 0.1858 - val_acc: 0.8020 Epoch 00386: val_acc did not improve from 0.84600 Epoch 387/500 7500/7500 [==============================] - 5s 631us/step - loss: 0.0170 - acc: 0.9819 - val_loss: 0.1772 - val_acc: 0.8108 Epoch 00387: val_acc did not improve from 0.84600 Epoch 388/500 7500/7500 [==============================] - 5s 637us/step - loss: 0.0188 - acc: 0.9804 - val_loss: 0.1814 - val_acc: 0.8076 Epoch 00388: val_acc did not improve from 0.84600 Epoch 389/500 7500/7500 [==============================] - 5s 640us/step - loss: 0.0172 - acc: 0.9821 - val_loss: 0.1850 - val_acc: 0.8016 Epoch 00389: val_acc did not improve from 0.84600 Epoch 390/500 7500/7500 [==============================] - 5s 634us/step - loss: 0.0176 - acc: 0.9812 - val_loss: 0.1817 - val_acc: 0.8068 Epoch 00390: val_acc did not improve from 0.84600 Epoch 391/500 7500/7500 [==============================] - 5s 638us/step - loss: 0.0171 - acc: 0.9823 - val_loss: 0.1837 - val_acc: 0.8028 Epoch 00391: val_acc did not improve from 0.84600 Epoch 392/500 7500/7500 [==============================] - 5s 637us/step - loss: 0.0163 - acc: 0.9833 - val_loss: 0.1839 - val_acc: 0.8032 Epoch 00392: val_acc did not improve from 0.84600 Epoch 393/500 7500/7500 [==============================] - 5s 631us/step - loss: 0.0175 - acc: 0.9816 - val_loss: 0.1843 - val_acc: 0.8044 Epoch 00393: val_acc did not improve from 0.84600 Epoch 394/500 7500/7500 [==============================] - 5s 633us/step - loss: 0.0172 - acc: 0.9821 - val_loss: 0.1850 - val_acc: 0.8048 Epoch 00394: val_acc did not improve from 0.84600 Epoch 395/500 7500/7500 [==============================] - 5s 637us/step - loss: 0.0170 - acc: 0.9820 - val_loss: 0.1838 - val_acc: 0.8000 Epoch 00395: val_acc did not improve from 0.84600 Epoch 396/500 7500/7500 [==============================] - 5s 636us/step - loss: 0.0175 - acc: 0.9817 - val_loss: 0.1830 - val_acc: 0.8076 Epoch 00396: val_acc did not improve from 0.84600 Epoch 397/500 7500/7500 [==============================] - 5s 633us/step - loss: 0.0159 - acc: 0.9839 - val_loss: 0.1865 - val_acc: 0.8020 Epoch 00397: val_acc did not improve from 0.84600 Epoch 398/500 7500/7500 [==============================] - 5s 634us/step - loss: 0.0176 - acc: 0.9819 - val_loss: 0.1822 - val_acc: 0.8064 Epoch 00398: val_acc did not improve from 0.84600 Epoch 399/500 7500/7500 [==============================] - 5s 632us/step - loss: 0.0157 - acc: 0.9836 - val_loss: 0.1855 - val_acc: 0.8016 Epoch 00399: val_acc did not improve from 0.84600 Epoch 400/500 7500/7500 [==============================] - 5s 637us/step - loss: 0.0163 - acc: 0.9832 - val_loss: 0.1815 - val_acc: 0.8068 Epoch 00400: val_acc did not improve from 0.84600 Epoch 401/500 7500/7500 [==============================] - 5s 640us/step - loss: 0.0183 - acc: 0.9808 - val_loss: 0.1804 - val_acc: 0.8072 Epoch 00401: val_acc did not improve from 0.84600 Epoch 402/500 7500/7500 [==============================] - 5s 632us/step - loss: 0.0165 - acc: 0.9831 - val_loss: 0.1947 - val_acc: 0.7932 Epoch 00402: val_acc did not improve from 0.84600 Epoch 403/500 7500/7500 [==============================] - 5s 631us/step - loss: 0.0173 - acc: 0.9820 - val_loss: 0.1845 - val_acc: 0.8048 Epoch 00403: val_acc did not improve from 0.84600 Epoch 404/500 7500/7500 [==============================] - 5s 631us/step - loss: 0.0172 - acc: 0.9820 - val_loss: 0.1794 - val_acc: 0.8108 Epoch 00404: val_acc did not improve from 0.84600 Epoch 405/500 7500/7500 [==============================] - 5s 634us/step - loss: 0.0171 - acc: 0.9823 - val_loss: 0.1818 - val_acc: 0.8052 Epoch 00405: val_acc did not improve from 0.84600 Epoch 406/500 7500/7500 [==============================] - 5s 638us/step - loss: 0.0181 - acc: 0.9808 - val_loss: 0.1904 - val_acc: 0.7972 Epoch 00406: val_acc did not improve from 0.84600 Epoch 407/500 7500/7500 [==============================] - 5s 638us/step - loss: 0.0148 - acc: 0.9853 - val_loss: 0.1842 - val_acc: 0.8000 Epoch 00407: val_acc did not improve from 0.84600 Epoch 408/500 7500/7500 [==============================] - 5s 636us/step - loss: 0.0169 - acc: 0.9825 - val_loss: 0.1837 - val_acc: 0.8036 Epoch 00408: val_acc did not improve from 0.84600 Epoch 409/500 7500/7500 [==============================] - 5s 633us/step - loss: 0.0164 - acc: 0.9832 - val_loss: 0.1893 - val_acc: 0.7984 Epoch 00409: val_acc did not improve from 0.84600 Epoch 410/500 7500/7500 [==============================] - 5s 632us/step - loss: 0.0182 - acc: 0.9808 - val_loss: 0.1777 - val_acc: 0.8124 Epoch 00410: val_acc did not improve from 0.84600 Epoch 411/500 7500/7500 [==============================] - 5s 633us/step - loss: 0.0183 - acc: 0.9811 - val_loss: 0.1832 - val_acc: 0.8048 Epoch 00411: val_acc did not improve from 0.84600 Epoch 412/500 7500/7500 [==============================] - 5s 637us/step - loss: 0.0166 - acc: 0.9833 - val_loss: 0.1847 - val_acc: 0.8032 Epoch 00412: val_acc did not improve from 0.84600 Epoch 413/500 7500/7500 [==============================] - 5s 632us/step - loss: 0.0168 - acc: 0.9824 - val_loss: 0.1864 - val_acc: 0.8008 Epoch 00413: val_acc did not improve from 0.84600 Epoch 414/500 7500/7500 [==============================] - 5s 633us/step - loss: 0.0176 - acc: 0.9815 - val_loss: 0.1954 - val_acc: 0.7880 Epoch 00414: val_acc did not improve from 0.84600 Epoch 415/500 7500/7500 [==============================] - 5s 634us/step - loss: 0.0171 - acc: 0.9821 - val_loss: 0.1945 - val_acc: 0.7952 Epoch 00415: val_acc did not improve from 0.84600 Epoch 416/500 7500/7500 [==============================] - 5s 635us/step - loss: 0.0175 - acc: 0.9820 - val_loss: 0.1899 - val_acc: 0.7984 Epoch 00416: val_acc did not improve from 0.84600 Epoch 417/500 7500/7500 [==============================] - 5s 634us/step - loss: 0.0162 - acc: 0.9831 - val_loss: 0.1823 - val_acc: 0.8064 Epoch 00417: val_acc did not improve from 0.84600 Epoch 418/500 7500/7500 [==============================] - 5s 673us/step - loss: 0.0168 - acc: 0.9819 - val_loss: 0.1892 - val_acc: 0.7988 Epoch 00418: val_acc did not improve from 0.84600 Epoch 419/500 7500/7500 [==============================] - 5s 654us/step - loss: 0.0162 - acc: 0.9832 - val_loss: 0.1879 - val_acc: 0.8028 Epoch 00419: val_acc did not improve from 0.84600 Epoch 420/500 7500/7500 [==============================] - 5s 650us/step - loss: 0.0161 - acc: 0.9833 - val_loss: 0.1841 - val_acc: 0.8028 Epoch 00420: val_acc did not improve from 0.84600 Epoch 421/500 7500/7500 [==============================] - 5s 640us/step - loss: 0.0175 - acc: 0.9813 - val_loss: 0.1891 - val_acc: 0.7964 Epoch 00421: val_acc did not improve from 0.84600 Epoch 422/500 7500/7500 [==============================] - 5s 634us/step - loss: 0.0167 - acc: 0.9825 - val_loss: 0.1795 - val_acc: 0.8064 Epoch 00422: val_acc did not improve from 0.84600 Epoch 423/500 7500/7500 [==============================] - 5s 634us/step - loss: 0.0158 - acc: 0.9833 - val_loss: 0.1854 - val_acc: 0.8016 Epoch 00423: val_acc did not improve from 0.84600 Epoch 424/500 7500/7500 [==============================] - 5s 644us/step - loss: 0.0156 - acc: 0.9839 - val_loss: 0.1833 - val_acc: 0.8064 Epoch 00424: val_acc did not improve from 0.84600 Epoch 425/500 7500/7500 [==============================] - 5s 639us/step - loss: 0.0159 - acc: 0.9835 - val_loss: 0.1884 - val_acc: 0.7960 Epoch 00425: val_acc did not improve from 0.84600 Epoch 426/500 7500/7500 [==============================] - 5s 639us/step - loss: 0.0163 - acc: 0.9829 - val_loss: 0.1849 - val_acc: 0.8008 Epoch 00426: val_acc did not improve from 0.84600 Epoch 427/500 7500/7500 [==============================] - 5s 635us/step - loss: 0.0158 - acc: 0.9839 - val_loss: 0.1873 - val_acc: 0.8008 Epoch 00427: val_acc did not improve from 0.84600 Epoch 428/500 7500/7500 [==============================] - 5s 637us/step - loss: 0.0171 - acc: 0.9820 - val_loss: 0.1796 - val_acc: 0.8116 Epoch 00428: val_acc did not improve from 0.84600 Epoch 429/500 7500/7500 [==============================] - 5s 644us/step - loss: 0.0168 - acc: 0.9820 - val_loss: 0.1874 - val_acc: 0.8020 Epoch 00429: val_acc did not improve from 0.84600 Epoch 430/500 7500/7500 [==============================] - 5s 636us/step - loss: 0.0173 - acc: 0.9820 - val_loss: 0.1861 - val_acc: 0.7996 Epoch 00430: val_acc did not improve from 0.84600 Epoch 431/500 7500/7500 [==============================] - 5s 637us/step - loss: 0.0160 - acc: 0.9835 - val_loss: 0.1883 - val_acc: 0.7996 Epoch 00431: val_acc did not improve from 0.84600 Epoch 432/500 7500/7500 [==============================] - 5s 641us/step - loss: 0.0161 - acc: 0.9833 - val_loss: 0.1916 - val_acc: 0.7960 Epoch 00432: val_acc did not improve from 0.84600 Epoch 433/500 7500/7500 [==============================] - 5s 640us/step - loss: 0.0166 - acc: 0.9821 - val_loss: 0.1878 - val_acc: 0.7956 Epoch 00433: val_acc did not improve from 0.84600 Epoch 434/500 7500/7500 [==============================] - 5s 631us/step - loss: 0.0156 - acc: 0.9836 - val_loss: 0.1861 - val_acc: 0.7996 Epoch 00434: val_acc did not improve from 0.84600 Epoch 435/500 7500/7500 [==============================] - 5s 639us/step - loss: 0.0156 - acc: 0.9835 - val_loss: 0.1864 - val_acc: 0.8032 Epoch 00435: val_acc did not improve from 0.84600 Epoch 436/500 7500/7500 [==============================] - 5s 636us/step - loss: 0.0158 - acc: 0.9832 - val_loss: 0.1852 - val_acc: 0.8044 Epoch 00436: val_acc did not improve from 0.84600 Epoch 437/500 7500/7500 [==============================] - 5s 638us/step - loss: 0.0150 - acc: 0.9845 - val_loss: 0.1949 - val_acc: 0.7928 Epoch 00437: val_acc did not improve from 0.84600 Epoch 438/500 7500/7500 [==============================] - 5s 633us/step - loss: 0.0152 - acc: 0.9845 - val_loss: 0.1939 - val_acc: 0.7956 Epoch 00438: val_acc did not improve from 0.84600 Epoch 439/500 7500/7500 [==============================] - 5s 634us/step - loss: 0.0149 - acc: 0.9851 - val_loss: 0.1868 - val_acc: 0.8032 Epoch 00439: val_acc did not improve from 0.84600 Epoch 440/500 7500/7500 [==============================] - 5s 636us/step - loss: 0.0159 - acc: 0.9836 - val_loss: 0.1917 - val_acc: 0.7948 Epoch 00440: val_acc did not improve from 0.84600 Epoch 441/500 7500/7500 [==============================] - 5s 640us/step - loss: 0.0150 - acc: 0.9847 - val_loss: 0.1905 - val_acc: 0.7972 Epoch 00441: val_acc did not improve from 0.84600 Epoch 442/500 7500/7500 [==============================] - 5s 639us/step - loss: 0.0163 - acc: 0.9827 - val_loss: 0.1894 - val_acc: 0.7956 Epoch 00442: val_acc did not improve from 0.84600 Epoch 443/500 7500/7500 [==============================] - 5s 631us/step - loss: 0.0152 - acc: 0.9845 - val_loss: 0.1906 - val_acc: 0.7960 Epoch 00443: val_acc did not improve from 0.84600 Epoch 444/500 7500/7500 [==============================] - 5s 633us/step - loss: 0.0156 - acc: 0.9839 - val_loss: 0.1898 - val_acc: 0.7980 Epoch 00444: val_acc did not improve from 0.84600 Epoch 445/500 7500/7500 [==============================] - 5s 636us/step - loss: 0.0146 - acc: 0.9849 - val_loss: 0.1866 - val_acc: 0.8012 Epoch 00445: val_acc did not improve from 0.84600 Epoch 446/500 7500/7500 [==============================] - 5s 639us/step - loss: 0.0158 - acc: 0.9837 - val_loss: 0.1841 - val_acc: 0.8036 Epoch 00446: val_acc did not improve from 0.84600 Epoch 447/500 7500/7500 [==============================] - 5s 636us/step - loss: 0.0150 - acc: 0.9843 - val_loss: 0.1844 - val_acc: 0.8020 Epoch 00447: val_acc did not improve from 0.84600 Epoch 448/500 7500/7500 [==============================] - 5s 634us/step - loss: 0.0153 - acc: 0.9844 - val_loss: 0.1901 - val_acc: 0.7992 Epoch 00448: val_acc did not improve from 0.84600 Epoch 449/500 7500/7500 [==============================] - 5s 636us/step - loss: 0.0170 - acc: 0.9820 - val_loss: 0.1875 - val_acc: 0.8016 Epoch 00449: val_acc did not improve from 0.84600 Epoch 450/500 7500/7500 [==============================] - 5s 634us/step - loss: 0.0155 - acc: 0.9835 - val_loss: 0.1931 - val_acc: 0.7940 Epoch 00450: val_acc did not improve from 0.84600 Epoch 451/500 7500/7500 [==============================] - 5s 637us/step - loss: 0.0171 - acc: 0.9820 - val_loss: 0.1829 - val_acc: 0.8056 Epoch 00451: val_acc did not improve from 0.84600 Epoch 452/500 7500/7500 [==============================] - 5s 632us/step - loss: 0.0154 - acc: 0.9835 - val_loss: 0.1877 - val_acc: 0.7992 Epoch 00452: val_acc did not improve from 0.84600 Epoch 453/500 7500/7500 [==============================] - 5s 634us/step - loss: 0.0157 - acc: 0.9839 - val_loss: 0.1910 - val_acc: 0.7956 Epoch 00453: val_acc did not improve from 0.84600 Epoch 454/500 7500/7500 [==============================] - 5s 630us/step - loss: 0.0161 - acc: 0.9832 - val_loss: 0.1934 - val_acc: 0.7936 Epoch 00454: val_acc did not improve from 0.84600 Epoch 455/500 7500/7500 [==============================] - 5s 638us/step - loss: 0.0151 - acc: 0.9843 - val_loss: 0.1867 - val_acc: 0.8036 Epoch 00455: val_acc did not improve from 0.84600 Epoch 456/500 7500/7500 [==============================] - 5s 637us/step - loss: 0.0160 - acc: 0.9837 - val_loss: 0.1876 - val_acc: 0.8028 Epoch 00456: val_acc did not improve from 0.84600 Epoch 457/500 7500/7500 [==============================] - 5s 634us/step - loss: 0.0161 - acc: 0.9829 - val_loss: 0.1930 - val_acc: 0.7940 Epoch 00457: val_acc did not improve from 0.84600 Epoch 458/500 7500/7500 [==============================] - 5s 634us/step - loss: 0.0163 - acc: 0.9835 - val_loss: 0.1870 - val_acc: 0.7988 Epoch 00458: val_acc did not improve from 0.84600 Epoch 459/500 7500/7500 [==============================] - 5s 634us/step - loss: 0.0152 - acc: 0.9845 - val_loss: 0.1873 - val_acc: 0.8008 Epoch 00459: val_acc did not improve from 0.84600 Epoch 460/500 7500/7500 [==============================] - 5s 634us/step - loss: 0.0146 - acc: 0.9849 - val_loss: 0.1938 - val_acc: 0.7952 Epoch 00460: val_acc did not improve from 0.84600 Epoch 461/500 7500/7500 [==============================] - 5s 634us/step - loss: 0.0156 - acc: 0.9835 - val_loss: 0.1809 - val_acc: 0.8092 Epoch 00461: val_acc did not improve from 0.84600 Epoch 462/500 7500/7500 [==============================] - 5s 637us/step - loss: 0.0170 - acc: 0.9817 - val_loss: 0.1875 - val_acc: 0.8024 Epoch 00462: val_acc did not improve from 0.84600 Epoch 463/500 7500/7500 [==============================] - 5s 634us/step - loss: 0.0155 - acc: 0.9836 - val_loss: 0.1867 - val_acc: 0.8032 Epoch 00463: val_acc did not improve from 0.84600 Epoch 464/500 7500/7500 [==============================] - 5s 641us/step - loss: 0.0152 - acc: 0.9843 - val_loss: 0.1955 - val_acc: 0.7932 Epoch 00464: val_acc did not improve from 0.84600 Epoch 465/500 7500/7500 [==============================] - 5s 644us/step - loss: 0.0152 - acc: 0.9841 - val_loss: 0.1894 - val_acc: 0.8004 Epoch 00465: val_acc did not improve from 0.84600 Epoch 466/500 7500/7500 [==============================] - 5s 634us/step - loss: 0.0153 - acc: 0.9840 - val_loss: 0.1880 - val_acc: 0.8024 Epoch 00466: val_acc did not improve from 0.84600 Epoch 467/500 7500/7500 [==============================] - 5s 636us/step - loss: 0.0154 - acc: 0.9840 - val_loss: 0.1896 - val_acc: 0.8000 Epoch 00467: val_acc did not improve from 0.84600 Epoch 468/500 7500/7500 [==============================] - 5s 635us/step - loss: 0.0152 - acc: 0.9845 - val_loss: 0.1877 - val_acc: 0.8012 Epoch 00468: val_acc did not improve from 0.84600 Epoch 469/500 7500/7500 [==============================] - 5s 638us/step - loss: 0.0149 - acc: 0.9845 - val_loss: 0.1914 - val_acc: 0.7944 Epoch 00469: val_acc did not improve from 0.84600 Epoch 470/500 7500/7500 [==============================] - 5s 639us/step - loss: 0.0144 - acc: 0.9851 - val_loss: 0.1860 - val_acc: 0.8024 Epoch 00470: val_acc did not improve from 0.84600 Epoch 471/500 7500/7500 [==============================] - 5s 635us/step - loss: 0.0153 - acc: 0.9837 - val_loss: 0.1819 - val_acc: 0.8084 Epoch 00471: val_acc did not improve from 0.84600 Epoch 472/500 7500/7500 [==============================] - 5s 635us/step - loss: 0.0161 - acc: 0.9828 - val_loss: 0.1953 - val_acc: 0.7908 Epoch 00472: val_acc did not improve from 0.84600 Epoch 473/500 7500/7500 [==============================] - 5s 633us/step - loss: 0.0143 - acc: 0.9848 - val_loss: 0.1809 - val_acc: 0.8076 Epoch 00473: val_acc did not improve from 0.84600 Epoch 474/500 7500/7500 [==============================] - 5s 630us/step - loss: 0.0155 - acc: 0.9837 - val_loss: 0.1953 - val_acc: 0.7900 Epoch 00474: val_acc did not improve from 0.84600 Epoch 475/500 7500/7500 [==============================] - 5s 644us/step - loss: 0.0154 - acc: 0.9833 - val_loss: 0.1857 - val_acc: 0.7976 Epoch 00475: val_acc did not improve from 0.84600 Epoch 476/500 7500/7500 [==============================] - 5s 638us/step - loss: 0.0156 - acc: 0.9832 - val_loss: 0.1836 - val_acc: 0.8056 Epoch 00476: val_acc did not improve from 0.84600 Epoch 477/500 7500/7500 [==============================] - 5s 635us/step - loss: 0.0146 - acc: 0.9848 - val_loss: 0.1815 - val_acc: 0.8096 Epoch 00477: val_acc did not improve from 0.84600 Epoch 478/500 7500/7500 [==============================] - 5s 633us/step - loss: 0.0149 - acc: 0.9848 - val_loss: 0.1846 - val_acc: 0.8028 Epoch 00478: val_acc did not improve from 0.84600 Epoch 479/500 7500/7500 [==============================] - 5s 633us/step - loss: 0.0148 - acc: 0.9841 - val_loss: 0.1866 - val_acc: 0.8024 Epoch 00479: val_acc did not improve from 0.84600 Epoch 480/500 7500/7500 [==============================] - 5s 634us/step - loss: 0.0148 - acc: 0.9845 - val_loss: 0.1878 - val_acc: 0.8000 Epoch 00480: val_acc did not improve from 0.84600 Epoch 481/500 7500/7500 [==============================] - 5s 639us/step - loss: 0.0138 - acc: 0.9856 - val_loss: 0.1859 - val_acc: 0.8052 Epoch 00481: val_acc did not improve from 0.84600 Epoch 482/500 7500/7500 [==============================] - 5s 640us/step - loss: 0.0143 - acc: 0.9849 - val_loss: 0.1797 - val_acc: 0.8080 Epoch 00482: val_acc did not improve from 0.84600 Epoch 483/500 7500/7500 [==============================] - 5s 638us/step - loss: 0.0160 - acc: 0.9829 - val_loss: 0.1861 - val_acc: 0.8052 Epoch 00483: val_acc did not improve from 0.84600 Epoch 484/500 7500/7500 [==============================] - 5s 636us/step - loss: 0.0144 - acc: 0.9844 - val_loss: 0.1836 - val_acc: 0.8052 Epoch 00484: val_acc did not improve from 0.84600 Epoch 485/500 7500/7500 [==============================] - 5s 637us/step - loss: 0.0138 - acc: 0.9859 - val_loss: 0.1843 - val_acc: 0.8048 Epoch 00485: val_acc did not improve from 0.84600 Epoch 486/500 7500/7500 [==============================] - 5s 636us/step - loss: 0.0137 - acc: 0.9860 - val_loss: 0.1924 - val_acc: 0.7964 Epoch 00486: val_acc did not improve from 0.84600 Epoch 487/500 7500/7500 [==============================] - 5s 632us/step - loss: 0.0150 - acc: 0.9843 - val_loss: 0.1864 - val_acc: 0.7992 Epoch 00487: val_acc did not improve from 0.84600 Epoch 488/500 7500/7500 [==============================] - 5s 631us/step - loss: 0.0150 - acc: 0.9841 - val_loss: 0.1907 - val_acc: 0.8004 Epoch 00488: val_acc did not improve from 0.84600 Epoch 489/500 7500/7500 [==============================] - 5s 634us/step - loss: 0.0146 - acc: 0.9845 - val_loss: 0.1877 - val_acc: 0.8020 Epoch 00489: val_acc did not improve from 0.84600 Epoch 490/500 7500/7500 [==============================] - 5s 636us/step - loss: 0.0150 - acc: 0.9844 - val_loss: 0.1876 - val_acc: 0.8032 Epoch 00490: val_acc did not improve from 0.84600 Epoch 491/500 7500/7500 [==============================] - 5s 638us/step - loss: 0.0155 - acc: 0.9839 - val_loss: 0.1893 - val_acc: 0.7984 Epoch 00491: val_acc did not improve from 0.84600 Epoch 492/500 7500/7500 [==============================] - 5s 637us/step - loss: 0.0149 - acc: 0.9847 - val_loss: 0.1752 - val_acc: 0.8148 Epoch 00492: val_acc did not improve from 0.84600 Epoch 493/500 7500/7500 [==============================] - 5s 638us/step - loss: 0.0154 - acc: 0.9835 - val_loss: 0.1774 - val_acc: 0.8128 Epoch 00493: val_acc did not improve from 0.84600 Epoch 494/500 7500/7500 [==============================] - 5s 633us/step - loss: 0.0145 - acc: 0.9851 - val_loss: 0.1856 - val_acc: 0.8020 Epoch 00494: val_acc did not improve from 0.84600 Epoch 495/500 7500/7500 [==============================] - 5s 632us/step - loss: 0.0148 - acc: 0.9848 - val_loss: 0.1789 - val_acc: 0.8096 Epoch 00495: val_acc did not improve from 0.84600 Epoch 496/500 7500/7500 [==============================] - 5s 636us/step - loss: 0.0134 - acc: 0.9860 - val_loss: 0.1879 - val_acc: 0.8024 Epoch 00496: val_acc did not improve from 0.84600 Epoch 497/500 7500/7500 [==============================] - 5s 636us/step - loss: 0.0146 - acc: 0.9848 - val_loss: 0.1767 - val_acc: 0.8144 Epoch 00497: val_acc did not improve from 0.84600 Epoch 498/500 7500/7500 [==============================] - 5s 636us/step - loss: 0.0136 - acc: 0.9859 - val_loss: 0.1873 - val_acc: 0.8036 Epoch 00498: val_acc did not improve from 0.84600 Epoch 499/500 7500/7500 [==============================] - 5s 636us/step - loss: 0.0140 - acc: 0.9859 - val_loss: 0.1845 - val_acc: 0.8076 Epoch 00499: val_acc did not improve from 0.84600 Epoch 500/500 7500/7500 [==============================] - 5s 632us/step - loss: 0.0136 - acc: 0.9861 - val_loss: 0.1843 - val_acc: 0.8044 Epoch 00500: val_acc did not improve from 0.84600 acc: 84.60%
MIT
expressyeaself/models/lstm/LSTM_builder.ipynb
yeastpro/expressYeaself
Checking predictions on a small sample of native data
input_seqs = ROOT_DIR + 'expressyeaself/models/lstm/native_sample.txt' model_to_use = 'lstm_sequential_2d' lstm_result = construct.get_predictions_for_input_file(input_seqs, model_to_use, sort_df=True, write_to_file=False) lstm_result.to_csv('lstm_result') lstm_result
_____no_output_____
MIT
expressyeaself/models/lstm/LSTM_builder.ipynb
yeastpro/expressYeaself
Welcome to the Woodgreen Data Science & Python Program by Fireside AnalyticsData science is the process of ethically acquiring, engineering, analyzing, visualizaing and ultimately, creating value with data.In this tutorial, participants will be introduced to the Python programming language in this Python cloud environment called Google Colab. For more information about this tutorial or other tutorials by Fireside Analytics, contact: info@firesideanalytics.comTable of contents How does a computer work? What is "data"? An introduction to Python **Let's get started! Firstly, this page you are reading is not regular website, it is an interactive computer programming environment called a Colab notebook that lets you write and execute code in Python.** 1. How does a computer work? A computer is a device that takes INPUTS, does some PROCESSES and results in OUTPUTSEXAMPLES OF INPUTS1. Keyboard2. Mouse3. Touch screenPROCESSES1. CPU - Central Processing Unit2. Data storage3. Converts inputs from words and numbers to 1s and 0s4. Computes 1s and 0s5. Produces outputs and informationOUTPUTS1. Screen - words, numbers, pictures or sounds2. Printer3. Speaker 2. What is "data"? A computer is a device that takes INPUTS, does some PROCESSES and results in OUTPUTS1. Computers use many on and off switches to work2. The 'on' switch is represented by a '1' and the 'off' switch is 3. A BIT is a one or a zero, and a BYTE is a combination of 8 ones and zeros e.g., 1100 00104. Combinations of Ones and Zeros in a computer, represent whole words and numbers, symbols and even pictures in the real world5. Information stored in ones and zeros, in bits and bytes, is data!* The letter a = 0110 0001* The letter b = 0110 0010* The letter A = 0100 0001* The letter B = 0100 0010* The symbol @ = 1000 0000 This conversion is done with the ASCII Code, American Standard Code Information Interchange *Computer programming is the process of giving a computer instructions in human readable language so a computer will know what to do in computer language.* 3. An introduction to Python Let's get to know Python. The following code is an example of a Python Progam. Run the code by clicking on the 'play' button and you will see the result of your program beneath the code.
## Your first computer progam can be to say hello! print ("Hello, World") # We will need to learn some syntax! Syntax are the words used in a Python program # the '#' sign tells Python to ignore a line. We use it for notes that we want humans to read # print() is a function built into the core of Python # For more sophisticed operations we'll load libraries which come with additional functions that we can use # Famous ones are numpy, pandas, matplotlib, seaborn, and scikitlearn # Now, let's write some programs! # Edit the line below to add your first name between the "" ## Here we assign the letters between "" to an object called "my_name" - it is now stored and you can call it later ## Like saving a number in your phone versus just typing it in and calling it my_name = "" # Let's see what we've created my_name greeting = "Hello, world, my name is " # Let's look at it greeting # The = sign is what we call an 'assignment operator' and it assigns things # See how we use the '+' sign print(greeting + my_name) # Asking for input, using simple function and printing it def say_hello(): username = input("What is your name?\n") print("Hello " + username) # Lets call the function say_hello() # Creating an 'If else' conditional block inside the function. Here we are validating the response entered. # If the person simply hits "Enter" without entering any value in the field, # then the if statement prints "You can't introduce yourself if you don't add your name!" # the == operator is used to test if something is equal to something else def say_hello(): username = input("What is your name?\n") if username == "": print("You can't introduce yourself if you don't add your name!") else: print("Hello " + username) # While calling the function, try leaving the field blank say_hello() # Dealing with a blank def say_hello(name): if name == "": print("You can't introduce yourself if you don't add your name!") else: print(greeting + name) # Click the "play" button to execute this code. say_hello(my_name) # In programming there are often many ways to do things, for example print("Hello world, my name is " + my_name + ".")
_____no_output_____
MIT
Woodgreen_Data_Science_&_Python_Nov_2021_Week_3.ipynb
tjido/woodgreen
**We can do simple calculations in Python**
5 + 5 # Some actions already programmed in: x = 5 print(x + 7) # What happens when we say "X=5" # x 'points' at the number 5 x = 5 print("Initial x is:", x) # y now 'points' at 'x' which 'points' at 5, so then y points at 5 y = x print("Initial y is:", y) x = 6 # What happens when we now change what x is? print("Current x is:", x) print("Current y is:", y)
_____no_output_____
MIT
Woodgreen_Data_Science_&_Python_Nov_2021_Week_3.ipynb
tjido/woodgreen
------------------------------------------------------------------------ **We can do complex calculations in Python** - Remember we said Netflix users stream 404,444 hours of movies every minute? Let's calculate how many days that is!
## In Python we create objects ## Converting from 404444 hours to days, we divide by___________? days_watching_netflix = 404444/24
_____no_output_____
MIT
Woodgreen_Data_Science_&_Python_Nov_2021_Week_3.ipynb
tjido/woodgreen
How can we do a survey in Python? We type 'input' to let Python know to wait for a user response. Once you type in the name, Python will remember it!Press 'enter' after your input.
response_1 = input("Response 1: What is your name?") ## We can now look at the response response_1 response_2 = input("Response 2: What is your name?") response_3 = input("Response 3: What is your name?") response_4 = input("Response 4: What is your name?") response_5 = input("Response 5: What is your name?")
_____no_output_____
MIT
Woodgreen_Data_Science_&_Python_Nov_2021_Week_3.ipynb
tjido/woodgreen
Let's look at response_5
print(response_1, response_2, response_3, response_4, response_5)
_____no_output_____
MIT
Woodgreen_Data_Science_&_Python_Nov_2021_Week_3.ipynb
tjido/woodgreen
We can also add the names one at a time by typing them.
## Let's create an object for the 5 names from question 1 survey_names = [response_1, response_2, response_3, response_4, response_5] ## Let's look at the object we've just created! survey_names print(survey_names)
_____no_output_____
MIT
Woodgreen_Data_Science_&_Python_Nov_2021_Week_3.ipynb
tjido/woodgreen
Let's make a simple bar chart in Python
import matplotlib.pyplot as plt x = ['A', 'B', 'C', 'D', 'E'] y = [22, 9, 40, 27, 55] plt.bar(x, y, color = 'red') plt.title('Simple Bar Chart') plt.xlabel('Width Names') plt.ylabel('Height Values') plt.show() # Replot the same chart and change the color of the bars
_____no_output_____
MIT
Woodgreen_Data_Science_&_Python_Nov_2021_Week_3.ipynb
tjido/woodgreen
Here's a sample chart with some survey responses.
import numpy as np import pandas as pd from pandas import Series, DataFrame import matplotlib.pyplot as plt data = [3,2] labels = ['yes', 'no'] plt.xticks(range(len(data)), labels) plt.xlabel('Responses') plt.ylabel('Number of People') plt.title('Shingai - Woodgreen Data Science & Python Program: Survey Results for Questions 2: "Do you know how a computer works?"') plt.bar(range(len(data)), data, color = 'blue') plt.show()
_____no_output_____
MIT
Woodgreen_Data_Science_&_Python_Nov_2021_Week_3.ipynb
tjido/woodgreen
CREAZIONE MODELLO SARIMA REGIONE SARDEGNA
import pandas as pd df = pd.read_csv('../../csv/regioni/sardegna.csv') df.head() df['DATA'] = pd.to_datetime(df['DATA']) df.info() df=df.set_index('DATA') df.head()
_____no_output_____
Unlicense
Modulo 4 - Analisi per regioni/regioni/Sardegna/SARDEGNA - SARIMA mensile.ipynb
SofiaBlack/Towards-a-software-to-measure-the-impact-of-the-COVID-19-outbreak-on-Italian-deaths
Creazione serie storica dei decessi totali della regione Sardegna
ts = df.TOTALE ts.head() from datetime import datetime from datetime import timedelta start_date = datetime(2015,1,1) end_date = datetime(2020,9,30) lim_ts = ts[start_date:end_date] #visulizzo il grafico import matplotlib.pyplot as plt plt.figure(figsize=(12,6)) plt.title('Decessi mensili regione Sardegna dal 2015 a settembre 2020', size=20) plt.plot(lim_ts) for year in range(start_date.year,end_date.year+1): plt.axvline(pd.to_datetime(str(year)+'-01-01'), color='k', linestyle='--', alpha=0.5)
_____no_output_____
Unlicense
Modulo 4 - Analisi per regioni/regioni/Sardegna/SARDEGNA - SARIMA mensile.ipynb
SofiaBlack/Towards-a-software-to-measure-the-impact-of-the-COVID-19-outbreak-on-Italian-deaths
Decomposizione
from statsmodels.tsa.seasonal import seasonal_decompose decomposition = seasonal_decompose(ts, period=12, two_sided=True, extrapolate_trend=1, model='multiplicative') ts_trend = decomposition.trend #andamento della curva ts_seasonal = decomposition.seasonal #stagionalità ts_residual = decomposition.resid #parti rimanenti plt.subplot(411) plt.plot(ts,label='original') plt.legend(loc='best') plt.subplot(412) plt.plot(ts_trend,label='trend') plt.legend(loc='best') plt.subplot(413) plt.plot(ts_seasonal,label='seasonality') plt.legend(loc='best') plt.subplot(414) plt.plot(ts_residual,label='residual') plt.legend(loc='best') plt.tight_layout()
_____no_output_____
Unlicense
Modulo 4 - Analisi per regioni/regioni/Sardegna/SARDEGNA - SARIMA mensile.ipynb
SofiaBlack/Towards-a-software-to-measure-the-impact-of-the-COVID-19-outbreak-on-Italian-deaths
Test di stazionarietà
from statsmodels.tsa.stattools import adfuller def test_stationarity(timeseries): dftest = adfuller(timeseries, autolag='AIC') dfoutput = pd.Series(dftest[0:4], index=['Test Statistic','p-value','#Lags Used','Number of Observations Used']) for key,value in dftest[4].items(): dfoutput['Critical Value (%s)'%key] = value critical_value = dftest[4]['5%'] test_statistic = dftest[0] alpha = 1e-3 pvalue = dftest[1] if pvalue < alpha and test_statistic < critical_value: # null hypothesis: x is non stationary print("X is stationary") return True else: print("X is not stationary") return False test_stationarity(ts)
X is not stationary
Unlicense
Modulo 4 - Analisi per regioni/regioni/Sardegna/SARDEGNA - SARIMA mensile.ipynb
SofiaBlack/Towards-a-software-to-measure-the-impact-of-the-COVID-19-outbreak-on-Italian-deaths
Suddivisione in Train e Test Train: da gennaio 2015 a ottobre 2019; Test: da ottobre 2019 a dicembre 2019.
from datetime import datetime train_end = datetime(2019,10,31) test_end = datetime (2019,12,31) covid_end = datetime(2020,9,30) from dateutil.relativedelta import * tsb = ts[:test_end] decomposition = seasonal_decompose(tsb, period=12, two_sided=True, extrapolate_trend=1, model='multiplicative') tsb_trend = decomposition.trend #andamento della curva tsb_seasonal = decomposition.seasonal #stagionalità tsb_residual = decomposition.resid #parti rimanenti tsb_diff = pd.Series(tsb_trend) d = 0 while test_stationarity(tsb_diff) is False: tsb_diff = tsb_diff.diff().dropna() d = d + 1 print(d) #TEST: dal 01-01-2015 al 31-10-2019 train = tsb[:train_end] #TRAIN: dal 01-11-2019 al 31-12-2019 test = tsb[train_end + relativedelta(months=+1): test_end]
X is not stationary X is not stationary X is not stationary X is stationary 3
Unlicense
Modulo 4 - Analisi per regioni/regioni/Sardegna/SARDEGNA - SARIMA mensile.ipynb
SofiaBlack/Towards-a-software-to-measure-the-impact-of-the-COVID-19-outbreak-on-Italian-deaths
Grafici di Autocorrelazione e Autocorrelazione Parziale
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf plot_acf(ts, lags =12) plot_pacf(ts, lags =12) plt.show()
_____no_output_____
Unlicense
Modulo 4 - Analisi per regioni/regioni/Sardegna/SARDEGNA - SARIMA mensile.ipynb
SofiaBlack/Towards-a-software-to-measure-the-impact-of-the-COVID-19-outbreak-on-Italian-deaths
Creazione del modello SARIMA sul Train
from statsmodels.tsa.statespace.sarimax import SARIMAX model = SARIMAX(train, order=(6,1,8)) model_fit = model.fit() print(model_fit.summary())
c:\users\monta\appdata\local\programs\python\python38\lib\site-packages\statsmodels\tsa\base\tsa_model.py:524: ValueWarning: No frequency information was provided, so inferred frequency M will be used. warnings.warn('No frequency information was' c:\users\monta\appdata\local\programs\python\python38\lib\site-packages\statsmodels\tsa\base\tsa_model.py:524: ValueWarning: No frequency information was provided, so inferred frequency M will be used. warnings.warn('No frequency information was' c:\users\monta\appdata\local\programs\python\python38\lib\site-packages\statsmodels\tsa\statespace\sarimax.py:977: UserWarning: Non-invertible starting MA parameters found. Using zeros as starting parameters. warn('Non-invertible starting MA parameters found.'
Unlicense
Modulo 4 - Analisi per regioni/regioni/Sardegna/SARDEGNA - SARIMA mensile.ipynb
SofiaBlack/Towards-a-software-to-measure-the-impact-of-the-COVID-19-outbreak-on-Italian-deaths
Verifica della stazionarietà dei residui del modello ottenuto
residuals = model_fit.resid test_stationarity(residuals) plt.figure(figsize=(12,6)) plt.title('Confronto valori previsti dal modello con valori reali del Train', size=20) plt.plot (train.iloc[1:], color='red', label='train values') plt.plot (model_fit.fittedvalues.iloc[1:], color = 'blue', label='model values') plt.legend() plt.show() conf = model_fit.conf_int() plt.figure(figsize=(12,6)) plt.title('Intervalli di confidenza del modello', size=20) plt.plot(conf) plt.xticks(rotation=45) plt.show()
_____no_output_____
Unlicense
Modulo 4 - Analisi per regioni/regioni/Sardegna/SARDEGNA - SARIMA mensile.ipynb
SofiaBlack/Towards-a-software-to-measure-the-impact-of-the-COVID-19-outbreak-on-Italian-deaths
Predizione del modello sul Test
#inizio e fine predizione pred_start = test.index[0] pred_end = test.index[-1] #pred_start= len(train) #pred_end = len(tsb) #predizione del modello sul test predictions_test= model_fit.predict(start=pred_start, end=pred_end) plt.plot(test, color='red', label='actual') plt.plot(predictions_test, label='prediction' ) plt.xticks(rotation=45) plt.legend() plt.show() print(predictions_test) # Accuracy metrics import numpy as np def forecast_accuracy(forecast, actual): mape = np.mean(np.abs(forecast - actual)/np.abs(actual)) # MAPE: errore percentuale medio assoluto me = np.mean(forecast - actual) # ME: errore medio mae = np.mean(np.abs(forecast - actual)) # MAE: errore assoluto medio mpe = np.mean((forecast - actual)/actual) # MPE: errore percentuale medio rmse = np.mean((forecast - actual)**2)**.5 # RMSE corr = np.corrcoef(forecast, actual)[0,1] # corr: correlazione tra effettivo e previsione mins = np.amin(np.hstack([forecast[:,None], actual[:,None]]), axis=1) maxs = np.amax(np.hstack([forecast[:,None], actual[:,None]]), axis=1) minmax = 1 - np.mean(mins/maxs) # minmax: errore min-max return({'mape':mape, 'me':me, 'mae': mae, 'mpe': mpe, 'rmse':rmse, 'corr':corr, 'minmax':minmax}) forecast_accuracy(predictions_test, test) import numpy as np from statsmodels.tools.eval_measures import rmse nrmse = rmse(predictions_test, test)/(np.max(test)-np.min(test)) print('NRMSE: %f'% nrmse)
NRMSE: 0.028047
Unlicense
Modulo 4 - Analisi per regioni/regioni/Sardegna/SARDEGNA - SARIMA mensile.ipynb
SofiaBlack/Towards-a-software-to-measure-the-impact-of-the-COVID-19-outbreak-on-Italian-deaths
Predizione del modello compreso l'anno 2020
#inizio e fine predizione start_prediction = ts.index[0] end_prediction = ts.index[-1] predictions_tot = model_fit.predict(start=start_prediction, end=end_prediction) plt.figure(figsize=(12,6)) plt.title('Previsione modello su dati osservati - dal 2015 al 30 settembre 2020', size=20) plt.plot(ts, color='blue', label='actual') plt.plot(predictions_tot.iloc[1:], color='red', label='predict') plt.xticks(rotation=45) plt.legend(prop={'size': 12}) plt.show() diff_predictions_tot = (ts - predictions_tot) plt.figure(figsize=(12,6)) plt.title('Differenza tra i valori osservati e i valori stimati del modello', size=20) plt.plot(diff_predictions_tot) plt.show() diff_predictions_tot['24-02-2020':].sum() predictions_tot.to_csv('../../csv/pred/predictions_SARIMA_sardegna.csv')
_____no_output_____
Unlicense
Modulo 4 - Analisi per regioni/regioni/Sardegna/SARDEGNA - SARIMA mensile.ipynb
SofiaBlack/Towards-a-software-to-measure-the-impact-of-the-COVID-19-outbreak-on-Italian-deaths
Intervalli di confidenza della previsione totale
forecast = model_fit.get_prediction(start=start_prediction, end=end_prediction) in_c = forecast.conf_int() print(forecast.predicted_mean) print(in_c) print(forecast.predicted_mean - in_c['lower TOTALE']) plt.plot(in_c) plt.show() upper = in_c['upper TOTALE'] lower = in_c['lower TOTALE'] lower.to_csv('../../csv/lower/predictions_SARIMA_sardegna_lower.csv') upper.to_csv('../../csv/upper/predictions_SARIMA_sardegna_upper.csv')
_____no_output_____
Unlicense
Modulo 4 - Analisi per regioni/regioni/Sardegna/SARDEGNA - SARIMA mensile.ipynb
SofiaBlack/Towards-a-software-to-measure-the-impact-of-the-COVID-19-outbreak-on-Italian-deaths
Preparation
import pandas as pd df_mortality = pd.read_excel(io='MortalityDataWHR2021C2.xlsx') df_happiness = pd.read_excel(io='DataForFigure2.1WHR2021C2.xls') df_regions = df_happiness[['Country name', 'Regional indicator']] df = df_regions.merge(df_mortality) df.head()
_____no_output_____
MIT
#01. Data Tables & Basic Concepts of Programming/Untitled.ipynb
gabisintope/machine-learning-program
Islands Number of Islands
df.Island.sum()
_____no_output_____
MIT
#01. Data Tables & Basic Concepts of Programming/Untitled.ipynb
gabisintope/machine-learning-program
Which region had more Islands?
df.groupby('Regional indicator').Island.sum()
_____no_output_____
MIT
#01. Data Tables & Basic Concepts of Programming/Untitled.ipynb
gabisintope/machine-learning-program
Show all Columns for these Islands
mask_region = df['Regional indicator'] == 'Western Europe' mask_island = df['Island'] == 1 df_europe_islands = df[mask_region & mask_island] df_europe_islands
_____no_output_____
MIT
#01. Data Tables & Basic Concepts of Programming/Untitled.ipynb
gabisintope/machine-learning-program
Mean Age of across All Islands?
df_europe_islands['Median age'].mean()
_____no_output_____
MIT
#01. Data Tables & Basic Concepts of Programming/Untitled.ipynb
gabisintope/machine-learning-program
Female Heads of State Number of Countries with Female Heads of State
df['Female head of government'].sum()
_____no_output_____
MIT
#01. Data Tables & Basic Concepts of Programming/Untitled.ipynb
gabisintope/machine-learning-program
Which region had more Female Heads of State?
df.groupby('Regional indicator')['Female head of government'].sum().sort_values(ascending=False)
_____no_output_____
MIT
#01. Data Tables & Basic Concepts of Programming/Untitled.ipynb
gabisintope/machine-learning-program
Show all Columns for these Countries
mask_region = df['Regional indicator'] == 'Western Europe' mask_female = df['Female head of government'] == 1 df_europe_femaleheads = df[mask_region & mask_female] df_europe_femaleheads
_____no_output_____
MIT
#01. Data Tables & Basic Concepts of Programming/Untitled.ipynb
gabisintope/machine-learning-program
Mean Age of across All Countries?
df_europe_femaleheads['Median age'].mean()
_____no_output_____
MIT
#01. Data Tables & Basic Concepts of Programming/Untitled.ipynb
gabisintope/machine-learning-program
Pivot Tables
df_panel = pd.read_excel(io='DataPanelWHR2021C2.xls') df = df_panel.merge(df_regions) df.pivot_table(index='Regional indicator', columns='year', values='Log GDP per capita')
_____no_output_____
MIT
#01. Data Tables & Basic Concepts of Programming/Untitled.ipynb
gabisintope/machine-learning-program
Occupation Introduction:Special thanks to: https://github.com/justmarkham for sharing the dataset and materials. Step 1. Import the necessary libraries
import pandas as pd import numpy as np
_____no_output_____
BSD-3-Clause
03_Grouping/Occupation/Exercise.ipynb
mtzupan/pandas_exercises
Step 2. Import the dataset from this [address](https://raw.githubusercontent.com/justmarkham/DAT8/master/data/u.user). Step 3. Assign it to a variable called users.
url = 'https://raw.githubusercontent.com/justmarkham/DAT8/master/data/u.user' users = pd.read_csv(url, sep='\|') users
_____no_output_____
BSD-3-Clause
03_Grouping/Occupation/Exercise.ipynb
mtzupan/pandas_exercises
Step 4. Discover what is the mean age per occupation
users.groupby(['occupation'])['age'].mean()
_____no_output_____
BSD-3-Clause
03_Grouping/Occupation/Exercise.ipynb
mtzupan/pandas_exercises
Step 5. Discover the Male ratio per occupation and sort it from the most to the least
if 'is_male' not in users: users['is_male'] = users['gender'].apply(lambda x: x == 'M') users male_employees = users.loc[users['gender'] == 'M'].groupby(['occupation']).size().astype('float') # print("male employees:", male_employees) female_employees = users.loc[users['gender'] == 'F'].groupby(['occupation']).size().astype('float') # print(type(female_employees[0])) # print("female employees:", female_employees) m_f_ratio_occupations = male_employees.divide(female_employees, fill_value=0) m_f_ratio_occupations.sort_values(ascending=False)
_____no_output_____
BSD-3-Clause
03_Grouping/Occupation/Exercise.ipynb
mtzupan/pandas_exercises
Step 6. For each occupation, calculate the minimum and maximum ages
users.groupby(['occupation'])['age'].min() users.groupby(['occupation'])['age'].max()
_____no_output_____
BSD-3-Clause
03_Grouping/Occupation/Exercise.ipynb
mtzupan/pandas_exercises
Step 7. For each combination of occupation and gender, calculate the mean age
users.loc[users['gender'] == 'M'].groupby(['occupation'])['age'].mean() users.loc[users['gender']=='F'].groupby(['occupation'])['age'].mean()
_____no_output_____
BSD-3-Clause
03_Grouping/Occupation/Exercise.ipynb
mtzupan/pandas_exercises
Step 8. For each occupation present the percentage of women and men
percent_male = np.abs((male_employees - female_employees))/male_employees percent_male percent_female = 1 - percent_male percent_female
_____no_output_____
BSD-3-Clause
03_Grouping/Occupation/Exercise.ipynb
mtzupan/pandas_exercises
Sentiment analysis with support vector machinesIn this notebook, we will revisit a learning task that we encountered earlier in the course: predicting the *sentiment* (positive or negative) of a single sentence taken from a review of a movie, restaurant, or product. The data set consists of 3000 labeled sentences, which we divide into a training set of size 2500 and a test set of size 500. Previously we found a logistic regression classifier. Today we will use a support vector machine.Before starting on this notebook, make sure the folder `sentiment_labelled_sentences` (containing the data file `full_set.txt`) is in the same directory. Recall that the data can be downloaded from https://archive.ics.uci.edu/ml/datasets/Sentiment+Labelled+Sentences. 1. Loading and preprocessing the data Here we follow exactly the same steps as we did earlier.
%matplotlib inline import string import numpy as np import matplotlib import matplotlib.pyplot as plt matplotlib.rc('xtick', labelsize=14) matplotlib.rc('ytick', labelsize=14) from sklearn.feature_extraction.text import CountVectorizer ## Read in the data set. with open("sentiment_labelled_sentences/full_set.txt") as f: content = f.readlines() ## Remove leading and trailing white space content = [x.strip() for x in content] ## Separate the sentences from the labels sentences = [x.split("\t")[0] for x in content] labels = [x.split("\t")[1] for x in content] ## Transform the labels from '0 v.s. 1' to '-1 v.s. 1' y = np.array(labels, dtype='int8') y = 2*y - 1 ## full_remove takes a string x and a list of characters removal_list ## returns x with all the characters in removal_list replaced by ' ' def full_remove(x, removal_list): for w in removal_list: x = x.replace(w, ' ') return x ## Remove digits digits = [str(x) for x in range(10)] digit_less = [full_remove(x, digits) for x in sentences] ## Remove punctuation punc_less = [full_remove(x, list(string.punctuation)) for x in digit_less] ## Make everything lower-case sents_lower = [x.lower() for x in punc_less] ## Define our stop words stop_set = set(['the', 'a', 'an', 'i', 'he', 'she', 'they', 'to', 'of', 'it', 'from']) ## Remove stop words sents_split = [x.split() for x in sents_lower] sents_processed = [" ".join(list(filter(lambda a: a not in stop_set, x))) for x in sents_split] ## Transform to bag of words representation. vectorizer = CountVectorizer(analyzer = "word", tokenizer = None, preprocessor = None, stop_words = None, max_features = 4500) data_features = vectorizer.fit_transform(sents_processed) ## Append '1' to the end of each vector. data_mat = data_features.toarray() ## Split the data into testing and training sets np.random.seed(0) test_inds = np.append(np.random.choice((np.where(y==-1))[0], 250, replace=False), np.random.choice((np.where(y==1))[0], 250, replace=False)) train_inds = list(set(range(len(labels))) - set(test_inds)) train_data = data_mat[train_inds,] train_labels = y[train_inds] test_data = data_mat[test_inds,] test_labels = y[test_inds] print("train data: ", train_data.shape) print("test data: ", test_data.shape)
train data: (2500, 4500) test data: (500, 4500)
MIT
Assignment 6/sentiment_svm/sentiment-svm.ipynb
ksopan/Edx_Machine_Learning_DSE220x
2. Fitting a support vector machine to the dataIn support vector machines, we are given a set of examples $(x_1, y_1), \ldots, (x_n, y_n)$ and we want to find a weight vector $w \in \mathbb{R}^d$ that solves the following optimization problem:$$ \min_{w \in \mathbb{R}^d} \| w \|^2 + C \sum_{i=1}^n \xi_i $$$$ \text{subject to } y_i \langle w, x_i \rangle \geq 1 - \xi_i \text{ for all } i=1,\ldots, n$$`scikit-learn` provides an SVM solver that we will use. The following routine takes as input the constant `C` (from the above optimization problem) and returns the training and test error of the resulting SVM model. It is invoked as follows:* `training_error, test_error = fit_classifier(C)`The default value for parameter `C` is 1.0.
from sklearn import svm def fit_classifier(C_value=1.0): clf = svm.LinearSVC(C=C_value, loss='hinge') clf.fit(train_data,train_labels) ## Get predictions on training data train_preds = clf.predict(train_data) train_error = float(np.sum((train_preds > 0.0) != (train_labels > 0.0)))/len(train_labels) ## Get predictions on test data test_preds = clf.predict(test_data) test_error = float(np.sum((test_preds > 0.0) != (test_labels > 0.0)))/len(test_labels) ## return train_error, test_error cvals = [0.01,0.1,1.0,10.0,100.0,1000.0,10000.0] for c in cvals: train_error, test_error = fit_classifier(c) print ("Error rate for C = %0.2f: train %0.3f test %0.3f" % (c, train_error, test_error))
Error rate for C = 0.01: train 0.215 test 0.250 Error rate for C = 0.10: train 0.074 test 0.174 Error rate for C = 1.00: train 0.011 test 0.152 Error rate for C = 10.00: train 0.002 test 0.188 Error rate for C = 100.00: train 0.002 test 0.198 Error rate for C = 1000.00: train 0.003 test 0.212 Error rate for C = 10000.00: train 0.001 test 0.208
MIT
Assignment 6/sentiment_svm/sentiment-svm.ipynb
ksopan/Edx_Machine_Learning_DSE220x
3. Evaluating C by k-fold cross-validationAs we can see, the choice of `C` has a very significant effect on the performance of the SVM classifier. We were able to assess this because we have a separate test set. In general, however, this is a luxury we won't possess. How can we choose `C` based only on the training set?A reasonable way to estimate the error associated with a specific value of `C` is by **`k-fold cross validation`**:* Partition the training set `S` into `k` equal-sized sized subsets `S_1, S_2, ..., S_k`.* For `i=1,2,...,k`, train a classifier with parameter `C` on `S - S_i` (all the training data except `S_i`) and test it on `S_i` to get error estimate `e_i`.* Average the errors: `(e_1 + ... + e_k)/k`The following procedure, **cross_validation_error**, does exactly this. It takes as input:* the training set `x,y`* the value of `C` to be evaluated* the integer `k`and it returns the estimated error of the classifier for that particular setting of `C`. Look over the code carefully to understand exactly what it is doing.
def cross_validation_error(x,y,C_value,k): n = len(y) ## Randomly shuffle indices indices = np.random.permutation(n) ## Initialize error err = 0.0 ## Iterate over partitions for i in range(k): ## Partition indices test_indices = indices[int(i*(n/k)):int((i+1)*(n/k) - 1)] train_indices = np.setdiff1d(indices, test_indices) ## Train classifier with parameter c clf = svm.LinearSVC(C=C_value, loss='hinge') clf.fit(x[train_indices], y[train_indices]) ## Get predictions on test partition preds = clf.predict(x[test_indices]) ## Compute error err += float(np.sum((preds > 0.0) != (y[test_indices] > 0.0)))/len(test_indices) return err/k
_____no_output_____
MIT
Assignment 6/sentiment_svm/sentiment-svm.ipynb
ksopan/Edx_Machine_Learning_DSE220x
4. Picking a value of C The procedure **cross_validation_error** (above) evaluates a single candidate value of `C`. We need to use it repeatedly to identify a good `C`. **For you to do:** Write a function to choose `C`. It will be invoked as follows:* `c, err = choose_parameter(x,y,k)`where* `x,y` is the training data* `k` is the number of folds of cross-validation* `c` is chosen value of the parameter `C`* `err` is the cross-validation error estimate at `c`Note: This is a tricky business because a priori, even the order of magnitude of `C` is unknown. Should it be 0.0001 or 10000? You might want to think about trying multiple values that are arranged in a geometric progression (such as powers of ten). *In addition to returning a specific value of `C`, your function should **plot** the cross-validation errors for all the values of `C` it tried out (possibly using a log-scale for the `C`-axis).*
def choose_parameter(x,y,k): C = [0.0001,0.001,0.01,0.1,1,10,100,1000,10000] err=[] for c in C: err.append(cross_validation_error(x,y,c,k)) err_min,cc=min(list(zip(err,C))) #C value for minimum error plt.plot(np.log(C),err) plt.xlabel("Log(C)") plt.ylabel("Corresponding error") return cc,err_min
_____no_output_____
MIT
Assignment 6/sentiment_svm/sentiment-svm.ipynb
ksopan/Edx_Machine_Learning_DSE220x
Now let's try out your routine!
c, err = choose_parameter(train_data, train_labels, 10) print("Choice of C: ", c) print("Cross-validation error estimate: ", err) ## Train it and test it clf = svm.LinearSVC(C=c, loss='hinge') clf.fit(train_data, train_labels) preds = clf.predict(test_data) error = float(np.sum((preds > 0.0) != (test_labels > 0.0)))/len(test_labels) print("Test error: ", error)
Choice of C: 1 Cross-validation error estimate: 0.18554216867469878 Test error: 0.152
MIT
Assignment 6/sentiment_svm/sentiment-svm.ipynb
ksopan/Edx_Machine_Learning_DSE220x
Distribución normal teórica$$P(X) = \frac{1}{\sigma \sqrt{2 \pi}} \exp{\left[-\frac{1}{2}\left(\frac{X-\mu}{\sigma} \right)^2 \right]}$$* $\mu$: media de la distribución* $\sigma$: desviación estándar de la distribución
# definimos nuestra distribución gaussiana def gaussian(x, mu, sigma): return 1/(sigma*np.sqrt(2*np.pi))*np.exp(-0.5*pow((x-mu)/sigma,2)) x = np.arange(-4,4,0.1) y = gaussian(x, 0.0, 1.0) plt.plot(x, y) # usando scipy dist = norm(0, 1) x = np.arange(-4,4,0.1) y = [dist.pdf(value) for value in x] plt.plot(x, y) # calculando la distribución acumulada dist = norm(0, 1) x = np.arange(-4,4,0.1) y = [dist.cdf(value) for value in x] plt.plot(x, y)
_____no_output_____
MIT
probability/probability-course/notebooks/[Clase9]Distribucion_normal.ipynb
Elkinmt19/data-science-dojo
Distribución normal (gausiana) a partir de los datos* *El archivo excel* lo puedes descargar en esta página: https://seattlecentral.edu/qelp/sets/057/057.html
df = pd.read_excel('s057.xls') arr = df['Normally Distributed Housefly Wing Lengths'].values[4:] values, dist = np.unique(arr, return_counts=True) print(values) plt.bar(values, dist) # estimación de la distribución de probabilidad mu = arr.mean() #distribución teórica sigma = arr.std() dist = norm(mu, sigma) x = np.arange(30,60,0.1) y = [dist.pdf(value) for value in x] plt.plot(x, y) # datos values, dist = np.unique(arr, return_counts=True) plt.bar(values, dist/len(arr))
_____no_output_____
MIT
probability/probability-course/notebooks/[Clase9]Distribucion_normal.ipynb
Elkinmt19/data-science-dojo
ANS -1
df_1['diff_in_days'] = df_1['Cut Off Date'] - df_1['Borrower DOB (MM/DD/YYYY)'] df_1['diff_in_years'] = df_1["diff_in_days"] / timedelta(days=365) avg_borrower_age = df_1.groupby('Product Group')['diff_in_years'].mean() avg_borrower_age df_1['orig_year'] = df_1['Origination Date'].dt.year origination_year = df_1.groupby('Product Group').agg({'orig_year':min}) origination_year total_accounts = df_1.groupby('Product Group').size().reset_index() total_accounts.rename(columns={0:'Total Accounts'},inplace = True) total_accounts df_3 = pd.merge(df_1,df_2,on='LoanID',how='inner') total_balances = df_3.groupby('Product Group').agg({'Origination Balance':sum,'Outstanding Balance':sum}) total_balances innsured_loans = df_1.groupby('Product Group')['Insurance'].apply(lambda x: (x=='Y').sum()).reset_index(name='Insured Loans') innsured_loans max_maturity_date = df_1.groupby('Product Group').agg({'Loan MaturityDate':max}) df_4 = pd.merge(max_maturity_date,df_1,on=['Product Group','Loan MaturityDate'],how='inner') loan_id_maturity = df_4.drop_duplicates(subset = ['Product Group', 'Loan MaturityDate'], keep = 'first').reset_index(drop = True) loanID_max_maturity = loan_id_maturity[['Product Group','LoanID']] loanID_max_maturity
_____no_output_____
MIT
Equipped_AI_Test.ipynb
VAD3R-95/Hackathons_and_Interviews
ANS -2
df_test = [origination_year,innsured_loans,loanID_max_maturity,total_balances,total_accounts] df_ans_2 = reduce(lambda left,right: pd.merge(left,right,on=['Product Group'],how='inner'), df_test) df_ans_2
_____no_output_____
MIT
Equipped_AI_Test.ipynb
VAD3R-95/Hackathons_and_Interviews
ANS -3
max_originating_balance = df_1.groupby('Product Group').agg({'Origination Balance':max}) df_merged = pd.merge(max_originating_balance,df_1,on=['Product Group','Origination Balance'],how='inner') loan_id_originating_balance = df_merged.drop_duplicates(subset = ['Product Group', 'Origination Balance'], keep = 'first').reset_index(drop = True) loanID_max_originating_balance = loan_id_originating_balance[['Product Group','LoanID']] loanID_max_originating_balance
_____no_output_____
MIT
Equipped_AI_Test.ipynb
VAD3R-95/Hackathons_and_Interviews
ANS -4
df_ques3 = pd.merge(df_1,df_2,on='LoanID',how='inner') df_ans_3 = df_ques3.groupby(['Product Group']).apply(lambda x: x['Outstanding Balance'].sum()/x['Origination Balance'].sum()).reset_index(name='Balance Ammortized') df_ans_3
_____no_output_____
MIT
Equipped_AI_Test.ipynb
VAD3R-95/Hackathons_and_Interviews
Transfer Learning Template
%load_ext autoreload %autoreload 2 %matplotlib inline import os, json, sys, time, random import numpy as np import torch from torch.optim import Adam from easydict import EasyDict import matplotlib.pyplot as plt from steves_models.steves_ptn import Steves_Prototypical_Network from steves_utils.lazy_iterable_wrapper import Lazy_Iterable_Wrapper from steves_utils.iterable_aggregator import Iterable_Aggregator from steves_utils.ptn_train_eval_test_jig import PTN_Train_Eval_Test_Jig from steves_utils.torch_sequential_builder import build_sequential from steves_utils.torch_utils import get_dataset_metrics, ptn_confusion_by_domain_over_dataloader from steves_utils.utils_v2 import (per_domain_accuracy_from_confusion, get_datasets_base_path) from steves_utils.PTN.utils import independent_accuracy_assesment from torch.utils.data import DataLoader from steves_utils.stratified_dataset.episodic_accessor import Episodic_Accessor_Factory from steves_utils.ptn_do_report import ( get_loss_curve, get_results_table, get_parameters_table, get_domain_accuracies, ) from steves_utils.transforms import get_chained_transform
_____no_output_____
MIT
experiments/tl_1v2/cores-oracle.run1.framed/trials/14/trial.ipynb
stevester94/csc500-notebooks
Allowed ParametersThese are allowed parameters, not defaultsEach of these values need to be present in the injected parameters (the notebook will raise an exception if they are not present)Papermill uses the cell tag "parameters" to inject the real parameters below this cell.Enable tags to see what I mean
required_parameters = { "experiment_name", "lr", "device", "seed", "dataset_seed", "n_shot", "n_query", "n_way", "train_k_factor", "val_k_factor", "test_k_factor", "n_epoch", "patience", "criteria_for_best", "x_net", "datasets", "torch_default_dtype", "NUM_LOGS_PER_EPOCH", "BEST_MODEL_PATH", "x_shape", } from steves_utils.CORES.utils import ( ALL_NODES, ALL_NODES_MINIMUM_1000_EXAMPLES, ALL_DAYS ) from steves_utils.ORACLE.utils_v2 import ( ALL_DISTANCES_FEET_NARROWED, ALL_RUNS, ALL_SERIAL_NUMBERS, ) standalone_parameters = {} standalone_parameters["experiment_name"] = "STANDALONE PTN" standalone_parameters["lr"] = 0.001 standalone_parameters["device"] = "cuda" standalone_parameters["seed"] = 1337 standalone_parameters["dataset_seed"] = 1337 standalone_parameters["n_way"] = 8 standalone_parameters["n_shot"] = 3 standalone_parameters["n_query"] = 2 standalone_parameters["train_k_factor"] = 1 standalone_parameters["val_k_factor"] = 2 standalone_parameters["test_k_factor"] = 2 standalone_parameters["n_epoch"] = 50 standalone_parameters["patience"] = 10 standalone_parameters["criteria_for_best"] = "source_loss" standalone_parameters["datasets"] = [ { "labels": ALL_SERIAL_NUMBERS, "domains": ALL_DISTANCES_FEET_NARROWED, "num_examples_per_domain_per_label": 100, "pickle_path": os.path.join(get_datasets_base_path(), "oracle.Run1_framed_2000Examples_stratified_ds.2022A.pkl"), "source_or_target_dataset": "source", "x_transforms": ["unit_mag", "minus_two"], "episode_transforms": [], "domain_prefix": "ORACLE_" }, { "labels": ALL_NODES, "domains": ALL_DAYS, "num_examples_per_domain_per_label": 100, "pickle_path": os.path.join(get_datasets_base_path(), "cores.stratified_ds.2022A.pkl"), "source_or_target_dataset": "target", "x_transforms": ["unit_power", "times_zero"], "episode_transforms": [], "domain_prefix": "CORES_" } ] standalone_parameters["torch_default_dtype"] = "torch.float32" standalone_parameters["x_net"] = [ {"class": "nnReshape", "kargs": {"shape":[-1, 1, 2, 256]}}, {"class": "Conv2d", "kargs": { "in_channels":1, "out_channels":256, "kernel_size":(1,7), "bias":False, "padding":(0,3), },}, {"class": "ReLU", "kargs": {"inplace": True}}, {"class": "BatchNorm2d", "kargs": {"num_features":256}}, {"class": "Conv2d", "kargs": { "in_channels":256, "out_channels":80, "kernel_size":(2,7), "bias":True, "padding":(0,3), },}, {"class": "ReLU", "kargs": {"inplace": True}}, {"class": "BatchNorm2d", "kargs": {"num_features":80}}, {"class": "Flatten", "kargs": {}}, {"class": "Linear", "kargs": {"in_features": 80*256, "out_features": 256}}, # 80 units per IQ pair {"class": "ReLU", "kargs": {"inplace": True}}, {"class": "BatchNorm1d", "kargs": {"num_features":256}}, {"class": "Linear", "kargs": {"in_features": 256, "out_features": 256}}, ] # Parameters relevant to results # These parameters will basically never need to change standalone_parameters["NUM_LOGS_PER_EPOCH"] = 10 standalone_parameters["BEST_MODEL_PATH"] = "./best_model.pth" # Parameters parameters = { "experiment_name": "tl_1v2:cores-oracle.run1.framed", "device": "cuda", "lr": 0.0001, "n_shot": 3, "n_query": 2, "train_k_factor": 3, "val_k_factor": 2, "test_k_factor": 2, "torch_default_dtype": "torch.float32", "n_epoch": 50, "patience": 3, "criteria_for_best": "target_accuracy", "x_net": [ {"class": "nnReshape", "kargs": {"shape": [-1, 1, 2, 256]}}, { "class": "Conv2d", "kargs": { "in_channels": 1, "out_channels": 256, "kernel_size": [1, 7], "bias": False, "padding": [0, 3], }, }, {"class": "ReLU", "kargs": {"inplace": True}}, {"class": "BatchNorm2d", "kargs": {"num_features": 256}}, { "class": "Conv2d", "kargs": { "in_channels": 256, "out_channels": 80, "kernel_size": [2, 7], "bias": True, "padding": [0, 3], }, }, {"class": "ReLU", "kargs": {"inplace": True}}, {"class": "BatchNorm2d", "kargs": {"num_features": 80}}, {"class": "Flatten", "kargs": {}}, {"class": "Linear", "kargs": {"in_features": 20480, "out_features": 256}}, {"class": "ReLU", "kargs": {"inplace": True}}, {"class": "BatchNorm1d", "kargs": {"num_features": 256}}, {"class": "Linear", "kargs": {"in_features": 256, "out_features": 256}}, ], "NUM_LOGS_PER_EPOCH": 10, "BEST_MODEL_PATH": "./best_model.pth", "n_way": 16, "datasets": [ { "labels": [ "1-10.", "1-11.", "1-15.", "1-16.", "1-17.", "1-18.", "1-19.", "10-4.", "10-7.", "11-1.", "11-14.", "11-17.", "11-20.", "11-7.", "13-20.", "13-8.", "14-10.", "14-11.", "14-14.", "14-7.", "15-1.", "15-20.", "16-1.", "16-16.", "17-10.", "17-11.", "17-2.", "19-1.", "19-16.", "19-19.", "19-20.", "19-3.", "2-10.", "2-11.", "2-17.", "2-18.", "2-20.", "2-3.", "2-4.", "2-5.", "2-6.", "2-7.", "2-8.", "3-13.", "3-18.", "3-3.", "4-1.", "4-10.", "4-11.", "4-19.", "5-5.", "6-15.", "7-10.", "7-14.", "8-18.", "8-20.", "8-3.", "8-8.", ], "domains": [1, 2, 3, 4, 5], "num_examples_per_domain_per_label": -1, "pickle_path": "/root/csc500-main/datasets/cores.stratified_ds.2022A.pkl", "source_or_target_dataset": "source", "x_transforms": [], "episode_transforms": [], "domain_prefix": "CORES_", }, { "labels": [ "3123D52", "3123D65", "3123D79", "3123D80", "3123D54", "3123D70", "3123D7B", "3123D89", "3123D58", "3123D76", "3123D7D", "3123EFE", "3123D64", "3123D78", "3123D7E", "3124E4A", ], "domains": [32, 38, 8, 44, 14, 50, 20, 26], "num_examples_per_domain_per_label": 2000, "pickle_path": "/root/csc500-main/datasets/oracle.Run1_framed_2000Examples_stratified_ds.2022A.pkl", "source_or_target_dataset": "target", "x_transforms": [], "episode_transforms": [], "domain_prefix": "ORACLE.run1_", }, ], "dataset_seed": 154325, "seed": 154325, } # Set this to True if you want to run this template directly STANDALONE = False if STANDALONE: print("parameters not injected, running with standalone_parameters") parameters = standalone_parameters if not 'parameters' in locals() and not 'parameters' in globals(): raise Exception("Parameter injection failed") #Use an easy dict for all the parameters p = EasyDict(parameters) if "x_shape" not in p: p.x_shape = [2,256] # Default to this if we dont supply x_shape supplied_keys = set(p.keys()) if supplied_keys != required_parameters: print("Parameters are incorrect") if len(supplied_keys - required_parameters)>0: print("Shouldn't have:", str(supplied_keys - required_parameters)) if len(required_parameters - supplied_keys)>0: print("Need to have:", str(required_parameters - supplied_keys)) raise RuntimeError("Parameters are incorrect") ################################### # Set the RNGs and make it all deterministic ################################### np.random.seed(p.seed) random.seed(p.seed) torch.manual_seed(p.seed) torch.use_deterministic_algorithms(True) ########################################### # The stratified datasets honor this ########################################### torch.set_default_dtype(eval(p.torch_default_dtype)) ################################### # Build the network(s) # Note: It's critical to do this AFTER setting the RNG ################################### x_net = build_sequential(p.x_net) start_time_secs = time.time() p.domains_source = [] p.domains_target = [] train_original_source = [] val_original_source = [] test_original_source = [] train_original_target = [] val_original_target = [] test_original_target = [] # global_x_transform_func = lambda x: normalize(x.to(torch.get_default_dtype()), "unit_power") # unit_power, unit_mag # global_x_transform_func = lambda x: normalize(x, "unit_power") # unit_power, unit_mag def add_dataset( labels, domains, pickle_path, x_transforms, episode_transforms, domain_prefix, num_examples_per_domain_per_label, source_or_target_dataset:str, iterator_seed=p.seed, dataset_seed=p.dataset_seed, n_shot=p.n_shot, n_way=p.n_way, n_query=p.n_query, train_val_test_k_factors=(p.train_k_factor,p.val_k_factor,p.test_k_factor), ): if x_transforms == []: x_transform = None else: x_transform = get_chained_transform(x_transforms) if episode_transforms == []: episode_transform = None else: raise Exception("episode_transforms not implemented") episode_transform = lambda tup, _prefix=domain_prefix: (_prefix + str(tup[0]), tup[1]) eaf = Episodic_Accessor_Factory( labels=labels, domains=domains, num_examples_per_domain_per_label=num_examples_per_domain_per_label, iterator_seed=iterator_seed, dataset_seed=dataset_seed, n_shot=n_shot, n_way=n_way, n_query=n_query, train_val_test_k_factors=train_val_test_k_factors, pickle_path=pickle_path, x_transform_func=x_transform, ) train, val, test = eaf.get_train(), eaf.get_val(), eaf.get_test() train = Lazy_Iterable_Wrapper(train, episode_transform) val = Lazy_Iterable_Wrapper(val, episode_transform) test = Lazy_Iterable_Wrapper(test, episode_transform) if source_or_target_dataset=="source": train_original_source.append(train) val_original_source.append(val) test_original_source.append(test) p.domains_source.extend( [domain_prefix + str(u) for u in domains] ) elif source_or_target_dataset=="target": train_original_target.append(train) val_original_target.append(val) test_original_target.append(test) p.domains_target.extend( [domain_prefix + str(u) for u in domains] ) else: raise Exception(f"invalid source_or_target_dataset: {source_or_target_dataset}") for ds in p.datasets: add_dataset(**ds) # from steves_utils.CORES.utils import ( # ALL_NODES, # ALL_NODES_MINIMUM_1000_EXAMPLES, # ALL_DAYS # ) # add_dataset( # labels=ALL_NODES, # domains = ALL_DAYS, # num_examples_per_domain_per_label=100, # pickle_path=os.path.join(get_datasets_base_path(), "cores.stratified_ds.2022A.pkl"), # source_or_target_dataset="target", # x_transform_func=global_x_transform_func, # domain_modifier=lambda u: f"cores_{u}" # ) # from steves_utils.ORACLE.utils_v2 import ( # ALL_DISTANCES_FEET, # ALL_RUNS, # ALL_SERIAL_NUMBERS, # ) # add_dataset( # labels=ALL_SERIAL_NUMBERS, # domains = list(set(ALL_DISTANCES_FEET) - {2,62}), # num_examples_per_domain_per_label=100, # pickle_path=os.path.join(get_datasets_base_path(), "oracle.Run2_framed_2000Examples_stratified_ds.2022A.pkl"), # source_or_target_dataset="source", # x_transform_func=global_x_transform_func, # domain_modifier=lambda u: f"oracle1_{u}" # ) # from steves_utils.ORACLE.utils_v2 import ( # ALL_DISTANCES_FEET, # ALL_RUNS, # ALL_SERIAL_NUMBERS, # ) # add_dataset( # labels=ALL_SERIAL_NUMBERS, # domains = list(set(ALL_DISTANCES_FEET) - {2,62,56}), # num_examples_per_domain_per_label=100, # pickle_path=os.path.join(get_datasets_base_path(), "oracle.Run2_framed_2000Examples_stratified_ds.2022A.pkl"), # source_or_target_dataset="source", # x_transform_func=global_x_transform_func, # domain_modifier=lambda u: f"oracle2_{u}" # ) # add_dataset( # labels=list(range(19)), # domains = [0,1,2], # num_examples_per_domain_per_label=100, # pickle_path=os.path.join(get_datasets_base_path(), "metehan.stratified_ds.2022A.pkl"), # source_or_target_dataset="target", # x_transform_func=global_x_transform_func, # domain_modifier=lambda u: f"met_{u}" # ) # # from steves_utils.wisig.utils import ( # # ALL_NODES_MINIMUM_100_EXAMPLES, # # ALL_NODES_MINIMUM_500_EXAMPLES, # # ALL_NODES_MINIMUM_1000_EXAMPLES, # # ALL_DAYS # # ) # import steves_utils.wisig.utils as wisig # add_dataset( # labels=wisig.ALL_NODES_MINIMUM_100_EXAMPLES, # domains = wisig.ALL_DAYS, # num_examples_per_domain_per_label=100, # pickle_path=os.path.join(get_datasets_base_path(), "wisig.node3-19.stratified_ds.2022A.pkl"), # source_or_target_dataset="target", # x_transform_func=global_x_transform_func, # domain_modifier=lambda u: f"wisig_{u}" # ) ################################### # Build the dataset ################################### train_original_source = Iterable_Aggregator(train_original_source, p.seed) val_original_source = Iterable_Aggregator(val_original_source, p.seed) test_original_source = Iterable_Aggregator(test_original_source, p.seed) train_original_target = Iterable_Aggregator(train_original_target, p.seed) val_original_target = Iterable_Aggregator(val_original_target, p.seed) test_original_target = Iterable_Aggregator(test_original_target, p.seed) # For CNN We only use X and Y. And we only train on the source. # Properly form the data using a transform lambda and Lazy_Iterable_Wrapper. Finally wrap them in a dataloader transform_lambda = lambda ex: ex[1] # Original is (<domain>, <episode>) so we strip down to episode only train_processed_source = Lazy_Iterable_Wrapper(train_original_source, transform_lambda) val_processed_source = Lazy_Iterable_Wrapper(val_original_source, transform_lambda) test_processed_source = Lazy_Iterable_Wrapper(test_original_source, transform_lambda) train_processed_target = Lazy_Iterable_Wrapper(train_original_target, transform_lambda) val_processed_target = Lazy_Iterable_Wrapper(val_original_target, transform_lambda) test_processed_target = Lazy_Iterable_Wrapper(test_original_target, transform_lambda) datasets = EasyDict({ "source": { "original": {"train":train_original_source, "val":val_original_source, "test":test_original_source}, "processed": {"train":train_processed_source, "val":val_processed_source, "test":test_processed_source} }, "target": { "original": {"train":train_original_target, "val":val_original_target, "test":test_original_target}, "processed": {"train":train_processed_target, "val":val_processed_target, "test":test_processed_target} }, }) from steves_utils.transforms import get_average_magnitude, get_average_power print(set([u for u,_ in val_original_source])) print(set([u for u,_ in val_original_target])) s_x, s_y, q_x, q_y, _ = next(iter(train_processed_source)) print(s_x) # for ds in [ # train_processed_source, # val_processed_source, # test_processed_source, # train_processed_target, # val_processed_target, # test_processed_target # ]: # for s_x, s_y, q_x, q_y, _ in ds: # for X in (s_x, q_x): # for x in X: # assert np.isclose(get_average_magnitude(x.numpy()), 1.0) # assert np.isclose(get_average_power(x.numpy()), 1.0) ################################### # Build the model ################################### # easfsl only wants a tuple for the shape model = Steves_Prototypical_Network(x_net, device=p.device, x_shape=tuple(p.x_shape)) optimizer = Adam(params=model.parameters(), lr=p.lr) ################################### # train ################################### jig = PTN_Train_Eval_Test_Jig(model, p.BEST_MODEL_PATH, p.device) jig.train( train_iterable=datasets.source.processed.train, source_val_iterable=datasets.source.processed.val, target_val_iterable=datasets.target.processed.val, num_epochs=p.n_epoch, num_logs_per_epoch=p.NUM_LOGS_PER_EPOCH, patience=p.patience, optimizer=optimizer, criteria_for_best=p.criteria_for_best, ) total_experiment_time_secs = time.time() - start_time_secs ################################### # Evaluate the model ################################### source_test_label_accuracy, source_test_label_loss = jig.test(datasets.source.processed.test) target_test_label_accuracy, target_test_label_loss = jig.test(datasets.target.processed.test) source_val_label_accuracy, source_val_label_loss = jig.test(datasets.source.processed.val) target_val_label_accuracy, target_val_label_loss = jig.test(datasets.target.processed.val) history = jig.get_history() total_epochs_trained = len(history["epoch_indices"]) val_dl = Iterable_Aggregator((datasets.source.original.val,datasets.target.original.val)) confusion = ptn_confusion_by_domain_over_dataloader(model, p.device, val_dl) per_domain_accuracy = per_domain_accuracy_from_confusion(confusion) # Add a key to per_domain_accuracy for if it was a source domain for domain, accuracy in per_domain_accuracy.items(): per_domain_accuracy[domain] = { "accuracy": accuracy, "source?": domain in p.domains_source } # Do an independent accuracy assesment JUST TO BE SURE! # _source_test_label_accuracy = independent_accuracy_assesment(model, datasets.source.processed.test, p.device) # _target_test_label_accuracy = independent_accuracy_assesment(model, datasets.target.processed.test, p.device) # _source_val_label_accuracy = independent_accuracy_assesment(model, datasets.source.processed.val, p.device) # _target_val_label_accuracy = independent_accuracy_assesment(model, datasets.target.processed.val, p.device) # assert(_source_test_label_accuracy == source_test_label_accuracy) # assert(_target_test_label_accuracy == target_test_label_accuracy) # assert(_source_val_label_accuracy == source_val_label_accuracy) # assert(_target_val_label_accuracy == target_val_label_accuracy) experiment = { "experiment_name": p.experiment_name, "parameters": dict(p), "results": { "source_test_label_accuracy": source_test_label_accuracy, "source_test_label_loss": source_test_label_loss, "target_test_label_accuracy": target_test_label_accuracy, "target_test_label_loss": target_test_label_loss, "source_val_label_accuracy": source_val_label_accuracy, "source_val_label_loss": source_val_label_loss, "target_val_label_accuracy": target_val_label_accuracy, "target_val_label_loss": target_val_label_loss, "total_epochs_trained": total_epochs_trained, "total_experiment_time_secs": total_experiment_time_secs, "confusion": confusion, "per_domain_accuracy": per_domain_accuracy, }, "history": history, "dataset_metrics": get_dataset_metrics(datasets, "ptn"), } ax = get_loss_curve(experiment) plt.show() get_results_table(experiment) get_domain_accuracies(experiment) print("Source Test Label Accuracy:", experiment["results"]["source_test_label_accuracy"], "Target Test Label Accuracy:", experiment["results"]["target_test_label_accuracy"]) print("Source Val Label Accuracy:", experiment["results"]["source_val_label_accuracy"], "Target Val Label Accuracy:", experiment["results"]["target_val_label_accuracy"]) json.dumps(experiment)
_____no_output_____
MIT
experiments/tl_1v2/cores-oracle.run1.framed/trials/14/trial.ipynb
stevester94/csc500-notebooks
Logistic Regression on 'HEART DISEASE' Dataset Elif Cansu YILDIZ
from pyspark.sql import SparkSession from pyspark.sql.types import * from pyspark.sql.functions import col, countDistinct from pyspark.ml.feature import OneHotEncoderEstimator, StringIndexer, VectorAssembler, MinMaxScaler, IndexToString from pyspark.ml import Pipeline from pyspark.ml.classification import LogisticRegression from pyspark.ml.evaluation import BinaryClassificationEvaluator, MulticlassClassificationEvaluator spark = SparkSession\ .builder\ .appName("MachineLearningExample")\ .getOrCreate()
_____no_output_____
MIT
Spark/HeartDataset-MLlib.ipynb
elifcansuyildiz/MachineLearningNotebooks
The dataset used is 'Heart Disease' dataset from Kaggle. You can get from this [link](https://www.kaggle.com/ronitf/heart-disease-uci).
df = spark.read.csv('datasets/heart.csv', header = True, inferSchema = True) #Kaggle Dataset df.printSchema() df.show(5)
root |-- age: integer (nullable = true) |-- sex: integer (nullable = true) |-- cp: integer (nullable = true) |-- trestbps: integer (nullable = true) |-- chol: integer (nullable = true) |-- fbs: integer (nullable = true) |-- restecg: integer (nullable = true) |-- thalach: integer (nullable = true) |-- exang: integer (nullable = true) |-- oldpeak: double (nullable = true) |-- slope: integer (nullable = true) |-- ca: integer (nullable = true) |-- thal: integer (nullable = true) |-- target: integer (nullable = true) +---+---+---+--------+----+---+-------+-------+-----+-------+-----+---+----+------+ |age|sex| cp|trestbps|chol|fbs|restecg|thalach|exang|oldpeak|slope| ca|thal|target| +---+---+---+--------+----+---+-------+-------+-----+-------+-----+---+----+------+ | 63| 1| 3| 145| 233| 1| 0| 150| 0| 2.3| 0| 0| 1| 1| | 37| 1| 2| 130| 250| 0| 1| 187| 0| 3.5| 0| 0| 2| 1| | 41| 0| 1| 130| 204| 0| 0| 172| 0| 1.4| 2| 0| 2| 1| | 56| 1| 1| 120| 236| 0| 1| 178| 0| 0.8| 2| 0| 2| 1| | 57| 0| 0| 120| 354| 0| 1| 163| 1| 0.6| 2| 0| 2| 1| +---+---+---+--------+----+---+-------+-------+-----+-------+-----+---+----+------+ only showing top 5 rows
MIT
Spark/HeartDataset-MLlib.ipynb
elifcansuyildiz/MachineLearningNotebooks
__HOW MANY DISTINCT VALUE DO COLUMNS HAVE?__
df.agg(*(countDistinct(col(c)).alias(c) for c in df.columns)).show()
+---+---+---+--------+----+---+-------+-------+-----+-------+-----+---+----+------+ |age|sex| cp|trestbps|chol|fbs|restecg|thalach|exang|oldpeak|slope| ca|thal|target| +---+---+---+--------+----+---+-------+-------+-----+-------+-----+---+----+------+ | 41| 2| 4| 49| 152| 2| 3| 91| 2| 40| 3| 5| 4| 2| +---+---+---+--------+----+---+-------+-------+-----+-------+-----+---+----+------+
MIT
Spark/HeartDataset-MLlib.ipynb
elifcansuyildiz/MachineLearningNotebooks
__SET the Label Column and Input Columns__
labelColumn = "thal" input_columns = [t[0] for t in df.dtypes if t[0]!=labelColumn] # Split the data into training and test sets (30% held out for testing) (trainingData, testData) = df.randomSplit([0.7, 0.3]) print("total data count: ", df.count()) print("train data count: ", trainingData.count()) print("test data count: ", testData.count())
total data count: 303 train data count: 218 test data count: 85
MIT
Spark/HeartDataset-MLlib.ipynb
elifcansuyildiz/MachineLearningNotebooks
__TRAINING__
assembler = VectorAssembler(inputCols = input_columns, outputCol='features') lr = LogisticRegression(featuresCol='features', labelCol=labelColumn, maxIter=10, regParam=0.3, elasticNetParam=0.8) stages = [assembler, lr] partialPipeline = Pipeline().setStages(stages) model = partialPipeline.fit(trainingData)
_____no_output_____
MIT
Spark/HeartDataset-MLlib.ipynb
elifcansuyildiz/MachineLearningNotebooks
__MAKE PREDICTIONS__
predictions = model.transform(testData) predictionss = predictions.select("probability", "rawPrediction", "prediction", col(labelColumn).alias("label")) predictionss[["probability", "prediction", "label"]].show(5, truncate=False)
+--------------------------------------------------------------------------------+----------+-----+ |probability |prediction|label| +--------------------------------------------------------------------------------+----------+-----+ |[0.011082788245690223,0.05729867172540959,0.5740584251416755,0.3575601148872248]|2.0 |2 | |[0.011082788245690223,0.05729867172540959,0.5740584251416755,0.3575601148872248]|2.0 |3 | |[0.011082788245690223,0.05729867172540959,0.5740584251416755,0.3575601148872248]|2.0 |2 | |[0.011082788245690223,0.05729867172540959,0.5740584251416755,0.3575601148872248]|2.0 |2 | |[0.012875234771605678,0.06656572644096996,0.5051698495258184,0.4153891892616059]|2.0 |3 | +--------------------------------------------------------------------------------+----------+-----+ only showing top 5 rows
MIT
Spark/HeartDataset-MLlib.ipynb
elifcansuyildiz/MachineLearningNotebooks
__EVALUATION for Binary Classification__
evaluator = BinaryClassificationEvaluator(labelCol="label", rawPredictionCol="prediction", metricName="areaUnderROC") areaUnderROC = evaluator.evaluate(predictionss) print("Area under ROC = %g" % areaUnderROC) evaluator = BinaryClassificationEvaluator(labelCol="label", rawPredictionCol="prediction", metricName="areaUnderPR") areaUnderPR = evaluator.evaluate(predictionss) print("areaUnderPR = %g" % areaUnderPR)
_____no_output_____
MIT
Spark/HeartDataset-MLlib.ipynb
elifcansuyildiz/MachineLearningNotebooks
__EVALUATION for Multiclass Classification__
evaluator = MulticlassClassificationEvaluator(labelCol="label", predictionCol="prediction", metricName="accuracy") accuracy = evaluator.evaluate(predictionss) print("accuracy = %g" % accuracy) evaluator = MulticlassClassificationEvaluator(labelCol="label", predictionCol="prediction", metricName="f1") f1 = evaluator.evaluate(predictionss) print("f1 = %g" % f1) evaluator = MulticlassClassificationEvaluator(labelCol="label", predictionCol="prediction", metricName="weightedPrecision") weightedPrecision = evaluator.evaluate(predictionss) print("weightedPrecision = %g" % weightedPrecision) evaluator = MulticlassClassificationEvaluator(labelCol="label", predictionCol="prediction", metricName="weightedRecall") weightedRecall = evaluator.evaluate(predictionss) print("weightedRecall = %g" % weightedRecall)
accuracy = 0.564706 f1 = 0.407607 weightedPrecision = 0.318893 weightedRecall = 0.564706
MIT
Spark/HeartDataset-MLlib.ipynb
elifcansuyildiz/MachineLearningNotebooks
一个完整的机器学习项目
import os import tarfile import urllib import pandas as pd import numpy as np from CategoricalEncoder import CategoricalEncoder
_____no_output_____
MIT
sklearn-guide/chapter03/ml-3.ipynb
a630140621/machine-learning-course
下载数据集
DOWNLOAD_ROOT = "https://raw.githubusercontent.com/ageron/handson-ml/master/" HOUSING_PATH = "../datasets/housing" HOUSING_URL = DOWNLOAD_ROOT + HOUSING_PATH + "/housing.tgz" def fetch_housing_data(housing_url=HOUSING_URL, housing_path=HOUSING_PATH): if os.path.isfile(housing_path + "/housing.tgz"): return print("already download") if not os.path.isdir(housing_path): os.makedirs(housing_path) tgz_path = os.path.join(housing_path, "housing.tgz") urllib.request.urlretrieve(housing_url, tgz_path) housing_tgz = tarfile.open(tgz_path) housing_tgz.extractall(path=housing_path) housing_tgz.close() fetch_housing_data()
already download
MIT
sklearn-guide/chapter03/ml-3.ipynb
a630140621/machine-learning-course
加载数据集
def load_housing_data(housing_path=HOUSING_PATH): csv_path = os.path.join(housing_path, "housing.csv") return pd.read_csv(csv_path) housing_data = load_housing_data() housing_data.head() housing_data.info() housing_data["ocean_proximity"].value_counts() housing_data.describe()
_____no_output_____
MIT
sklearn-guide/chapter03/ml-3.ipynb
a630140621/machine-learning-course
绘图
%matplotlib inline import matplotlib.pyplot as plt housing_data.hist(bins=50, figsize=(20, 15))
_____no_output_____
MIT
sklearn-guide/chapter03/ml-3.ipynb
a630140621/machine-learning-course
创建测试集
from sklearn.model_selection import train_test_split train_set, test_set = train_test_split(housing_data, test_size=0.2, random_state=42) housing = train_set.copy() housing.plot(kind="scatter" , x="longitude", y="latitude", alpha= 0.3, s=housing[ "population" ]/100, label= "population", c="median_house_value", cmap=plt.get_cmap("jet"), colorbar=True)
_____no_output_____
MIT
sklearn-guide/chapter03/ml-3.ipynb
a630140621/machine-learning-course
皮尔逊相关系数因为数据集并不是非常大,你以很容易地使用 `corr()` 方法计算出每对属性间的标准相关系数(standard correlation coefficient,也称作皮尔逊相关系数。相关系数的范围是 -1 到 1。当接近 1 时,意味强正相关;例如,当收入中位数增加时,房价中位数也会增加。当相关系数接近 -1 时,意味强负相关;你可以看到,纬度和房价中位数有轻微的负相关性(即,越往北,房价越可能降低)。最后,相关系数接近 0,意味没有线性相关性。> 相关系数可能会完全忽略非线性关系
corr_matrix = housing.corr() corr_matrix["median_house_value"].sort_values(ascending=False)
_____no_output_____
MIT
sklearn-guide/chapter03/ml-3.ipynb
a630140621/machine-learning-course
创建一些新的特征
housing["rooms_per_household"] = housing["total_rooms"] / housing["households"] housing["bedrooms_per_room"] = housing["total_bedrooms"] / housing["total_rooms"] housing["population_per_household"] = housing["population"] / housing["households"] corr_matrix = housing.corr() corr_matrix["median_house_value"].sort_values(ascending=False)
_____no_output_____
MIT
sklearn-guide/chapter03/ml-3.ipynb
a630140621/machine-learning-course
为机器学习准备数据所有的数据处理 __只能在训练集上进行__,不能使用测试集数据。
housing = train_set.drop("median_house_value", axis=1) housing_labels = train_set["median_house_value"].copy()
_____no_output_____
MIT
sklearn-guide/chapter03/ml-3.ipynb
a630140621/machine-learning-course