markdown
stringlengths 0
1.02M
| code
stringlengths 0
832k
| output
stringlengths 0
1.02M
| license
stringlengths 3
36
| path
stringlengths 6
265
| repo_name
stringlengths 6
127
|
---|---|---|---|---|---|
We fit the O-C points measured above using MCMC by calling the run_mcmc() function We plot both the fit, as well as the triangle plot showing the two- (and one-)dimensional posterior distributions (these can be suppressed by setting the optional parameters "plot_oc" and "plot_triangle" to False) | sampler, fit_mcmc, oc_sigmas, param_means, param_sigmas, fit_at_points, K =\
octs.run_mcmc(oc_jd, oc_oc, oc_sd,
prior_ranges, pos,
nsteps = 31000, discard = 1000,
thin = 300, processes=1) | 100%|ββββββββββ| 31000/31000 [03:08<00:00, 164.32it/s]
100%|βββββββββββββββββββββββββββββββββββ| 20000/20000 [00:02<00:00, 8267.13it/s]
| MIT | 06498_oc.ipynb | gerhajdu/rrl_binaries_1 |
The estimated LTTE parameters are: | print("Orbital period: {:d} +- {:d} [d]".format(int(param_means[0]),
int(param_sigmas[0])))
print("Projected semi-major axis: {:.3f} +- {:.3f} [AU]".format(param_means[2]*173.144633,
param_sigmas[2]*173.144633))
print("Eccentricity: {:.3f} +- {:.3f}".format(param_means[3],
param_sigmas[3]))
print("Argumen of periastron: {:+4d} +- {:d} [deg]".format(int(param_means[4]*180/np.pi),
int(param_sigmas[4]*180/np.pi)))
print("Periastron passage time: {:d} +- {:d} [HJD-2450000]".format(int(param_means[1]),
int(param_sigmas[1])))
print("Period-change rate: {:+.3f} +- {:.3f} [d/Myr] ".format(param_means[7]*365.2422*2e6*period,
param_sigmas[7]*365.2422*2e6*period))
print("RV semi-amplitude: {:5.2f} +- {:.2f} [km/s]".format(K[0], K[1]))
print("Mass function: {:.5f} +- {:.5f} [M_Sun]".format(K[2], K[3])) | Orbital period: 2803 +- 3 [d]
Projected semi-major axis: 2.492 +- 0.010 [AU]
Eccentricity: 0.136 +- 0.008
Argumen of periastron: -76 +- 3 [deg]
Periastron passage time: 6538 +- 24 [HJD-2450000]
Period-change rate: -0.002 +- 0.005 [d/Myr]
RV semi-amplitude: 9.76 +- 0.04 [km/s]
Mass function: 0.26290 +- 0.00334 [M_Sun]
| MIT | 06498_oc.ipynb | gerhajdu/rrl_binaries_1 |
Consensus Optimization This notebook contains the code for the toy experiment in the paper [The Numerics of GANs](https://arxiv.org/abs/1705.10461). | %load_ext autoreload
%autoreload 2
import tensorflow as tf
from tensorflow.contrib import slim
import numpy as np
import scipy as sp
from scipy import stats
from matplotlib import pyplot as plt
import sys, os
from tqdm import tqdm_notebook
tf.reset_default_graph()
def kde(mu, tau, bbox=[-5, 5, -5, 5], save_file="", xlabel="", ylabel="", cmap='Blues'):
values = np.vstack([mu, tau])
kernel = sp.stats.gaussian_kde(values)
fig, ax = plt.subplots()
ax.axis(bbox)
ax.set_aspect(abs(bbox[1]-bbox[0])/abs(bbox[3]-bbox[2]))
ax.set_xlabel(xlabel)
ax.set_ylabel(ylabel)
plt.tick_params(
axis='x', # changes apply to the x-axis
which='both', # both major and minor ticks are affected
bottom='off', # ticks along the bottom edge are off
top='off', # ticks along the top edge are off
labelbottom='off') # labels along the bottom edge are off
plt.tick_params(
axis='y', # changes apply to the x-axis
which='both', # both major and minor ticks are affected
left='off', # ticks along the bottom edge are off
right='off', # ticks along the top edge are off
labelleft='off') # labels along the bottom edge are off
xx, yy = np.mgrid[bbox[0]:bbox[1]:300j, bbox[2]:bbox[3]:300j]
positions = np.vstack([xx.ravel(), yy.ravel()])
f = np.reshape(kernel(positions).T, xx.shape)
cfset = ax.contourf(xx, yy, f, cmap=cmap)
if save_file != "":
plt.savefig(save_file, bbox_inches='tight')
plt.close(fig)
else:
plt.show()
def complex_scatter(points, bbox=None, save_file="", xlabel="real part", ylabel="imaginary part", cmap='Blues'):
fig, ax = plt.subplots()
if bbox is not None:
ax.axis(bbox)
ax.set_xlabel(xlabel)
ax.set_ylabel(ylabel)
xx = [p.real for p in points]
yy = [p.imag for p in points]
plt.plot(xx, yy, 'X')
plt.grid()
if save_file != "":
plt.savefig(save_file, bbox_inches='tight')
plt.close(fig)
else:
plt.show()
# Parameters
learning_rate = 1e-4
reg_param = 10.
batch_size = 512
z_dim = 16
sigma = 0.01
method = 'conopt'
divergence = 'standard'
outdir = os.path.join('gifs', method)
niter = 50000
n_save = 500
bbox = [-1.6, 1.6, -1.6, 1.6]
do_eigen = True
# Target distribution
mus = np.vstack([np.cos(2*np.pi*k/8), np.sin(2*np.pi*k/8)] for k in range(batch_size))
x_real = mus + sigma*tf.random_normal([batch_size, 2])
# Model
def generator_func(z):
net = slim.fully_connected(z, 16)
net = slim.fully_connected(net, 16)
net = slim.fully_connected(net, 16)
net = slim.fully_connected(net, 16)
x = slim.fully_connected(net, 2, activation_fn=None)
return x
def discriminator_func(x):
# Network
net = slim.fully_connected(x, 16)
net = slim.fully_connected(net, 16)
net = slim.fully_connected(net, 16)
net = slim.fully_connected(net, 16)
logits = slim.fully_connected(net, 1, activation_fn=None)
out = tf.squeeze(logits, -1)
return out
generator = tf.make_template('generator', generator_func)
discriminator = tf.make_template('discriminator', discriminator_func)
z = tf.random_normal([batch_size, z_dim])
x_fake = generator(z)
d_out_real = discriminator(x_real)
d_out_fake = discriminator(x_fake)
# Loss
if divergence == 'standard':
d_loss_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(
logits=d_out_real, labels=tf.ones_like(d_out_real)
))
d_loss_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(
logits=d_out_fake, labels=tf.zeros_like(d_out_fake)
))
d_loss = d_loss_real + d_loss_fake
g_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(
logits=d_out_fake, labels=tf.ones_like(d_out_fake)
))
elif divergence == 'JS':
d_loss_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(
logits=d_out_real, labels=tf.ones_like(d_out_real)
))
d_loss_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(
logits=d_out_fake, labels=tf.zeros_like(d_out_fake)
))
d_loss = d_loss_real + d_loss_fake
g_loss = -d_loss
elif divergence == 'indicator':
d_loss = tf.reduce_mean(d_out_real - d_out_fake)
g_loss = -d_loss
else:
raise NotImplementedError
g_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='generator')
d_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='discriminator')
optimizer = tf.train.RMSPropOptimizer(learning_rate, use_locking=True)
# optimizer = tf.train.GradientDescentOptimizer(learning_rate, use_locking=True)
# Compute gradients
d_grads = tf.gradients(d_loss, d_vars)
g_grads = tf.gradients(g_loss, g_vars)
# Merge variable and gradient lists
variables = d_vars + g_vars
grads = d_grads + g_grads
if method == 'simga':
apply_vec = list(zip(grads, variables))
elif method == 'conopt':
# Reguliarizer
reg = 0.5 * sum(
tf.reduce_sum(tf.square(g)) for g in grads
)
# Jacobian times gradiant
Jgrads = tf.gradients(reg, variables)
apply_vec = [
(g + reg_param * Jg, v)
for (g, Jg, v) in zip(grads, Jgrads, variables) if Jg is not None
]
else:
raise NotImplementedError
with tf.control_dependencies([g for (g, v) in apply_vec]):
train_op = optimizer.apply_gradients(apply_vec)
if do_eigen:
jacobian_rows = []
g_grads = tf.gradients(g_loss, g_vars)
g_grads = [-g for g in g_grads]
d_grads = tf.gradients(d_loss, d_vars)
d_grads = [-g for g in d_grads]
for g in tqdm_notebook(g_grads + d_grads):
g = tf.reshape(g, [-1])
len_g = int(g.get_shape()[0])
for i in tqdm_notebook(range(len_g)):
g_row = tf.gradients(g[i], g_vars)
d_row = tf.gradients(g[i], d_vars)
jacobian_rows.append(g_row + d_row)
def get_J(J_rows):
J_rows_linear = [np.concatenate([g.flatten() for g in row]) for row in J_rows]
J = np.array(J_rows_linear)
return J
def process_J(J, save_file, bbox=None):
eig, eigv = np.linalg.eig(J)
eig_real = np.array([p.real for p in eig])
complex_scatter(eig, save_file=save_file, bbox=bbox)
def process_J_conopt(J, reg, save_file, bbox=None):
J2 = J - reg * np.dot(J.T, J)
eig, eigv = np.linalg.eig(J2)
eig_real = np.array([p.real for p in eig])
complex_scatter(eig, save_file=save_file, bbox=bbox)
sess = tf.InteractiveSession()
sess.run(tf.global_variables_initializer())
# Real distribution
x_out = np.concatenate([sess.run(x_real) for i in range(5)], axis=0)
kde(x_out[:, 0], x_out[:, 1], bbox=bbox, cmap='Reds', save_file='gt.png')
if not os.path.exists(outdir):
os.makedirs(outdir)
eigrawdir = os.path.join(outdir, 'eigs_raw')
if not os.path.exists(eigrawdir):
os.makedirs(eigrawdir)
eigdir = os.path.join(outdir, 'eigs')
if not os.path.exists(eigdir):
os.makedirs(eigdir)
eigdir_conopt = os.path.join(outdir, 'eigs_conopt')
if not os.path.exists(eigdir_conopt):
os.makedirs(eigdir_conopt)
ztest = [np.random.randn(batch_size, z_dim) for i in range(5)]
progress = tqdm_notebook(range(niter))
if do_eigen:
J_rows = sess.run(jacobian_rows)
J = get_J(J_rows)
for i in progress:
sess.run(train_op)
d_loss_out, g_loss_out = sess.run([d_loss, g_loss])
if do_eigen and i % 500 == 0:
J[:, :] = 0.
for k in range(10):
J_rows = sess.run(jacobian_rows)
J += get_J(J_rows)/10.
with open(os.path.join(eigrawdir, 'J_%d.npz' % i), 'wb') as f:
np.save(f, J)
progress.set_description('d_loss = %.4f, g_loss =%.4f' % (d_loss_out, g_loss_out))
if i % n_save == 0:
x_out = np.concatenate([sess.run(x_fake, feed_dict={z: zt}) for zt in ztest], axis=0)
kde(x_out[:, 0], x_out[:, 1], bbox=bbox, save_file=os.path.join(outdir,'%d.png' % i))
import re
import glob
import matplotlib
matplotlib.rcParams.update({'font.size': 16})
pattern = r'J_(?P<it>0).npz'
bbox = [-3.5, 0.75, -1.2, 1.2]
eigrawdir = os.path.join(outdir, 'eigs_raw')
if not os.path.exists(eigrawdir):
os.makedirs(eigrawdir)
eigdir = os.path.join(outdir, 'eigs')
if not os.path.exists(eigdir):
os.makedirs(eigdir)
eigdir_conopt = os.path.join(outdir, 'eigs_conopt')
if not os.path.exists(eigdir_conopt):
os.makedirs(eigdir_conopt)
out_files = glob.glob(os.path.join(eigrawdir, '*.npz'))
matches = [re.fullmatch(pattern, os.path.basename(s)) for s in out_files]
matches = [m for m in matches if m is not None]
for m in tqdm_notebook(matches):
it = int(m.group('it'))
J = np.load(os.path.join(eigrawdir, m.group()))
process_J(J, save_file=os.path.join(eigdir, '%d.png' % it), bbox=bbox)
process_J_conopt(J, reg=reg_param, save_file=os.path.join(eigdir_conopt, '%d.png' % it), bbox=bbox) | MIT | notebooks/mog-eigval-dist.ipynb | LMescheder/TheNumericsOfGANs |
|
Getting Started with Tensorflow | import tensorflow as tf
# Create TensorFlow object called tensor
hello_constant = tf.constant('Hello World!')
with tf.Session() as sess:
# Run the tf.constant operation in the session
output = sess.run(hello_constant)
print(output);
A = tf.constant(1234)
B = tf.constant([123, 456, 789])
C = tf.constant([ [123, 145, 789], [222, 333, 444] ])
print(A)
# A "TensorFlow Session", as shown above, is an environment for running a graph.
# The session is in charge of allocating the operations to GPU(s) and/or CPU(s), including remote machines.
# Letβs see how you use it.
with tf.Session() as sess:
output = sess.run(A)
print(output)
# Sadly you canβt just set x to your dataset and put it in TensorFlow,
# because over time you'll want your TensorFlow model to take in different datasets with different parameters.
# You need tf.placeholder()!
# tf.placeholder() returns a tensor that gets its value from data passed to the tf.session.run() function,
# allowing you to set the input right before the session runs.
# Use the feed_dict parameter in tf.session.run() to set the placeholder tensor.
# The above example shows the tensor x being set to the string "Hello, world".
# It's also possible to set more than one tensor using feed_dict as shown below.
x = tf.placeholder(tf.string)
with tf.Session() as sess:
output = sess.run(x, feed_dict={x: "Hello World"})
x = tf.placeholder(tf.string)
y = tf.placeholder(tf.int32)
z = tf.placeholder(tf.float32)
with tf.Session() as sess:
output = sess.run(x, feed_dict={x: 'Test String', y: 123, z: 45.67})
# Applying math
tf.multiply()
tf.subtract()
tf.add()
# Sometimes the inputs have to the casted in that regard
tf.cast(tf.const(1), tf.float64)
# constants and placeholder are not mutable!!!
# --> variables: tf.Variable()
# --> needs to be initialized by tf.global_variables_initializer()
# --> good practice is to randomly initialze weights: tf_truncated_normal()
# Example for classification:
weights = tf.Variable(tf.truncated_normal((n_features, n_labels)))
# Zero method to initialize any variable with zeros (e.g the bias terms)
bias = tf.Variable(tf.zeros(n_labels))
# Multiplication for matrices: tf.matmul()
# Softmax function
tf.nn.softmax()
# Arbitrary dimension placeholders
# Features and Labels (e.g. for Neural Networks)
features = tf.placeholder(tf.float32, [None, n_input])
labels = tf.placeholder(tf.float32, [None, n_classes])
# Relu function (Activation function)
tf.nn.relu()
# Sticking hidden layers together
# Hidden Layer with ReLU activation function
hidden_layer = tf.add(tf.matmul(features, hidden_weights), hidden_biases)
hidden_layer = tf.nn.relu(hidden_layer)
output = tf.add(tf.matmul(hidden_layer, output_weights), output_biases)
# Variables have to be initialized as well in order to use them in the session
tf.global_variables_initializer() | _____no_output_____ | MIT | TensorFlowIntro/.ipynb_checkpoints/TensorFlowIntroduction-checkpoint.ipynb | dschmoeller/03TrafficSignClassifierCNN |
Build a Neural Network with Tensorflow | # Coding example for building a neural network with tensorflow
# Quiz Solution
import tensorflow as tf
output = None
hidden_layer_weights = [
[0.1, 0.2, 0.4],
[0.4, 0.6, 0.6],
[0.5, 0.9, 0.1],
[0.8, 0.2, 0.8]]
out_weights = [
[0.1, 0.6],
[0.2, 0.1],
[0.7, 0.9]]
# Weights and biases
weights = [
tf.Variable(hidden_layer_weights),
tf.Variable(out_weights)]
biases = [
tf.Variable(tf.zeros(3)),
tf.Variable(tf.zeros(2))]
# Input
features = tf.Variable([[1.0, 2.0, 3.0, 4.0], [-1.0, -2.0, -3.0, -4.0], [11.0, 12.0, 13.0, 14.0]])
# TODO: Create Model
hidden_layer = tf.add(tf.matmul(features, weights[0]), biases[0])
hidden_layer = tf.nn.relu(hidden_layer)
logits = tf.add(tf.matmul(hidden_layer, weights[1]), biases[1])
# TODO: save and print session results on variable output
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
output = sess.run(logits)
print(output)
| _____no_output_____ | MIT | TensorFlowIntro/.ipynb_checkpoints/TensorFlowIntroduction-checkpoint.ipynb | dschmoeller/03TrafficSignClassifierCNN |
Deep Neural Networks in Tensorflow | # For stacking muliple layers --> Deep NN
# Store layers weight & bias
weights = {
'hidden_layer': tf.Variable(tf.random_normal([n_input, n_hidden_layer])),
'out': tf.Variable(tf.random_normal([n_hidden_layer, n_classes]))
}
biases = {
'hidden_layer': tf.Variable(tf.random_normal([n_hidden_layer])),
'out': tf.Variable(tf.random_normal([n_classes]))
}
# Example for input an image
#The MNIST data is made up of 28px by 28px images with a single channel.
# The tf.reshape() function above reshapes the 28px by 28px matrices in x into row vectors of 784px.
# tf Graph input
x = tf.placeholder("float", [None, 28, 28, 1])
y = tf.placeholder("float", [None, n_classes])
x_flat = tf.reshape(x, [-1, n_input])
# Builidng the model
# Hidden layer with RELU activation
layer_1 = tf.add(tf.matmul(x_flat, weights['hidden_layer']),\
biases['hidden_layer'])
layer_1 = tf.nn.relu(layer_1)
# Output layer with linear activation
logits = tf.add(tf.matmul(layer_1, weights['out']), biases['out'])
# Define the optimizer and the cost function
# Define loss and optimizer
cost = tf.reduce_mean(\
tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=y))
optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)\
.minimize(cost)
# How to run the actual session in TF
# Initializing the variables
init = tf.global_variables_initializer()
# Launch the graph
with tf.Session() as sess:
sess.run(init)
# Training cycle
for epoch in range(training_epochs):
total_batch = int(mnist.train.num_examples/batch_size)
# Loop over all batches
for i in range(total_batch):
batch_x, batch_y = mnist.train.next_batch(batch_size)
# Run optimization op (backprop) and cost op (to get loss value)
sess.run(optimizer, feed_dict={x: batch_x, y: batch_y}) | _____no_output_____ | MIT | TensorFlowIntro/.ipynb_checkpoints/TensorFlowIntroduction-checkpoint.ipynb | dschmoeller/03TrafficSignClassifierCNN |
Saving Variables and trained Models and load them backYou save the particular **session** in a file | import tensorflow as tf
# The file path to save the data
save_file = './model.ckpt'
# Two Tensor Variables: weights and bias
weights = tf.Variable(tf.truncated_normal([2, 3]))
bias = tf.Variable(tf.truncated_normal([3]))
# Class used to save and/or restore Tensor Variables
saver = tf.train.Saver()
with tf.Session() as sess:
# Initialize all the Variables
sess.run(tf.global_variables_initializer())
# Show the values of weights and bias
print('Weights:')
print(sess.run(weights))
print('Bias:')
print(sess.run(bias))
# Save the model
saver.save(sess, save_file)
# Loading the variables back
# Remove the previous weights and bias
tf.reset_default_graph()
# Two Variables: weights and bias
weights = tf.Variable(tf.truncated_normal([2, 3]))
bias = tf.Variable(tf.truncated_normal([3]))
# Class used to save and/or restore Tensor Variables
saver = tf.train.Saver()
with tf.Session() as sess:
# Load the weights and bias
saver.restore(sess, save_file)
# Show the values of weights and bias
print('Weight:')
print(sess.run(weights))
print('Bias:')
print(sess.run(bias)) | _____no_output_____ | MIT | TensorFlowIntro/.ipynb_checkpoints/TensorFlowIntroduction-checkpoint.ipynb | dschmoeller/03TrafficSignClassifierCNN |
... same works for models. Just train a NN like shown above and save the session afterwards Dropout for regularization in Tensorflow | # In tensorflow, dropout is just another "layer" in the model
#During training, a good starting value for keep_prob is 0.5.
#During testing, use a keep_prob value of 1.0 to keep all units and maximize the power of the model.
keep_prob = tf.placeholder(tf.float32) # probability to keep units
hidden_layer = tf.add(tf.matmul(features, weights[0]), biases[0])
hidden_layer = tf.nn.relu(hidden_layer)
hidden_layer = tf.nn.dropout(hidden_layer, keep_prob)
logits = tf.add(tf.matmul(hidden_layer, weights[1]), biases[1]) | _____no_output_____ | MIT | TensorFlowIntro/.ipynb_checkpoints/TensorFlowIntroduction-checkpoint.ipynb | dschmoeller/03TrafficSignClassifierCNN |
Convolutinal Neural Network (CNN) | # Note the output shape of conv will be [1, 16, 16, 20].
# It's 4D to account for batch size, but more importantly, it's not [1, 14, 14, 20].
# This is because the padding algorithm TensorFlow uses is not exactly the same as the one above.
# An alternative algorithm is to switch padding from 'SAME' to 'VALID'
input = tf.placeholder(tf.float32, (None, 32, 32, 3))
filter_weights = tf.Variable(tf.truncated_normal((8, 8, 3, 20))) # (height, width, input_depth, output_depth)
filter_bias = tf.Variable(tf.zeros(20))
strides = [1, 2, 2, 1] # (batch, height, width, depth)
padding = 'SAME'
conv = tf.nn.conv2d(input, filter_weights, strides, padding) + filter_bias | _____no_output_____ | MIT | TensorFlowIntro/.ipynb_checkpoints/TensorFlowIntroduction-checkpoint.ipynb | dschmoeller/03TrafficSignClassifierCNN |
Example code for constructing a CNN | # Load data set
# Batch, scale and one-hot-encode it
# Set Parameters
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets(".", one_hot=True, reshape=False)
import tensorflow as tf
# Parameters
learning_rate = 0.00001
epochs = 10
batch_size = 128
# Number of samples to calculate validation and accuracy
# Decrease this if you're running out of memory to calculate accuracy
test_valid_size = 256
# Network Parameters
n_classes = 10 # MNIST total classes (0-9 digits)
dropout = 0.75 # Dropout, probability to keep units
# Define and store layers and biases
# Store layers weight & bias
weights = {
'wc1': tf.Variable(tf.random_normal([5, 5, 1, 32])),
'wc2': tf.Variable(tf.random_normal([5, 5, 32, 64])),
'wd1': tf.Variable(tf.random_normal([7*7*64, 1024])),
'out': tf.Variable(tf.random_normal([1024, n_classes]))}
biases = {
'bc1': tf.Variable(tf.random_normal([32])),
'bc2': tf.Variable(tf.random_normal([64])),
'bd1': tf.Variable(tf.random_normal([1024])),
'out': tf.Variable(tf.random_normal([n_classes]))}
# Apply Convolution (i.e. create a convolution layer)
# The tf.nn.conv2d() function computes the convolution against weight W
def conv2d(x, W, b, strides=1):
x = tf.nn.conv2d(x, W, strides=[1, strides, strides, 1], padding='SAME')
x = tf.nn.bias_add(x, b)
return tf.nn.relu(x)
#In TensorFlow, strides is an array of 4 elements; the first element in this array indicates the stride for batch
#and last element indicates stride for features.
#It's good practice to remove the batches or features you want to skip from the data set rather than use a stride to skip them.
#You can always set the first and last element to 1 in strides in order to use all batches and features.
#The middle two elements are the strides for height and width respectively.
#I've mentioned stride as one number because you usually have a square stride where height = width.
#When someone says they are using a stride of 3, they usually mean tf.nn.conv2d(x, W, strides=[1, 3, 3, 1])
# Max Pooling
def maxpool2d(x, k=2):
return tf.nn.max_pool(
x,
ksize=[1, k, k, 1],
strides=[1, k, k, 1],
padding='SAME')
# The tf.nn.max_pool() function does exactly what you would expect,
# it performs max pooling with the ksize parameter as the size of the filter.
# Sticking the model together
def conv_net(x, weights, biases, dropout):
# Layer 1 - 28*28*1 to 14*14*32
conv1 = conv2d(x, weights['wc1'], biases['bc1'])
conv1 = maxpool2d(conv1, k=2)
# Layer 2 - 14*14*32 to 7*7*64
conv2 = conv2d(conv1, weights['wc2'], biases['bc2'])
conv2 = maxpool2d(conv2, k=2)
# Fully connected layer - 7*7*64 to 1024
fc1 = tf.reshape(conv2, [-1, weights['wd1'].get_shape().as_list()[0]]) # The reshape step is to flatten the filter layers
fc1 = tf.add(tf.matmul(fc1, weights['wd1']), biases['bd1'])
fc1 = tf.nn.relu(fc1)
fc1 = tf.nn.dropout(fc1, dropout)
# Output Layer - class prediction - 1024 to 10
out = tf.add(tf.matmul(fc1, weights['out']), biases['out'])
return out
# Run the session in tensorflow
# tf Graph input
x = tf.placeholder(tf.float32, [None, 28, 28, 1])
y = tf.placeholder(tf.float32, [None, n_classes])
keep_prob = tf.placeholder(tf.float32)
# Model
logits = conv_net(x, weights, biases, keep_prob)
# Define loss and optimizer
cost = tf.reduce_mean(\
tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=y))
optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)\
.minimize(cost)
# Accuracy
correct_pred = tf.equal(tf.argmax(logits, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
# Initializing the variables
init = tf. global_variables_initializer()
# Launch the graph
with tf.Session() as sess:
sess.run(init)
for epoch in range(epochs):
for batch in range(mnist.train.num_examples//batch_size):
batch_x, batch_y = mnist.train.next_batch(batch_size)
sess.run(optimizer, feed_dict={
x: batch_x,
y: batch_y,
keep_prob: dropout})
# Calculate batch loss and accuracy
loss = sess.run(cost, feed_dict={
x: batch_x,
y: batch_y,
keep_prob: 1.})
valid_acc = sess.run(accuracy, feed_dict={
x: mnist.validation.images[:test_valid_size],
y: mnist.validation.labels[:test_valid_size],
keep_prob: 1.})
print('Epoch {:>2}, Batch {:>3} -'
'Loss: {:>10.4f} Validation Accuracy: {:.6f}'.format(
epoch + 1,
batch + 1,
loss,
valid_acc))
# Calculate Test Accuracy
test_acc = sess.run(accuracy, feed_dict={
x: mnist.test.images[:test_valid_size],
y: mnist.test.labels[:test_valid_size],
keep_prob: 1.})
print('Testing Accuracy: {}'.format(test_acc)) | _____no_output_____ | MIT | TensorFlowIntro/.ipynb_checkpoints/TensorFlowIntroduction-checkpoint.ipynb | dschmoeller/03TrafficSignClassifierCNN |
LeNet Architecture Load DataLoad the MNIST data, which comes pre-loaded with TensorFlow.You do not need to modify this section. | from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", reshape=False)
X_train, y_train = mnist.train.images, mnist.train.labels
X_validation, y_validation = mnist.validation.images, mnist.validation.labels
X_test, y_test = mnist.test.images, mnist.test.labels
assert(len(X_train) == len(y_train))
assert(len(X_validation) == len(y_validation))
assert(len(X_test) == len(y_test))
print()
print("Image Shape: {}".format(X_train[0].shape))
print()
print("Training Set: {} samples".format(len(X_train)))
print("Validation Set: {} samples".format(len(X_validation)))
print("Test Set: {} samples".format(len(X_test))) | _____no_output_____ | MIT | TensorFlowIntro/.ipynb_checkpoints/TensorFlowIntroduction-checkpoint.ipynb | dschmoeller/03TrafficSignClassifierCNN |
Split up data into training, validation and test set | import numpy as np
# Pad images with 0s
X_train = np.pad(X_train, ((0,0),(2,2),(2,2),(0,0)), 'constant')
X_validation = np.pad(X_validation, ((0,0),(2,2),(2,2),(0,0)), 'constant')
X_test = np.pad(X_test, ((0,0),(2,2),(2,2),(0,0)), 'constant')
print("Updated Image Shape: {}".format(X_train[0].shape)) | _____no_output_____ | MIT | TensorFlowIntro/.ipynb_checkpoints/TensorFlowIntroduction-checkpoint.ipynb | dschmoeller/03TrafficSignClassifierCNN |
Visualize DataView a sample from the dataset.You do not need to modify this section. | import random
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
index = random.randint(0, len(X_train))
image = X_train[index].squeeze()
plt.figure(figsize=(1,1))
plt.imshow(image, cmap="gray")
print(y_train[index]) | _____no_output_____ | MIT | TensorFlowIntro/.ipynb_checkpoints/TensorFlowIntroduction-checkpoint.ipynb | dschmoeller/03TrafficSignClassifierCNN |
Preprocess DataShuffle the training data.You do not need to modify this section. | from sklearn.utils import shuffle
X_train, y_train = shuffle(X_train, y_train) | _____no_output_____ | MIT | TensorFlowIntro/.ipynb_checkpoints/TensorFlowIntroduction-checkpoint.ipynb | dschmoeller/03TrafficSignClassifierCNN |
Setup TensorFlowThe `EPOCH` and `BATCH_SIZE` values affect the training speed and model accuracy. | import tensorflow as tf
EPOCHS = 10
BATCH_SIZE = 128 | _____no_output_____ | MIT | TensorFlowIntro/.ipynb_checkpoints/TensorFlowIntroduction-checkpoint.ipynb | dschmoeller/03TrafficSignClassifierCNN |
InputThe LeNet architecture accepts a 32x32xC image as input, where C is the number of color channels. Since MNIST images are grayscale, C is 1 in this case. Architecture**Layer 1: Convolutional.** The output shape should be 28x28x6.**Activation.** Your choice of activation function.**Pooling.** The output shape should be 14x14x6.**Layer 2: Convolutional.** The output shape should be 10x10x16.**Activation.** Your choice of activation function.**Pooling.** The output shape should be 5x5x16.**Flatten.** Flatten the output shape of the final pooling layer such that it's 1D instead of 3D. The easiest way to do is by using `tf.contrib.layers.flatten`, which is already imported for you.**Layer 3: Fully Connected.** This should have 120 outputs.**Activation.** Your choice of activation function.**Layer 4: Fully Connected.** This should have 84 outputs.**Activation.** Your choice of activation function.**Layer 5: Fully Connected (Logits).** This should have 10 outputs. OutputReturn the result of the 2nd fully connected layer. | from tensorflow.contrib.layers import flatten
def LeNet(x):
# Arguments used for tf.truncated_normal, randomly defines variables for the weights and biases for each layer
mu = 0
sigma = 0.1
weights = {
'wc1': tf.Variable(tf.random_normal([5, 5, 1, 6])),
'wc2': tf.Variable(tf.random_normal([5, 5, 6, 16])),
'wd1': tf.Variable(tf.random_normal([400, 120])),
'wd2': tf.Variable(tf.random_normal([120, 84])),
'out': tf.Variable(tf.random_normal([84, 10]))}
biases = {
'bc1': tf.Variable(tf.random_normal([6])),
'bc2': tf.Variable(tf.random_normal([16])),
'bd1': tf.Variable(tf.random_normal([120])),
'bd2': tf.Variable(tf.random_normal([84])),
'out': tf.Variable(tf.random_normal([10]))}
# TODO: Layer 1: Convolutional. Input = 32x32x1. Output = 28x28x6.
layer1 = tf.nn.conv2d(x, weights['wc1'], strides=[1, 1, 1, 1], padding="VALID")
layer1 = tf.nn.bias_add(layer1, biases['bc1'])
# TODO: Activation.
layer1 = tf.nn.relu(layer1)
# TODO: Pooling. Input = 28x28x6. Output = 14x14x6.
layer1 = tf.nn.max_pool(layer1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME")
# TODO: Layer 2: Convolutional. Output = 10x10x16.
layer2 = tf.nn.conv2d(layer1, weights['wc2'], strides=[1, 1, 1, 1], padding="VALID")
layer2 = tf.nn.bias_add(layer2, biases['bc2'])
# TODO: Activation.
layer2 = tf.nn.relu(layer2)
# TODO: Pooling. Input = 10x10x16. Output = 5x5x16.
layer2 = tf.nn.max_pool(layer2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME")
# TODO: Flatten. Input = 5x5x16. Output = 400.
flattenedLayer2 = tf.contrib.layers.flatten(layer2)
# TODO: Layer 3: Fully Connected. Input = 400. Output = 120.
layer3 = tf.add(tf.matmul(flattenedLayer2, weights['wd1']), biases['bd1'])
# TODO: Activation.
layer3 = tf.nn.relu(layer3)
# TODO: Layer 4: Fully Connected. Input = 120. Output = 84.
layer4 = tf.add(tf.matmul(layer3, weights['wd2']), biases['bd2'])
# TODO: Activation.
layer4 = tf.nn.relu(layer4)
# TODO: Layer 5: Fully Connected. Input = 84. Output = 10.
logits = tf.add(tf.matmul(layer4, weights['out']), biases['out'])
return logits | _____no_output_____ | MIT | TensorFlowIntro/.ipynb_checkpoints/TensorFlowIntroduction-checkpoint.ipynb | dschmoeller/03TrafficSignClassifierCNN |
Features and LabelsTrain LeNet to classify [MNIST](http://yann.lecun.com/exdb/mnist/) data.`x` is a placeholder for a batch of input images.`y` is a placeholder for a batch of output labels. | x = tf.placeholder(tf.float32, (None, 32, 32, 1))
y = tf.placeholder(tf.int32, (None))
one_hot_y = tf.one_hot(y, 10) | _____no_output_____ | MIT | TensorFlowIntro/.ipynb_checkpoints/TensorFlowIntroduction-checkpoint.ipynb | dschmoeller/03TrafficSignClassifierCNN |
Training PipelineCreate a training pipeline that uses the model to classify MNIST data. | rate = 0.001
logits = LeNet(x)
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(labels=one_hot_y, logits=logits)
loss_operation = tf.reduce_mean(cross_entropy)
optimizer = tf.train.AdamOptimizer(learning_rate = rate)
training_operation = optimizer.minimize(loss_operation) | _____no_output_____ | MIT | TensorFlowIntro/.ipynb_checkpoints/TensorFlowIntroduction-checkpoint.ipynb | dschmoeller/03TrafficSignClassifierCNN |
Model EvaluationEvaluate how well the loss and accuracy of the model for a given dataset. | correct_prediction = tf.equal(tf.argmax(logits, 1), tf.argmax(one_hot_y, 1))
accuracy_operation = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
saver = tf.train.Saver()
def evaluate(X_data, y_data):
num_examples = len(X_data)
total_accuracy = 0
sess = tf.get_default_session()
for offset in range(0, num_examples, BATCH_SIZE):
batch_x, batch_y = X_data[offset:offset+BATCH_SIZE], y_data[offset:offset+BATCH_SIZE]
accuracy = sess.run(accuracy_operation, feed_dict={x: batch_x, y: batch_y})
total_accuracy += (accuracy * len(batch_x))
return total_accuracy / num_examples | _____no_output_____ | MIT | TensorFlowIntro/.ipynb_checkpoints/TensorFlowIntroduction-checkpoint.ipynb | dschmoeller/03TrafficSignClassifierCNN |
Train the ModelRun the training data through the training pipeline to train the model.Before each epoch, shuffle the training set.After each epoch, measure the loss and accuracy of the validation set.Save the model after training. | with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
num_examples = len(X_train)
print("Training...")
print()
for i in range(EPOCHS):
X_train, y_train = shuffle(X_train, y_train)
for offset in range(0, num_examples, BATCH_SIZE):
end = offset + BATCH_SIZE
batch_x, batch_y = X_train[offset:end], y_train[offset:end]
sess.run(training_operation, feed_dict={x: batch_x, y: batch_y})
validation_accuracy = evaluate(X_validation, y_validation)
print("EPOCH {} ...".format(i+1))
print("Validation Accuracy = {:.3f}".format(validation_accuracy))
print()
saver.save(sess, './lenet')
print("Model saved") | _____no_output_____ | MIT | TensorFlowIntro/.ipynb_checkpoints/TensorFlowIntroduction-checkpoint.ipynb | dschmoeller/03TrafficSignClassifierCNN |
Evaluate the Model (on the test set)Once you are completely satisfied with your model, evaluate the performance of the model on the test set.Be sure to only do this once!If you were to measure the performance of your trained model on the test set, then improve your model, and then measure the performance of your model on the test set again, that would invalidate your test results. You wouldn't get a true measure of how well your model would perform against real data. | with tf.Session() as sess:
saver.restore(sess, tf.train.latest_checkpoint('.'))
test_accuracy = evaluate(X_test, y_test)
print("Test Accuracy = {:.3f}".format(test_accuracy)) | _____no_output_____ | MIT | TensorFlowIntro/.ipynb_checkpoints/TensorFlowIntroduction-checkpoint.ipynb | dschmoeller/03TrafficSignClassifierCNN |
pip install pydicom
# Import tensorflow
import logging
import tensorflow as tf
import keras.backend as K
# Helper libraries
import math
import numpy as np
import pandas as pd
import pydicom
import os
import sys
import time
# Imports for dataset manipulation
from sklearn.model_selection import train_test_split
from keras.preprocessing.image import ImageDataGenerator
# Improve progress bar display
import tqdm
import tqdm.auto
tqdm.tqdm = tqdm.auto.tqdm
#tf.enable_eager_execution() #comment this out if causing errors
logger = tf.get_logger()
logger.setLevel(logging.DEBUG)
### SET MODEL CONFIGURATIONS ###
# Data Loading
CSV_PATH = 'label_data/CCC_clean.csv'
IMAGE_BASE_PATH = './data/'
test_size_percent = 0.15 # percent of total data reserved for testing
print(IMAGE_BASE_PATH)
# Data Augmentation
mirror_im = False
# Loss
lambda_coord = 5
epsilon = 0.00001
# Learning
step_size = 0.00001
BATCH_SIZE = 5
num_epochs = 1
# Saving
shape_path = 'trained_model/model_shape.json'
weight_path = 'trained_model/model_weights.h5'
# TensorBoard
tb_graph = False
tb_update_freq = 'batch'
### GET THE DATASET AND PREPROCESS IT ###
print("Loading and processing data\n")
data_frame = pd.read_csv(CSV_PATH)
"""
Construct numpy ndarrays from the loaded csv to use as training
and testing datasets.
"""
# zip all points for each image label together into a tuple
points = zip(data_frame['start_x'], data_frame['start_y'],
data_frame['end_x'], data_frame['end_y'])
img_paths = data_frame['imgPath']
def path_to_image(path):
"""
Load a matrix of pixel values from the DICOM image stored at the
input path.
@param path - string, relative path (from IMAGE_BASE_PATH) to
a DICOM file
@return image - numpy ndarray (int), 2D matrix of pixel
values of the image loaded from path
"""
# load image from path as numpy array
image = pydicom.dcmread(os.path.join(IMAGE_BASE_PATH, path)).pixel_array
return image
# normalize dicom image pixel values to 0-1 range
def normalize_image(img):
"""
Normalize the pixel values in img to be withing the range
of 0 to 1.
@param img - numpy ndarray, 2D matrix of pixel values
@return img - numpy ndarray (float), 2D matrix of pixel values, every
element is valued between 0 and 1 (inclusive)
"""
img = img.astype(np.float32)
img += abs(np.amin(img)) # account for negatives
img /= np.amax(img)
return img
# normalize the ground truth bounding box labels wrt image dimensions
def normalize_points(points):
"""
Normalize values in points to be within the range of 0 to 1.
@param points - 1x4 tuple, elements valued in the range of 0
512 (inclusive). This is known from the nature
of the dataset used in this program
@return - 1x4 numpy ndarray (float), elements valued in range
0 to 1 (inclusive)
"""
imDims = 512.0 # each image in our dataset is 512x512
points = list(points)
for i in range(len(points)):
points[i] /= imDims
return np.array(points).astype(np.float32)
"""
Convert the numpy array of paths to the DICOM images to pixel
matrices that have been normalized to a 0-1 range.
Also normalize the bounding box labels to make it easier for
the model to predict on them.
"""
# apply preprocessing functions
points = map(normalize_points, points)
imgs = map(path_to_image, img_paths)
imgs = map(normalize_image, imgs)
print(list(imgs))
# reshape input image data to 4D shape (as expected by the model)
# and cast all data to np arrays (just in case)
imgs = np.array(imgs)
points = np.array(points)
imgs = imgs.reshape((-1, 512, 512, 1))
| _____no_output_____ | Apache-2.0 | ipynbs/reshape_demo.ipynb | zbytes/fsqs-tips-tricks-notes |
|
20 Sept 2019 RULESDate: Level 2 heading Example Heading: Level 3 heading Method Heading: Level 4 heading References 1. [Forester_W._Isen;_J._Moura]_DSP_for_MATLAB_and_La Volume II(z-lib.org)2. H. K. Dass, Advanced Engineering Mathematics3. [Forester_W._Isen;_J._Moura]_DSP_for_MATLAB_and_La Volume I(z-lib.org)4. [John_G_Proakis;_Dimitris_G_Manolakis]_Digital_Sig(z-lib.org) Imports | import numpy as np
from sympy import oo
import math
import sympy as sp
import matplotlib.pyplot as plt
import matplotlib as mpl
from mpl_toolkits.mplot3d import Axes3D
from IPython.display import display
from IPython.display import display_latex
from sympy import latex
import math
from scipy import signal
from datetime import datetime | _____no_output_____ | MIT | .ipynb_checkpoints/DSP-checkpoint.ipynb | Valentine-Efagene/Jupyter-Notebooks |
Setup | sp.init_printing(use_latex = True)
z, f, i = sp.symbols('z f i')
x, k = sp.symbols('x k') | _____no_output_____ | MIT | .ipynb_checkpoints/DSP-checkpoint.ipynb | Valentine-Efagene/Jupyter-Notebooks |
Methods | # Usage: display_equation('u_x', x)
def display_equation(idx, symObj):
if(isinstance(idx, str)):
eqn = '\\[' + idx + ' = ' + latex(symObj) + '\\]'
display_latex(eqn, raw=True)
else:
eqn = '\\[' + latex(idx) + ' = ' + latex(symObj) + '\\]'
display_latex(eqn, raw=True)
return
# Usage: display_full_latex('u_x')
def display_full_latex(idx):
if(isinstance(idx, str)):
eqn = '\\[' + idx + '\\]'
display_latex(eqn, raw=True)
else:
eqn = '\\[' + latex(idx) + '\\]'
display_latex(eqn, raw=True)
return
# Usage: display_full_latex('u_x')
def display_full_latex(idx):
if(isinstance(idx, str)):
eqn = '\\[' + idx + '\\]'
display_latex(eqn, raw=True)
else:
eqn = '\\[' + latex(idx) + '\\]'
display_latex(eqn, raw=True)
return
def ztrans(a, b):
F = sp.summation(f/z**k, ( k, a, b ))
return F
def display_ztrans(f, k, limits = (-4, 4)):
F = sp.summation(f/z**k, ( k, -oo, oo ))
display_equation('f(k)', f)
display_equation('F(k)_{\infty}', F)
F = sp.summation(f/z**k, (k, limits[0], limits[1]))
display_equation('F(k)_{'+ str(limits[0]) + ',' + str(limits[1]) + '}', F)
return
def sum_of_GP(a, r):
return sp.simplify(a/(1-r))
# Credit: https://www.dsprelated.com/showcode/244.php
def zplane(b,a,filename=None):
"""Plot the complex z-plane given a transfer function.
"""
# get a figure/plot
ax = plt.subplot(111)
# create the unit circle
uc = patches.Circle((0,0), radius=1, fill=False,
color='black', ls='dashed')
ax.add_patch(uc)
# The coefficients are less than 1, normalize the coeficients
if np.max(b) > 1:
kn = np.max(b)
b = b/float(kn)
else:
kn = 1
if np.max(a) > 1:
kd = np.max(a)
a = a/float(kd)
else:
kd = 1
# Get the poles and zeros
p = np.roots(a)
z = np.roots(b)
k = kn/float(kd)
# Plot the zeros and set marker properties
t1 = plt.plot(z.real, z.imag, 'go', ms=10)
plt.setp( t1, markersize=10.0, markeredgewidth=1.0,
markeredgecolor='k', markerfacecolor='g')
# Plot the poles and set marker properties
t2 = plt.plot(p.real, p.imag, 'rx', ms=10)
plt.setp( t2, markersize=12.0, markeredgewidth=3.0,
markeredgecolor='b', markerfacecolor='b')
ax.spines['left'].set_position('center')
ax.spines['bottom'].set_position('center')
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
# set the ticks
r = 1.5; plt.axis('scaled'); plt.axis([-r, r, -r, r])
ticks = [-1, -.5, .5, 1]; plt.xticks(ticks); plt.yticks(ticks)
if filename is None:
plt.show()
else:
plt.savefig(filename)
return z, p, k | _____no_output_____ | MIT | .ipynb_checkpoints/DSP-checkpoint.ipynb | Valentine-Efagene/Jupyter-Notebooks |
Z Transform | display_full_latex('X(z) = \sum_{-\infty}^{\infty} x[n]z^{-n}') | _____no_output_____ | MIT | .ipynb_checkpoints/DSP-checkpoint.ipynb | Valentine-Efagene/Jupyter-Notebooks |
Tests Convert Symbolic to Numeric | f = x**2
f = sp.lambdify(x, f, 'numpy')
f(2)
display_equation('f(x)', sp.summation(3**k, ( k, -oo, oo )))
display_equation('F(z)', sp.summation(3**k/z**k, ( k, -oo, oo ))) | _____no_output_____ | MIT | .ipynb_checkpoints/DSP-checkpoint.ipynb | Valentine-Efagene/Jupyter-Notebooks |
Partial Fractions | f = 1/(x**2 + x - 6)
display_equation('f(x)', f)
f = sp.apart(f)
display_equation('f(x)_{canonical}', f) | _____no_output_____ | MIT | .ipynb_checkpoints/DSP-checkpoint.ipynb | Valentine-Efagene/Jupyter-Notebooks |
Piecewise | f1 = 5**k
f2 = 3**k
f = sp.Piecewise((f1, k < 0), (f2, k >= 0))
display_equation('f(k)', f) | _____no_output_____ | MIT | .ipynb_checkpoints/DSP-checkpoint.ipynb | Valentine-Efagene/Jupyter-Notebooks |
21 Sept 2019 Positive Time / Causal | f1 = k **2
f2 = 3**k
f = f1 * sp.Heaviside(k)
# or
#f = sp.Piecewise((0, k < 0), (f1, k >= 0))
display_equation('f(k)', f)
sp.plot(f, (k, -10, 10)) | _____no_output_____ | MIT | .ipynb_checkpoints/DSP-checkpoint.ipynb | Valentine-Efagene/Jupyter-Notebooks |
Stem Plot | x = np.linspace(0.1, 2 * np.pi, 41)
y = np.sin(x)
plt.stem(x, y)
plt.show() | _____no_output_____ | MIT | .ipynb_checkpoints/DSP-checkpoint.ipynb | Valentine-Efagene/Jupyter-Notebooks |
zplane Plot | b = np.array([1, 1, 0, 0])
a = np.array([1, 1, 1])
zplane(b,a) | _____no_output_____ | MIT | .ipynb_checkpoints/DSP-checkpoint.ipynb | Valentine-Efagene/Jupyter-Notebooks |
Filter | g = (1 + z**-2)/(1-1.2*z**-1+0.81*z**-2)
display_equation('F(z)', g)
b = np.array([1,1])
a = np.array([1,-1.2,0.81])
x = np.ones((1, 8))
# Response
y = signal.lfilter(b, a, x)
# Reverse
signal.lfilter(a, b, y) | _____no_output_____ | MIT | .ipynb_checkpoints/DSP-checkpoint.ipynb | Valentine-Efagene/Jupyter-Notebooks |
[1] Example 2.2 | radFreq = np.arange(0, 2*np.pi, 2*np.pi/499)
g = np.exp(1j*radFreq)
Zxform= 1/(1-0.7*g**(-1))
plt.plot(radFreq/np.pi,abs(Zxform))
plt.title('Graph')
plt.xlabel('Frequency, Units of Ο')
plt.ylabel('H(x)')
plt.grid(True)
plt.show() | _____no_output_____ | MIT | .ipynb_checkpoints/DSP-checkpoint.ipynb | Valentine-Efagene/Jupyter-Notebooks |
[2] Chapter 19, Example 5 | f = 3**(-k)
display_ztrans(f, k, (-4, 3)) | _____no_output_____ | MIT | .ipynb_checkpoints/DSP-checkpoint.ipynb | Valentine-Efagene/Jupyter-Notebooks |
[2] Example 9 | f1 = 5**k
f2 = 3**k
f = sp.Piecewise((f1, k < 0), (f2, k >= 0))
display_ztrans(f, k, (-3, 3))
p = sum_of_GP(z/5, z/5)
q = sum_of_GP(1, 3/z)
display_equation('F(z)', sp.ratsimp(q + p)) | _____no_output_____ | MIT | .ipynb_checkpoints/DSP-checkpoint.ipynb | Valentine-Efagene/Jupyter-Notebooks |
28 Sept, 2019 [3] Folding formula fperceived = [ f - fsampling * NINT( f / fsampling ) ] 9 Oct, 2019 [3] Section 4.3 Equations | display_full_latex('F \\rightarrow analog')
display_full_latex('f \\rightarrow discrete')
display_full_latex('Nyquist frequency = F_s')
display_full_latex('Folding frequency = \\frac{F_s}{2}')
display_full_latex('F_{max} = \\frac{F_s}{2}')
display_full_latex('T = \\frac{1}{F_s}')
display_full_latex('f = \\frac{F}{F_s}')
display_full_latex('f_k = \\frac{k}{N}')
display_full_latex('F_k = F_0 + kF_s, k = \\pm 1, \\pm 2, ...')
display_full_latex('x_a(t) = Asin(2\\pi Ft + \\theta)')
display_full_latex('x(n) = Asin(\\frac{2\\pi nk}{N} + \\theta)')
display_full_latex('x(n) = Asin(2\\pi fn + \\theta)')
display_full_latex('x(n) = x_a (nT) = Acos(2\\pi \\frac{F_0 + kF_s}{F_s} n + \\theta)')
display_full_latex('t = nT')
display_full_latex('\\Omega = 2\\pi F')
display_full_latex('\\omega = 2\\pi f')
display_full_latex('\\omega = \\Omega T')
display_full_latex('x_q(n) = Q[x(n)]')
display_full_latex('e_q(n) = x_q(n) - x(n)')
display_full_latex('Interpolation function, g(t) = \\frac{sin2\\pi Bt}{2\\pi Bt}')
display_full_latex('x_a(t) = \\sum^\\infty _{n = - \\infty} x_a(\\frac{n}{F_s}).g(t - \\frac{n}{F_s})')
display_full_latex('\\Delta = \\frac{x_{max} - x_{min}}{L-1}, where L = Number of quantization levels')
display_full_latex('-\\frac{\\Delta}{2} \\leq e_q(n) \\leq \\frac{\\Delta}{2}')
display_full_latex('b \\geq log_2 L')
display_full_latex('SQNR = \\frac{3}{2}.2^{2b}')
display_full_latex('SQNR(dB) = 10log_{10}SQNR = 1.76 + 6.02b')
x = np.arange(0, 10, 1)
y = np.power(0.9, x) * np.heaviside(np.power(0.9, x), 1)
display_full_latex('x_a(t) = 0.9^t')
display_full_latex('x(n) = 0.9^n')
plt.stem(x, y)
plt.plot(x, y, 'g-')
plt.xticks(np.arange(0, 10, 1))
plt.yticks(np.arange(0, 1.2, 0.1))
plt.xlabel('n')
plt.ylabel('x(n)')
plt.grid(True)
plt.show() | _____no_output_____ | MIT | .ipynb_checkpoints/DSP-checkpoint.ipynb | Valentine-Efagene/Jupyter-Notebooks |
14 Oct, 2019 | n = sp.symbols('n')
x = np.arange(0, 10, 1)
y = x * np.heaviside(x, 1)
f = sp.Piecewise((0, n < 0), (n, n >= 0))
display_equation('u_r(n)', f)
plt.stem(x, y)
plt.plot(x, y, 'g-')
plt.xticks(np.arange(0, 10, 1))
plt.yticks(np.arange(0, 10, 1))
plt.xlabel('n')
plt.ylabel('x(n)')
plt.grid(True)
plt.show()
display_full_latex('E = \\sum^\\infty _{n = -\\infty} x|(n)|^2')
display_full_latex('P = \\lim_{N \\rightarrow \\infty} \\frac{1}{2N + 1} \\sum^ N _{n = -N} x|(n)|^2') | _____no_output_____ | MIT | .ipynb_checkpoints/DSP-checkpoint.ipynb | Valentine-Efagene/Jupyter-Notebooks |
16 Oct, 2019 General form of the input-output relationships | display_full_latex('y(n) = -\\sum^N _{k = 1}a_k y(n-k) + \\sum^M _{k = 0}b_k x(n-k)') | _____no_output_____ | MIT | .ipynb_checkpoints/DSP-checkpoint.ipynb | Valentine-Efagene/Jupyter-Notebooks |
[4] Example 3.2 | h = np.array([1, 2, 1, -1])
x = np.array([1, 2, 3, 1])
y = np.convolve(h, x, mode='full')
#y = signal.convolve(h, x, mode='full', method='auto')
print(y)
fig, (ax_orig, ax_h, ax_x) = plt.subplots(3, 1, sharex=True)
ax_orig.plot(h)
ax_orig.set_title('Impulse Response')
ax_orig.margins(0, 0.1)
ax_h.plot(x)
ax_h.set_title('Input Signal')
ax_h.margins(0, 0.1)
ax_x.plot(y)
ax_x.set_title('Output')
ax_x.margins(0, 0.1)
fig.tight_layout()
fig.show() | [ 1 4 8 8 3 -2 -1]
| MIT | .ipynb_checkpoints/DSP-checkpoint.ipynb | Valentine-Efagene/Jupyter-Notebooks |
17 Oct, 2019 Sum of an AP with common ratio r and first term a, starting from the zeroth term | a, r = sp.symbols('a r')
s = sp.summation(a*r**k, ( k, 0, n ))
display_equation('S_n', s) | _____no_output_____ | MIT | .ipynb_checkpoints/DSP-checkpoint.ipynb | Valentine-Efagene/Jupyter-Notebooks |
Sum of positive powers of a | a = sp.symbols('a')
s = sp.summation(a**k, ( k, 0, n ))
display_equation('S_n', s) | _____no_output_____ | MIT | .ipynb_checkpoints/DSP-checkpoint.ipynb | Valentine-Efagene/Jupyter-Notebooks |
[3] 4.12.3 Single Pole IIR | SR = 24
b = 1
p = 0.8
y = np.zeros((1, SR)).ravel()
x = np.zeros((1, SR + 1)).ravel()
x[0] = 1
y[0] = b * x[0]
for n in range(1, SR):
y[n] = b * x[n] + p * y[n - 1]
plt.stem(y) | _____no_output_____ | MIT | .ipynb_checkpoints/DSP-checkpoint.ipynb | Valentine-Efagene/Jupyter-Notebooks |
Copying the method above for [4] 4.1 Averaging | x = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
y[0] = b * x[0]
for n in range(1, len(x)):
y[n] = (n/(n + 1)) * y[n - 1] + (1/(n + 1)) * x[n]
print(y[n], '\n') | 5.5
| MIT | .ipynb_checkpoints/DSP-checkpoint.ipynb | Valentine-Efagene/Jupyter-Notebooks |
My Recursive Averaging Implementation | def avg(x, n):
if (n < 0):
return 0
else:
return (n/(n + 1)) * avg(x, n - 1) + (1/(n + 1)) * x[n]
x = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
average = avg(x, len(x) - 1)
print(average) | 5.5
| MIT | .ipynb_checkpoints/DSP-checkpoint.ipynb | Valentine-Efagene/Jupyter-Notebooks |
Performance Comparism | from timeit import timeit
code_rec = '''
import numpy as np
def avg(x, n):
if (n < 0):
return 0
else:
return (n/(n + 1)) * avg(x, n - 1) + (1/(n + 1)) * x[n]
x = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
average = avg(x, len(x) - 1)
'''
code_py = '''
import numpy as np
x = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
average = sum(x, len(x) - 1) / len(x)
'''
code_loop = '''
import numpy as np
x = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
sum = 0
for i in x:
sum += i
average = sum/len(x)
'''
running_time_rec = timeit(code_rec, number = 100) / 100
running_time_py = timeit(code_py, number = 100) / 100
running_time_loop = timeit(code_loop, number = 100) / 100
print("Running time using my recursive average function: \n",running_time_rec, '\n')
print("Running time using python sum function: \n",running_time_py)
print("Running time using loop python function: \n",running_time_loop) | Running time using my recursive average function:
9.264100000000001e-05
Running time using python sum function:
4.1410000000000005e-05
Running time using loop python function:
7.479999999999987e-06
| MIT | .ipynb_checkpoints/DSP-checkpoint.ipynb | Valentine-Efagene/Jupyter-Notebooks |
[4] Example 4.1 | def rec_sqrt(x, n):
if (n == -1):
return 1
else:
return (1/2) * (rec_sqrt(x, n - 1) + (x[n]/rec_sqrt(x, n - 1)))
A = 2
x = np.ones((1, 5)).ravel() * A
print(rec_sqrt(x, len(x) - 1))
b = np.array([1, 1, 1, 1, 1])
a = np.array([1, 0, 0])
zplane(b,a) | _____no_output_____ | MIT | .ipynb_checkpoints/DSP-checkpoint.ipynb | Valentine-Efagene/Jupyter-Notebooks |
langages de script β Python Modules et packages M1 IngΓ©nierie Multilingue β INaLCOclement.plancq@ens.fr Les modules et les packages permettent d'ajouter des fonctionnalitΓ©s Γ PythonUn module est un fichier (```.py```) qui contient des fonctions et/ou des classes. Et de la documentation bien sΓ»rUn package est un rΓ©pertoire contenant des modules et des sous-rΓ©pertoires.C'est aussi simple que Γ§a. Γvidemment en rentrant dans le dΓ©tail c'est un peu plus compliquΓ©. Un module | %%file operations.py
# -*- coding: utf-8 -*-
"""
Module pour le cours sur les modules
OpΓ©rations arithmΓ©tiques
"""
def addition(a, b):
""" Ben une addition quoi : a + b """
return a + b
def soustraction(a, b):
""" Une soustraction :Β a - b """
return a - b | _____no_output_____ | MIT | modules.ipynb | LoicGrobol/python-im |
Pour l'utiliser on peut :* l'importer par son nom | import operations
operations.addition(2, 4) | _____no_output_____ | MIT | modules.ipynb | LoicGrobol/python-im |
* l'importer et modifier son nom | import operations as op
op.addition(2, 4) | _____no_output_____ | MIT | modules.ipynb | LoicGrobol/python-im |
* importer une partie du module | from operations import addition
addition(2, 4) | _____no_output_____ | MIT | modules.ipynb | LoicGrobol/python-im |
* importer l'intΓ©gralitΓ© du module | from operations import *
addition(2, 4)
soustraction(4, 2) | _____no_output_____ | MIT | modules.ipynb | LoicGrobol/python-im |
En rΓ©alitΓ© seules les fonctions et/ou les classes ne commenΓ§ant pas par '_' sont importΓ©es. L'utilisation de `import *` n'est pas recommandΓ©e. Parce que, comme vous le savez Β« *explicit is better than implicit* Β». Et en ajoutant les fonctions dans l'espace de nommage du script vous pouvez Γ©craser des fonctions existantes. Ajoutez une fonction `print` Γ votre module pour voir (attention un module n'est chargΓ© qu'une fois, vous devrez relancer le kernel ou passer par la console). Autre dΓ©finition d'un module :Β c'est un objet de type ``module``. | import operations
type(operations) | _____no_output_____ | MIT | modules.ipynb | LoicGrobol/python-im |
``import`` ajoute des attributs au module | import operations
print(f"name : {operations.__name__}")
print(f"file : {operations.__file__}")
print(f"doc :Β {operations.__doc__}") | _____no_output_____ | MIT | modules.ipynb | LoicGrobol/python-im |
Un package | ! tree operations_pack | _____no_output_____ | MIT | modules.ipynb | LoicGrobol/python-im |
Un package python peut contenir des modules, des rΓ©pertoires et sous-rΓ©pertoires, et bien souvent du non-python :Β de la doc html, des donnΓ©es pour les tests, etcβ¦ Le rΓ©pertoire principal et les rΓ©pertoires contenant des modules python doivent contenir un fichier `__init__.py` `__init__.py` peut Γͺtre vide, contenir du code d'initialisation ou contenir la variable `__all__` | import operations_pack.simple
operations_pack.simple.addition(2, 4)
from operations_pack import simple
simple.soustraction(4, 2) | _____no_output_____ | MIT | modules.ipynb | LoicGrobol/python-im |
``__all__`` dans ``__init__.py`` dΓ©finit quels seront les modules qui seront importΓ©s avec ``import *`` | from operations_pack.avance import *
multi.multiplication(2,4) | _____no_output_____ | MIT | modules.ipynb | LoicGrobol/python-im |
OΓΉ sont les modules et les packages ? Pour que ``import`` fonctionne il faut que les modules soient dans le PATH. | import sys
sys.path | _____no_output_____ | MIT | modules.ipynb | LoicGrobol/python-im |
``sys.path`` est une liste, vous pouvez la modifier | sys.path.append("[...]") # le chemin vers le dossier operations_pack
sys.path | _____no_output_____ | MIT | modules.ipynb | LoicGrobol/python-im |
DSPT6 - Adding Data Science to a Web ApplicationThe purpose of this notebook is to demonstrate:- Simple online analysis of data from a user of the Twitoff app or an API- Train a more complicated offline model, and serialize the results for online use | import sqlite3
import pickle
import pandas as pd
# Connect to sqlite database
conn = sqlite3.connect('../twitoff/twitoff.sqlite')
def get_data(query, conn):
'''Function to get data from SQLite DB'''
cursor = conn.cursor()
result = cursor.execute(query).fetchall()
# Get columns from cursor object
columns = list(map(lambda x: x[0], cursor.description))
# Assign to DataFrame
df = pd.DataFrame(data=result, columns=columns)
return df
query = '''
SELECT
tweet.id,
tweet.text,
tweet.embedding,
user.username
FROM tweet
JOIN user ON tweet.user_id = user.id;
'''
df = get_data(query, conn)
df['embedding_decoded'] = df.embedding.apply(lambda x: pickle.loads(x[2:]))
print(df.shape)
df.head()
df.usernameme.value_counts()
import numpy as np
user1_embeddings = df.embedding_decoded[df.username=='elonmusk']
user2_embeddings = df.embedding_decoded[df.username=='nasa']
embeddings = pd.concat([user1_embeddings, user2_embeddings])
embeddings_df = pd.DataFrame(embeddings.tolist(),
columns=[f'dim{i}' for i in range(768)])
labels = np.concatenate([np.ones(len(user1_embeddings)),
np.zeros(len(user2_embeddings))])
print(embeddings_df.shape, labels.shape)
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(
embeddings_df, labels, test_size=0.25, random_state=42)
print(X_train.shape, X_test.shape)
from sklearn.linear_model import LogisticRegression
lr = LogisticRegression(max_iter=1000)
lr.fit(X_train, y_train)
import matplotlib.pyplot as plt
from sklearn.metrics import classification_report, plot_confusion_matrix
y_pred = lr.predict(X_test)
print(classification_report(y_test, y_pred))
plot_confusion_matrix(lr, X_test, y_test, cmap='Blues')
plt.title('LogReg Confusion Matrix');
pickle.dump(lr, open("../models/logreg.pkl", "wb"))
lr_unpickled = pickle.load(open("../models/logreg.pkl", "rb"))
lr_unpickled
import basilica
BASILICA_KEY=''
BASILICA = basilica.Connection(BASILICA_KEY)
example_embedding = BASILICA.embed_sentence('The MARS rover just reported new and interesting data!', model='twitter')
lr_unpickled.predict([example_embedding])[0] | _____no_output_____ | MIT | notebooks/LS333_DSPT6_Model_Demo.ipynb | DrewRust/DSPT6-Twitoff |
Working with Watson Machine Learning This notebook should be run in a Watson Studio project, using **Default Python 3.7.x** runtime environment. **If you are viewing this in Watson Studio and do not see Python 3.7.x in the upper right corner of your screen, please update the runtime now.** It requires service credentials for the following Cloud services: * Watson OpenScale * Watson Machine Learning If you have a paid Cloud account, you may also provision a **Databases for PostgreSQL** or **Db2 Warehouse** service to take full advantage of integration with Watson Studio and continuous learning services. If you choose not to provision this paid service, you can use the free internal PostgreSQL storage with OpenScale, but will not be able to configure continuous learning for your model.The notebook will train, create and deploy a House Price regression model, configure OpenScale to monitor that deployment in the OpenScale Insights dashboard. Contents- [Setup](setup)- [Model building and deployment](model)- [OpenScale configuration](openscale)- [Quality monitor and feedback logging](quality)- [Fairness, drift monitoring and explanations](fairness) Setup Package installation | import warnings
warnings.filterwarnings('ignore')
!rm -rf /home/spark/shared/user-libs/python3.7*
!pip install --upgrade pandas==1.2.3 --no-cache | tail -n 1
!pip install --upgrade requests==2.23 --no-cache | tail -n 1
!pip install --upgrade numpy==1.20.3 --user --no-cache | tail -n 1
!pip install SciPy --no-cache | tail -n 1
!pip install lime --no-cache | tail -n 1
!pip install --upgrade ibm-watson-machine-learning --user | tail -n 1
!pip install --upgrade ibm-watson-openscale --no-cache | tail -n 1
!pip install --upgrade xgboost==1.3.3 --no-cache | tail -n 1 | _____no_output_____ | Apache-2.0 | IBM Cloud/WML/notebooks/regression/xgboost_scikit_wrapper/Watson OpenScale and Watson ML Engine Regression.ipynb | arsuryan/watson-openscale-samples |
Provision services and configure credentials If you have not already, provision an instance of IBM Watson OpenScale using the [OpenScale link in the Cloud catalog](https://cloud.ibm.com/catalog/services/watson-openscale). Your Cloud API key can be generated by going to the [**Users** section of the Cloud console](https://cloud.ibm.com/iam/users). From that page, click your name, scroll down to the **API Keys** section, and click **Create an IBM Cloud API key**. Give your key a name and click **Create**, then copy the created key and paste it below. **NOTE:** You can also get OpenScale `API_KEY` using IBM CLOUD CLI.How to install IBM Cloud (bluemix) console: [instruction](https://console.bluemix.net/docs/cli/reference/ibmcloud/download_cli.htmlinstall_use)How to get api key using console:```bx login --ssobx iam api-key-create 'my_key'``` | CLOUD_API_KEY = "***"
IAM_URL="https://iam.ng.bluemix.net/oidc/token" | _____no_output_____ | Apache-2.0 | IBM Cloud/WML/notebooks/regression/xgboost_scikit_wrapper/Watson OpenScale and Watson ML Engine Regression.ipynb | arsuryan/watson-openscale-samples |
If you have not already, provision an instance of IBM Watson OpenScale using the [OpenScale link in the Cloud catalog](https://cloud.ibm.com/catalog/services/watson-openscale).Your Cloud API key can be generated by going to the [**Users** section of the Cloud console](https://cloud.ibm.com/iam/users). From that page, click your name, scroll down to the **API Keys** section, and click **Create an IBM Cloud API key**. Give your key a name and click **Create**, then copy the created key, generate an IAM token using that key and paste it below. WML credentials example with API key | WML_CREDENTIALS = {
"url": "https://us-south.ml.cloud.ibm.com",
"apikey": CLOUD_API_KEY
} | _____no_output_____ | Apache-2.0 | IBM Cloud/WML/notebooks/regression/xgboost_scikit_wrapper/Watson OpenScale and Watson ML Engine Regression.ipynb | arsuryan/watson-openscale-samples |
WML credentials example using IAM_token **NOTE**: If IAM_TOKEN is used for authentication and you receive unauthorized/expired token error at any steps, please create a new token and reinitiate clients authentication. | # #uncomment this cell if want to use IAM_TOKEN
# import requests
# def generate_access_token():
# headers={}
# headers["Content-Type"] = "application/x-www-form-urlencoded"
# headers["Accept"] = "application/json"
# auth = HTTPBasicAuth("bx", "bx")
# data = {
# "grant_type": "urn:ibm:params:oauth:grant-type:apikey",
# "apikey": CLOUD_API_KEY
# }
# response = requests.post(IAM_URL, data=data, headers=headers, auth=auth)
# json_data = response.json()
# iam_access_token = json_data['access_token']
# return iam_access_token
#uncomment this cell if want to use IAM_TOKEN
# IAM_TOKEN = generate_access_token()
# WML_CREDENTIALS = {
# "url": "https://us-south.ml.cloud.ibm.com",
# "token": IAM_TOKEN
# } | _____no_output_____ | Apache-2.0 | IBM Cloud/WML/notebooks/regression/xgboost_scikit_wrapper/Watson OpenScale and Watson ML Engine Regression.ipynb | arsuryan/watson-openscale-samples |
Cloud object storage detailsIn next cells, you will need to paste some credentials to Cloud Object Storage. If you haven't worked with COS yet please visit [getting started with COS tutorial](https://cloud.ibm.com/docs/cloud-object-storage?topic=cloud-object-storage-getting-started). You can find `COS_API_KEY_ID` and `COS_RESOURCE_CRN` variables in **_Service Credentials_** in menu of your COS instance. Used COS Service Credentials must be created with _Role_ parameter set as Writer. Later training data file will be loaded to the bucket of your instance and used as training refecence in subsription. `COS_ENDPOINT` variable can be found in **_Endpoint_** field of the menu. | COS_API_KEY_ID = "***"
COS_RESOURCE_CRN = "***" # eg "crn:v1:bluemix:public:cloud-object-storage:global:a/3bf0d9003abfb5d29761c3e97696b71c:d6f04d83-6c4f-4a62-a165-696756d63903::"
COS_ENDPOINT = "***" # Current list avaiable at https://control.cloud-object-storage.cloud.ibm.com/v2/endpoints
BUCKET_NAME = "***"
training_data_file_name="house_price_regression.csv" | _____no_output_____ | Apache-2.0 | IBM Cloud/WML/notebooks/regression/xgboost_scikit_wrapper/Watson OpenScale and Watson ML Engine Regression.ipynb | arsuryan/watson-openscale-samples |
This tutorial can use Databases for PostgreSQL, Db2 Warehouse, or a free internal verison of PostgreSQL to create a datamart for OpenScale.If you have previously configured OpenScale, it will use your existing datamart, and not interfere with any models you are currently monitoring. Do not update the cell below.If you do not have a paid Cloud account or would prefer not to provision this paid service, you may use the free internal PostgreSQL service with OpenScale. Do not update the cell below.To provision a new instance of Db2 Warehouse, locate [Db2 Warehouse in the Cloud catalog](https://cloud.ibm.com/catalog/services/db2-warehouse), give your service a name, and click **Create**. Once your instance is created, click the **Service Credentials** link on the left side of the screen. Click the **New credential** button, give your credentials a name, and click **Add**. Your new credentials can be accessed by clicking the **View credentials** button. Copy and paste your Db2 Warehouse credentials into the cell below.To provision a new instance of Databases for PostgreSQL, locate [Databases for PostgreSQL in the Cloud catalog](https://cloud.ibm.com/catalog/services/databases-for-postgresql), give your service a name, and click **Create**. Once your instance is created, click the **Service Credentials** link on the left side of the screen. Click the **New credential** button, give your credentials a name, and click **Add**. Your new credentials can be accessed by clicking the **View credentials** button. Copy and paste your Databases for PostgreSQL credentials into the cell below. | DB_CREDENTIALS = None
#DB_CREDENTIALS= {"hostname":"","username":"","password":"","database":"","port":"","ssl":True,"sslmode":"","certificate_base64":""}
KEEP_MY_INTERNAL_POSTGRES = True | _____no_output_____ | Apache-2.0 | IBM Cloud/WML/notebooks/regression/xgboost_scikit_wrapper/Watson OpenScale and Watson ML Engine Regression.ipynb | arsuryan/watson-openscale-samples |
Run the notebookAt this point, the notebook is ready to run. You can either run the cells one at a time, or click the **Kernel** option above and select **Restart and Run All** to run all the cells. Model building and deployment In this section you will learn how to train Spark MLLib model and next deploy it as web-service using Watson Machine Learning service. Load the training data from github | !rm house_price_regression.csv
!wget https://raw.githubusercontent.com/IBM/watson-openscale-samples/main/IBM%20Cloud/WML/assets/data/house_price/house_price_regression.csv
import pandas as pd
import numpy as np
pd_data = pd.read_csv("house_price_regression.csv")
pd_data.head() | _____no_output_____ | Apache-2.0 | IBM Cloud/WML/notebooks/regression/xgboost_scikit_wrapper/Watson OpenScale and Watson ML Engine Regression.ipynb | arsuryan/watson-openscale-samples |
Explore data Save training data to Cloud Object Storage | import ibm_boto3
from ibm_botocore.client import Config, ClientError
cos_client = ibm_boto3.resource("s3",
ibm_api_key_id=COS_API_KEY_ID,
ibm_service_instance_id=COS_RESOURCE_CRN,
ibm_auth_endpoint="https://iam.bluemix.net/oidc/token",
config=Config(signature_version="oauth"),
endpoint_url=COS_ENDPOINT
)
with open(training_data_file_name, "rb") as file_data:
cos_client.Object(BUCKET_NAME, training_data_file_name).upload_fileobj(
Fileobj=file_data
) | _____no_output_____ | Apache-2.0 | IBM Cloud/WML/notebooks/regression/xgboost_scikit_wrapper/Watson OpenScale and Watson ML Engine Regression.ipynb | arsuryan/watson-openscale-samples |
Create a model | from sklearn.model_selection import train_test_split
from sklearn.impute import SimpleImputer
pd_data.dropna(axis=0, subset=['SalePrice'], inplace=True)
label = pd_data.SalePrice
feature_data = pd_data.drop(['SalePrice'], axis=1).select_dtypes(exclude=['object'])
train_X, test_X, train_y, test_y = train_test_split(feature_data.values, label.values, test_size=0.25)
my_imputer = SimpleImputer(missing_values=np.nan, strategy='mean')
train_X = my_imputer.fit_transform(train_X)
test_X = my_imputer.transform(test_X)
from xgboost import XGBRegressor
from sklearn.compose import ColumnTransformer
model=XGBRegressor()
model.fit(train_X, train_y, eval_metric=['error'],
eval_set=[(test_X, test_y)], verbose=False)
# make predictions
predictions = model.predict(test_X)
from sklearn.metrics import mean_absolute_error
print("Mean Absolute Error : " + str(mean_absolute_error(predictions, test_y))) | _____no_output_____ | Apache-2.0 | IBM Cloud/WML/notebooks/regression/xgboost_scikit_wrapper/Watson OpenScale and Watson ML Engine Regression.ipynb | arsuryan/watson-openscale-samples |
wrap xgboost with scikit pipeline | from sklearn.pipeline import Pipeline
xgb_model_imputer = SimpleImputer(missing_values=np.nan, strategy='mean')
pipeline = Pipeline(steps=[('Imputer', xgb_model_imputer), ('xgb', model)])
model_xgb=pipeline.fit(train_X, train_y)
# make predictions
predictions = model_xgb.predict(test_X)
from sklearn.metrics import mean_absolute_error
print("Mean Absolute Error : " + str(mean_absolute_error(predictions, test_y))) | _____no_output_____ | Apache-2.0 | IBM Cloud/WML/notebooks/regression/xgboost_scikit_wrapper/Watson OpenScale and Watson ML Engine Regression.ipynb | arsuryan/watson-openscale-samples |
Publish the model | import json
from ibm_watson_machine_learning import APIClient
wml_client = APIClient(WML_CREDENTIALS)
wml_client.version | _____no_output_____ | Apache-2.0 | IBM Cloud/WML/notebooks/regression/xgboost_scikit_wrapper/Watson OpenScale and Watson ML Engine Regression.ipynb | arsuryan/watson-openscale-samples |
Listing all the available spaces | wml_client.spaces.list(limit=10)
WML_SPACE_ID='***' # use space id here
wml_client.set.default_space(WML_SPACE_ID) | _____no_output_____ | Apache-2.0 | IBM Cloud/WML/notebooks/regression/xgboost_scikit_wrapper/Watson OpenScale and Watson ML Engine Regression.ipynb | arsuryan/watson-openscale-samples |
Remove existing model and deployment | MODEL_NAME="house_price_xgbregression"
DEPLOYMENT_NAME="house_price_xgbregression_deployment"
deployments_list = wml_client.deployments.get_details()
for deployment in deployments_list["resources"]:
model_id = deployment["entity"]["asset"]["id"]
deployment_id = deployment["metadata"]["id"]
if deployment["metadata"]["name"] == DEPLOYMENT_NAME:
print("Deleting deployment id", deployment_id)
wml_client.deployments.delete(deployment_id)
print("Deleting model id", model_id)
wml_client.repository.delete(model_id)
wml_client.repository.list_models()
training_data_references = [
{
"id": "product line",
"type": "s3",
"connection": {
"access_key_id": COS_API_KEY_ID,
"endpoint_url": COS_ENDPOINT,
"resource_instance_id":COS_RESOURCE_CRN
},
"location": {
"bucket": BUCKET_NAME,
"path": training_data_file_name,
}
}
]
#Note if there is specification related exception or specification ID is None then use "default_py3.8" instead of "default_py3.7_opence"
software_spec_uid = wml_client.software_specifications.get_id_by_name("default_py3.7_opence")
print("Software Specification ID: {}".format(software_spec_uid))
model_props = {
wml_client._models.ConfigurationMetaNames.NAME:"{}".format(MODEL_NAME),
wml_client._models.ConfigurationMetaNames.TYPE: "scikit-learn_0.23",
wml_client._models.ConfigurationMetaNames.SOFTWARE_SPEC_UID: software_spec_uid,
wml_client._models.ConfigurationMetaNames.TRAINING_DATA_REFERENCES: training_data_references,
wml_client._models.ConfigurationMetaNames.LABEL_FIELD: "SalePrice",
}
print("Storing model ...")
published_model_details = wml_client.repository.store_model(
model=model_xgb,
meta_props=model_props,
training_data=feature_data,
training_target=label
)
model_uid = wml_client.repository.get_model_uid(published_model_details)
print("Done")
print("Model ID: {}".format(model_uid)) | _____no_output_____ | Apache-2.0 | IBM Cloud/WML/notebooks/regression/xgboost_scikit_wrapper/Watson OpenScale and Watson ML Engine Regression.ipynb | arsuryan/watson-openscale-samples |
Deploy the model The next section of the notebook deploys the model as a RESTful web service in Watson Machine Learning. The deployed model will have a scoring URL you can use to send data to the model for predictions. | deployment_details = wml_client.deployments.create(
model_uid,
meta_props={
wml_client.deployments.ConfigurationMetaNames.NAME: "{}".format(DEPLOYMENT_NAME),
wml_client.deployments.ConfigurationMetaNames.ONLINE: {}
}
)
scoring_url = wml_client.deployments.get_scoring_href(deployment_details)
deployment_uid=wml_client.deployments.get_uid(deployment_details)
print("Scoring URL:" + scoring_url)
print("Model id: {}".format(model_uid))
print("Deployment id: {}".format(deployment_uid)) | _____no_output_____ | Apache-2.0 | IBM Cloud/WML/notebooks/regression/xgboost_scikit_wrapper/Watson OpenScale and Watson ML Engine Regression.ipynb | arsuryan/watson-openscale-samples |
Sample scoring | fields = feature_data.columns.tolist()
values = [
test_X[0].tolist()
]
scoring_payload = {"input_data": [{"fields": fields, "values": values}]}
scoring_payload
scoring_response = wml_client.deployments.score(deployment_uid, scoring_payload)
scoring_response | _____no_output_____ | Apache-2.0 | IBM Cloud/WML/notebooks/regression/xgboost_scikit_wrapper/Watson OpenScale and Watson ML Engine Regression.ipynb | arsuryan/watson-openscale-samples |
Configure OpenScale The notebook will now import the necessary libraries and set up a Python OpenScale client. | from ibm_cloud_sdk_core.authenticators import IAMAuthenticator,BearerTokenAuthenticator
from ibm_watson_openscale import *
from ibm_watson_openscale.supporting_classes.enums import *
from ibm_watson_openscale.supporting_classes import *
authenticator = IAMAuthenticator(apikey=CLOUD_API_KEY)
wos_client = APIClient(authenticator=authenticator)
wos_client.version | _____no_output_____ | Apache-2.0 | IBM Cloud/WML/notebooks/regression/xgboost_scikit_wrapper/Watson OpenScale and Watson ML Engine Regression.ipynb | arsuryan/watson-openscale-samples |
Create schema and datamart Set up datamart Watson OpenScale uses a database to store payload logs and calculated metrics. If database credentials were **not** supplied above, the notebook will use the free, internal lite database. If database credentials were supplied, the datamart will be created there **unless** there is an existing datamart **and** the **KEEP_MY_INTERNAL_POSTGRES** variable is set to **True**. If an OpenScale datamart exists in Db2 or PostgreSQL, the existing datamart will be used and no data will be overwritten.Prior instances of the House price model will be removed from OpenScale monitoring. | wos_client.data_marts.show()
data_marts = wos_client.data_marts.list().result.data_marts
if len(data_marts) == 0:
if DB_CREDENTIALS is not None:
if SCHEMA_NAME is None:
print("Please specify the SCHEMA_NAME and rerun the cell")
print('Setting up external datamart')
added_data_mart_result = wos_client.data_marts.add(
background_mode=False,
name="WOS Data Mart",
description="Data Mart created by WOS tutorial notebook",
database_configuration=DatabaseConfigurationRequest(
database_type=DatabaseType.POSTGRESQL,
credentials=PrimaryStorageCredentialsLong(
hostname=DB_CREDENTIALS['hostname'],
username=DB_CREDENTIALS['username'],
password=DB_CREDENTIALS['password'],
db=DB_CREDENTIALS['database'],
port=DB_CREDENTIALS['port'],
ssl=True,
sslmode=DB_CREDENTIALS['sslmode'],
certificate_base64=DB_CREDENTIALS['certificate_base64']
),
location=LocationSchemaName(
schema_name= SCHEMA_NAME
)
)
).result
else:
print('Setting up internal datamart')
added_data_mart_result = wos_client.data_marts.add(
background_mode=False,
name="WOS Data Mart",
description="Data Mart created by WOS tutorial notebook",
internal_database = True).result
data_mart_id = added_data_mart_result.metadata.id
else:
data_mart_id=data_marts[0].metadata.id
print('Using existing datamart {}'.format(data_mart_id))
| _____no_output_____ | Apache-2.0 | IBM Cloud/WML/notebooks/regression/xgboost_scikit_wrapper/Watson OpenScale and Watson ML Engine Regression.ipynb | arsuryan/watson-openscale-samples |
Remove existing service provider connected with used WML instance. Multiple service providers for the same engine instance are avaiable in Watson OpenScale. To avoid multiple service providers of used WML instance in the tutorial notebook the following code deletes existing service provder(s) and then adds new one. | SERVICE_PROVIDER_NAME = "xgboost_WML V2"
SERVICE_PROVIDER_DESCRIPTION = "Added by tutorial WOS notebook."
service_providers = wos_client.service_providers.list().result.service_providers
for service_provider in service_providers:
service_instance_name = service_provider.entity.name
if service_instance_name == SERVICE_PROVIDER_NAME:
service_provider_id = service_provider.metadata.id
wos_client.service_providers.delete(service_provider_id)
print("Deleted existing service_provider for WML instance: {}".format(service_provider_id)) | _____no_output_____ | Apache-2.0 | IBM Cloud/WML/notebooks/regression/xgboost_scikit_wrapper/Watson OpenScale and Watson ML Engine Regression.ipynb | arsuryan/watson-openscale-samples |
Add service provider Watson OpenScale needs to be bound to the Watson Machine Learning instance to capture payload data into and out of the model. **Note:** You can bind more than one engine instance if needed by calling `wos_client.service_providers.add` method. Next, you can refer to particular service provider using `service_provider_id`. | added_service_provider_result = wos_client.service_providers.add(
name=SERVICE_PROVIDER_NAME,
description=SERVICE_PROVIDER_DESCRIPTION,
service_type=ServiceTypes.WATSON_MACHINE_LEARNING,
deployment_space_id = WML_SPACE_ID,
operational_space_id = "production",
credentials=WMLCredentialsCloud(
apikey=CLOUD_API_KEY, ## use `apikey=IAM_TOKEN` if using IAM_TOKEN to initiate client
url=WML_CREDENTIALS["url"],
instance_id=None
),
background_mode=False
).result
service_provider_id = added_service_provider_result.metadata.id
wos_client.service_providers.show()
asset_deployment_details = wos_client.service_providers.list_assets(data_mart_id=data_mart_id, service_provider_id=service_provider_id,deployment_id=deployment_uid, deployment_space_id = WML_SPACE_ID).result['resources'][0]
asset_deployment_details
model_asset_details_from_deployment=wos_client.service_providers.get_deployment_asset(data_mart_id=data_mart_id,service_provider_id=service_provider_id,deployment_id=deployment_uid,deployment_space_id=WML_SPACE_ID)
model_asset_details_from_deployment | _____no_output_____ | Apache-2.0 | IBM Cloud/WML/notebooks/regression/xgboost_scikit_wrapper/Watson OpenScale and Watson ML Engine Regression.ipynb | arsuryan/watson-openscale-samples |
Subscriptions Remove existing House price model subscriptions This code removes previous subscriptions to the House price model to refresh the monitors with the new model and new data. | wos_client.subscriptions.show() | _____no_output_____ | Apache-2.0 | IBM Cloud/WML/notebooks/regression/xgboost_scikit_wrapper/Watson OpenScale and Watson ML Engine Regression.ipynb | arsuryan/watson-openscale-samples |
This code removes previous subscriptions to the House price model to refresh the monitors with the new model and new data. | subscriptions = wos_client.subscriptions.list().result.subscriptions
for subscription in subscriptions:
sub_model_id = subscription.entity.asset.asset_id
if sub_model_id == model_uid:
wos_client.subscriptions.delete(subscription.metadata.id)
print('Deleted existing subscription for model', sub_model_id) | _____no_output_____ | Apache-2.0 | IBM Cloud/WML/notebooks/regression/xgboost_scikit_wrapper/Watson OpenScale and Watson ML Engine Regression.ipynb | arsuryan/watson-openscale-samples |
This code creates the model subscription in OpenScale using the Python client API. Note that we need to provide the model unique identifier, and some information about the model itself. This code creates the model subscription in OpenScale using the Python client API. Note that we need to provide the model unique identifier, and some information about the model itself. | feature_cols=feature_data.columns.tolist()
#categorical_cols=X.select_dtypes(include=['object']).columns
from ibm_watson_openscale.base_classes.watson_open_scale_v2 import ScoringEndpointRequest
subscription_details = wos_client.subscriptions.add(
data_mart_id=data_mart_id,
service_provider_id=service_provider_id,
asset=Asset(
asset_id=model_asset_details_from_deployment["entity"]["asset"]["asset_id"],
name=model_asset_details_from_deployment["entity"]["asset"]["name"],
url=model_asset_details_from_deployment["entity"]["asset"]["url"],
asset_type=AssetTypes.MODEL,
input_data_type=InputDataType.STRUCTURED,
problem_type=ProblemType.REGRESSION
),
deployment=AssetDeploymentRequest(
deployment_id=asset_deployment_details['metadata']['guid'],
name=asset_deployment_details['entity']['name'],
deployment_type= DeploymentTypes.ONLINE,
url=asset_deployment_details['metadata']['url'],
scoring_endpoint=ScoringEndpointRequest(url=scoring_url) # scoring model without shadow deployment
),
asset_properties=AssetPropertiesRequest(
label_column='SalePrice',
prediction_field='prediction',
feature_fields = feature_cols,
#categorical_fields = categorical_cols,
training_data_reference=TrainingDataReference(type='cos',
location=COSTrainingDataReferenceLocation(bucket = BUCKET_NAME,
file_name = training_data_file_name),
connection=COSTrainingDataReferenceConnection.from_dict({
"resource_instance_id": COS_RESOURCE_CRN,
"url": COS_ENDPOINT,
"api_key": COS_API_KEY_ID,
"iam_url": IAM_URL}))
),background_mode = False
).result
subscription_id = subscription_details.metadata.id
subscription_id
import time
time.sleep(5)
payload_data_set_id = None
payload_data_set_id = wos_client.data_sets.list(type=DataSetTypes.PAYLOAD_LOGGING,
target_target_id=subscription_id,
target_target_type=TargetTypes.SUBSCRIPTION).result.data_sets[0].metadata.id
if payload_data_set_id is None:
print("Payload data set not found. Please check subscription status.")
else:
print("Payload data set id: ", payload_data_set_id)
wos_client.data_sets.show() | _____no_output_____ | Apache-2.0 | IBM Cloud/WML/notebooks/regression/xgboost_scikit_wrapper/Watson OpenScale and Watson ML Engine Regression.ipynb | arsuryan/watson-openscale-samples |
Get subscription list | wos_client.subscriptions.show() | _____no_output_____ | Apache-2.0 | IBM Cloud/WML/notebooks/regression/xgboost_scikit_wrapper/Watson OpenScale and Watson ML Engine Regression.ipynb | arsuryan/watson-openscale-samples |
Score the model so we can configure monitors | import random
fields = feature_data.columns.tolist()
values = random.sample(test_X.tolist(), 2)
scoring_payload = {"input_data": [{"fields": fields, "values": values}]}
predictions = wml_client.deployments.score(deployment_uid, scoring_payload)
print("Single record scoring result:", "\n fields:", predictions["predictions"][0]["fields"], "\n values: ", predictions["predictions"][0]["values"][0]) | _____no_output_____ | Apache-2.0 | IBM Cloud/WML/notebooks/regression/xgboost_scikit_wrapper/Watson OpenScale and Watson ML Engine Regression.ipynb | arsuryan/watson-openscale-samples |
Check if WML payload logging worked else manually store payload records | import uuid
from ibm_watson_openscale.supporting_classes.payload_record import PayloadRecord
time.sleep(5)
pl_records_count = wos_client.data_sets.get_records_count(payload_data_set_id)
print("Number of records in the payload logging table: {}".format(pl_records_count))
if pl_records_count == 0:
print("Payload logging did not happen, performing explicit payload logging.")
wos_client.data_sets.store_records(data_set_id=payload_data_set_id, request_body=[PayloadRecord(
scoring_id=str(uuid.uuid4()),
request=scoring_payload,
response={"fields": predictions['predictions'][0]['fields'], "values":predictions['predictions'][0]['values']},
response_time=460
)],background_mode=False)
time.sleep(5)
pl_records_count = wos_client.data_sets.get_records_count(payload_data_set_id)
print("Number of records in the payload logging table: {}".format(pl_records_count))
wos_client.data_sets.show_records(payload_data_set_id) | _____no_output_____ | Apache-2.0 | IBM Cloud/WML/notebooks/regression/xgboost_scikit_wrapper/Watson OpenScale and Watson ML Engine Regression.ipynb | arsuryan/watson-openscale-samples |
Quality monitoring and feedback logging Enable quality monitoring | import time
time.sleep(10)
target = Target(
target_type=TargetTypes.SUBSCRIPTION,
target_id=subscription_id
)
parameters = {
"min_feedback_data_size": 50
}
quality_monitor_details = wos_client.monitor_instances.create(
data_mart_id=data_mart_id,
background_mode=False,
monitor_definition_id=wos_client.monitor_definitions.MONITORS.QUALITY.ID,
target=target,
parameters=parameters
).result
quality_monitor_instance_id = quality_monitor_details.metadata.id
quality_monitor_instance_id | _____no_output_____ | Apache-2.0 | IBM Cloud/WML/notebooks/regression/xgboost_scikit_wrapper/Watson OpenScale and Watson ML Engine Regression.ipynb | arsuryan/watson-openscale-samples |
Feedback logging The code below downloads and stores enough feedback data to meet the minimum threshold so that OpenScale can calculate a new accuracy measurement. It then kicks off the accuracy monitor. The monitors run hourly, or can be initiated via the Python API, the REST API, or the graphical user interface. Get feedback logging dataset ID | feedback_dataset_id = None
feedback_dataset = wos_client.data_sets.list(type=DataSetTypes.FEEDBACK,
target_target_id=subscription_id,
target_target_type=TargetTypes.SUBSCRIPTION).result
print(feedback_dataset)
feedback_dataset_id = feedback_dataset.data_sets[0].metadata.id
if feedback_dataset_id is None:
print("Feedback data set not found. Please check quality monitor status.")
!rm custom_feedback_50_regression.json
!wget https://raw.githubusercontent.com/IBM/watson-openscale-samples/main/IBM%20Cloud/WML/assets/data/house_price/custom_feedback_50_regression.json
with open ('custom_feedback_50_regression.json')as file:
feedback_data=json.load(file)
wos_client.data_sets.store_records(feedback_dataset_id, request_body=feedback_data, background_mode=False)
wos_client.data_sets.get_records_count(data_set_id=feedback_dataset_id)
run_details = wos_client.monitor_instances.run(monitor_instance_id=quality_monitor_instance_id, background_mode=False).result
wos_client.monitor_instances.show_metrics(monitor_instance_id=quality_monitor_instance_id) | _____no_output_____ | Apache-2.0 | IBM Cloud/WML/notebooks/regression/xgboost_scikit_wrapper/Watson OpenScale and Watson ML Engine Regression.ipynb | arsuryan/watson-openscale-samples |
Fairness, drift monitoring and explanations Fairness configurationThe code below configures fairness monitoring for our model. It turns on monitoring for one features, MSSubClass. In each case, we must specify: * Which model feature to monitor * One or more **majority** groups, which are values of that feature that we expect to receive a higher percentage of favorable outcomes * One or more **minority** groups, which are values of that feature that we expect to receive a higher percentage of unfavorable outcomes * The threshold at which we would like OpenScale to display an alert if the fairness measurement falls below (in this case, 80%)Additionally, we must specify which outcomes from the model are favourable outcomes, and which are unfavourable. We must also provide the number of records OpenScale will use to calculate the fairness score. In this case, OpenScale's fairness monitor will run hourly, but will not calculate a new fairness rating until at least 50 records have been added. Finally, to calculate fairness, OpenScale must perform some calculations on the training data, so we provide the dataframe containing the data. | wos_client.monitor_instances.show()
#wos_client.monitor_instances.delete(drift_monitor_instance_id,background_mode=False)
target = Target(
target_type=TargetTypes.SUBSCRIPTION,
target_id=subscription_id
)
parameters = {
"features": [
{
"feature": "MSSubClass",
"majority": [[50,70]],
"threshold": 0.8,
"minority": [[80,100]]
}
],
"favourable_class": [[200000,500000]],
"unfavourable_class": [[35000,100000]],
"min_records": 50
}
fairness_monitor_details = wos_client.monitor_instances.create(
data_mart_id=data_mart_id,
background_mode=False,
monitor_definition_id=wos_client.monitor_definitions.MONITORS.FAIRNESS.ID,
target=target,
parameters=parameters).result
fairness_monitor_instance_id =fairness_monitor_details.metadata.id
fairness_monitor_instance_id | _____no_output_____ | Apache-2.0 | IBM Cloud/WML/notebooks/regression/xgboost_scikit_wrapper/Watson OpenScale and Watson ML Engine Regression.ipynb | arsuryan/watson-openscale-samples |
Drift configuration Note: you can choose to enable/disable (True or False) model or data drift within config | monitor_instances = wos_client.monitor_instances.list().result.monitor_instances
for monitor_instance in monitor_instances:
monitor_def_id=monitor_instance.entity.monitor_definition_id
if monitor_def_id == "drift" and monitor_instance.entity.target.target_id == subscription_id:
wos_client.monitor_instances.delete(monitor_instance.metadata.id)
print('Deleted existing drift monitor instance with id: ', monitor_instance.metadata.id)
target = Target(
target_type=TargetTypes.SUBSCRIPTION,
target_id=subscription_id
)
parameters = {
"min_samples": 50,
"drift_threshold": 0.1,
"train_drift_model": True,
"enable_model_drift": True,
"enable_data_drift": True
}
drift_monitor_details = wos_client.monitor_instances.create(
data_mart_id=data_mart_id,
background_mode=False,
monitor_definition_id=wos_client.monitor_definitions.MONITORS.DRIFT.ID,
target=target,
parameters=parameters
).result
drift_monitor_instance_id = drift_monitor_details.metadata.id
drift_monitor_instance_id | _____no_output_____ | Apache-2.0 | IBM Cloud/WML/notebooks/regression/xgboost_scikit_wrapper/Watson OpenScale and Watson ML Engine Regression.ipynb | arsuryan/watson-openscale-samples |
Score the model again now that monitoring is configured This next section randomly selects 200 records from the data feed and sends those records to the model for predictions. This is enough to exceed the minimum threshold for records set in the previous section, which allows OpenScale to begin calculating fairness. | !wget https://raw.githubusercontent.com/IBM/watson-openscale-samples/main/IBM%20Cloud/WML/assets/data/house_price/custom_scoring_payloads_50_regression.json
with open('custom_scoring_payloads_50_regression.json', 'r') as scoring_file:
scoring_data = json.load(scoring_file)
import random
with open('custom_scoring_payloads_50_regression.json', 'r') as scoring_file:
scoring_data = json.load(scoring_file)
fields = scoring_data[0]['request']['fields']
values = scoring_data[0]['request']['values']
payload_scoring = {"input_data": [{"fields": fields, "values": values}]}
scoring_response = wml_client.deployments.score(deployment_uid, payload_scoring)
time.sleep(5)
pl_records_count = wos_client.data_sets.get_records_count(payload_data_set_id)
if pl_records_count == 2:
print("Payload logging did not happen, performing explicit payload logging.")
wos_client.data_sets.store_records(data_set_id=payload_data_set_id, request_body=[PayloadRecord(
scoring_id=str(uuid.uuid4()),
request=payload_scoring,
response={"fields": scoring_response['predictions'][0]['fields'], "values":scoring_response['predictions'][0]['values']},
response_time=460
)])
time.sleep(5)
pl_records_count = wos_client.data_sets.get_records_count(payload_data_set_id)
print("Number of records in the payload logging table: {}".format(pl_records_count))
print('Number of records in payload table: ', wos_client.data_sets.get_records_count(data_set_id=payload_data_set_id)) | _____no_output_____ | Apache-2.0 | IBM Cloud/WML/notebooks/regression/xgboost_scikit_wrapper/Watson OpenScale and Watson ML Engine Regression.ipynb | arsuryan/watson-openscale-samples |
Run fairness monitor Kick off a fairness monitor run on current data. The monitor runs hourly, but can be manually initiated using the Python client, the REST API, or the graphical user interface. | run_details = wos_client.monitor_instances.run(monitor_instance_id=fairness_monitor_instance_id, background_mode=False)
time.sleep(10)
wos_client.monitor_instances.show_metrics(monitor_instance_id=fairness_monitor_instance_id) | _____no_output_____ | Apache-2.0 | IBM Cloud/WML/notebooks/regression/xgboost_scikit_wrapper/Watson OpenScale and Watson ML Engine Regression.ipynb | arsuryan/watson-openscale-samples |
Run drift monitorKick off a drift monitor run on current data. The monitor runs every hour, but can be manually initiated using the Python client, the REST API. | drift_run_details = wos_client.monitor_instances.run(monitor_instance_id=drift_monitor_instance_id, background_mode=False)
time.sleep(5)
wos_client.monitor_instances.show_metrics(monitor_instance_id=drift_monitor_instance_id) | _____no_output_____ | Apache-2.0 | IBM Cloud/WML/notebooks/regression/xgboost_scikit_wrapper/Watson OpenScale and Watson ML Engine Regression.ipynb | arsuryan/watson-openscale-samples |
Configure Explainability Finally, we provide OpenScale with the training data to enable and configure the explainability features. | target = Target(
target_type=TargetTypes.SUBSCRIPTION,
target_id=subscription_id
)
parameters = {
"enabled": True
}
explainability_details = wos_client.monitor_instances.create(
data_mart_id=data_mart_id,
background_mode=False,
monitor_definition_id=wos_client.monitor_definitions.MONITORS.EXPLAINABILITY.ID,
target=target,
parameters=parameters
).result
explainability_monitor_id = explainability_details.metadata.id | _____no_output_____ | Apache-2.0 | IBM Cloud/WML/notebooks/regression/xgboost_scikit_wrapper/Watson OpenScale and Watson ML Engine Regression.ipynb | arsuryan/watson-openscale-samples |
Run explanation for sample record | pl_records_resp = wos_client.data_sets.get_list_of_records(data_set_id=payload_data_set_id, limit=1, offset=0).result
scoring_ids = [pl_records_resp["records"][0]["entity"]["values"]["scoring_id"]]
print("Running explanations on scoring IDs: {}".format(scoring_ids))
explanation_types = ["lime", "contrastive"]
result = wos_client.monitor_instances.explanation_tasks(scoring_ids=scoring_ids, explanation_types=explanation_types).result
print(result)
explanation_task_id=result.to_dict()['metadata']['explanation_task_ids'][0]
explanation_task_id
wos_client.monitor_instances.get_explanation_tasks(explanation_task_id=explanation_task_id).result.to_dict() | _____no_output_____ | Apache-2.0 | IBM Cloud/WML/notebooks/regression/xgboost_scikit_wrapper/Watson OpenScale and Watson ML Engine Regression.ipynb | arsuryan/watson-openscale-samples |
Additional data to help debugging | print('Datamart:', data_mart_id)
print('Model:', model_uid)
print('Deployment:', deployment_uid) | _____no_output_____ | Apache-2.0 | IBM Cloud/WML/notebooks/regression/xgboost_scikit_wrapper/Watson OpenScale and Watson ML Engine Regression.ipynb | arsuryan/watson-openscale-samples |
Identify transactions for Explainability Transaction IDs identified by the cells below can be copied and pasted into the Explainability tab of the OpenScale dashboard. | wos_client.data_sets.show_records(payload_data_set_id, limit=5) | _____no_output_____ | Apache-2.0 | IBM Cloud/WML/notebooks/regression/xgboost_scikit_wrapper/Watson OpenScale and Watson ML Engine Regression.ipynb | arsuryan/watson-openscale-samples |
This Notebook uses a Session Event Dataset from E-Commerce Website (https://www.kaggle.com/mkechinov/ecommerce-behavior-data-from-multi-category-store and https://rees46.com/) to build an Outlier Detection based on an Autoencoder. | import mlflow
import numpy as np
import os
import shutil
import pandas as pd
import tensorflow as tf
import tensorflow.keras as keras
import tensorflow_hub as hub
from itertools import product
# enable gpu growth if gpu is available
gpu_devices = tf.config.experimental.list_physical_devices('GPU')
for device in gpu_devices:
tf.config.experimental.set_memory_growth(device, True)
# tf.keras.mixed_precision.set_global_policy('mixed_float16')
tf.config.optimizer.set_jit(True)
%load_ext watermark
%watermark -v -iv | INFO:tensorflow:Mixed precision compatibility check (mixed_float16): OK
Your GPU will likely run quickly with dtype policy mixed_float16 as it has compute capability of at least 7.0. Your GPU: GeForce RTX 2070 SUPER, compute capability 7.5
numpy 1.19.4
mlflow 1.14.1
tensorflow 2.4.0
tensorflow_hub 0.11.0
pandas 1.1.5
tensorflow.keras 2.4.0
CPython 3.6.9
IPython 7.16.1
| MIT | outlier_detection/training_outlier_detection.ipynb | felix-exel/kfserving-advanced |
Setting Registry and Tracking URI for MLflow | # Use this registry uri when mlflow is created by docker container with a mysql db backend
#registry_uri = os.path.expandvars('mysql+pymysql://${MYSQL_USER}:${MYSQL_PASSWORD}@localhost:3306/${MYSQL_DATABASE}')
# Use this registry uri when mlflow is running locally by the command:
# "mlflow server --backend-store-uri sqlite:///mlflow.db --default-artifact-root ./mlruns --host 0.0.0.0"
registry_uri = 'sqlite:///mlflow.db'
tracking_uri = 'http://localhost:5000'
mlflow.tracking.set_registry_uri(registry_uri)
mlflow.tracking.set_tracking_uri(tracking_uri) | _____no_output_____ | MIT | outlier_detection/training_outlier_detection.ipynb | felix-exel/kfserving-advanced |
The Data is taken from https://www.kaggle.com/mkechinov/ecommerce-behavior-data-from-multi-category-store and https://rees46.com/ Each record/line in the file has the following fields:1. event_time: When did the event happened (UTC)2. event_type: Event type: one of [view, cart, remove_from_cart, purchase] 3. product_id4. category_id5. category_code: Category meaningful name (if present)6. brand: Brand name in lower case (if present)7. price8. user_id: Permanent user ID9. user_session: User session ID | # Read first 500.000 Rows
for chunk in pd.read_table("2019-Dec.csv",
sep=",", header=0,
infer_datetime_format=True, low_memory=False, chunksize=500000):
# Filter out other event types than 'view'
chunk = chunk[chunk['event_type'] == 'view']
# Filter out missing 'category_code' rows
chunk = chunk[chunk['category_code'].isna() == False]
chunk.reset_index(drop=True, inplace=True)
# Filter out all Sessions of length 1
count_sessions = chunk.groupby('user_session').count()
window_length = count_sessions.max()[0]
unique_sessions = [count_sessions.index[i] for i in range(
count_sessions.shape[0]) if count_sessions.iloc[i, 0] == 1]
chunk = chunk[~chunk['user_session'].isin(unique_sessions)]
chunk.reset_index(drop=True, inplace=True)
# Text embedding based on https://tfhub.dev/google/nnlm-en-dim50/2
last_category = []
for i, el in enumerate(chunk['category_code']):
last_category.append(el.split('.')[-1])
chunk['Product'] = last_category
embed = hub.load("https://tfhub.dev/google/nnlm-en-dim50/2")
embeddings = embed(chunk['Product'].tolist())
for dim in range(embeddings.shape[1]):
chunk['embedding_'+str(dim)] = embeddings[:, dim]
# Standardization
mean = chunk['price'].mean(axis=0)
print('Mean:', mean)
std = chunk['price'].std(axis=0)
print('Std:', std)
chunk['price_standardized'] = (chunk['price'] - mean) / std
chunk.sort_values(by=['user_session', 'event_time'], inplace=True)
chunk['price_standardized'] = chunk['price_standardized'].astype('float32')
chunk['product_id'] = chunk['product_id'].astype('int32')
chunk.reset_index(drop=True, inplace=True)
print('Sessions:', pd.unique(chunk['user_session']).shape)
print('Unique Products:', pd.unique(chunk['product_id']).shape)
print('Unique category_code:', pd.unique(chunk['category_code']).shape)
columns = ['embedding_'+str(i) for i in range(embeddings.shape[1])]
columns.append('price_standardized')
columns.append('user_session')
columns.append('Product')
columns.append('product_id')
columns.append('category_code')
df = chunk[columns]
break
df | Mean: 284.7710546866538
Std: 349.46740231584886
Sessions: (61296,)
Unique Products: (38515,)
Unique category_code: (134,)
| MIT | outlier_detection/training_outlier_detection.ipynb | felix-exel/kfserving-advanced |
Delete Rows with equal or less than 6 Product Occurrences | count_product_id_mapped = df.groupby('product_id').count()
products_to_delete = count_product_id_mapped.loc[count_product_id_mapped['embedding_0'] <= 6].index
products_to_delete | _____no_output_____ | MIT | outlier_detection/training_outlier_detection.ipynb | felix-exel/kfserving-advanced |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.