markdown
stringlengths 0
1.02M
| code
stringlengths 0
832k
| output
stringlengths 0
1.02M
| license
stringlengths 3
36
| path
stringlengths 6
265
| repo_name
stringlengths 6
127
|
---|---|---|---|---|---|
Next, let’s build the dictionary to convert the index to word for target and source vocabulary: Inference Model Encoder Inference: | # encoder inference
latent_dim=500
#/content/gdrive/MyDrive/Text Summarizer/
#load the model
model = models.load_model("Text_Summarizer.h5")
#construct encoder model from the output of 6 layer i.e.last LSTM layer
en_outputs,state_h_enc,state_c_enc = model.layers[6].output
en_states=[state_h_enc,state_c_enc]
#add input and state from the layer.
en_model = Model(model.input[0],[en_outputs]+en_states) | _____no_output_____ | MIT | text-summarization-attention-mechanism.ipynb | buddhadeb33/Text-Summarization-Attention-Mechanism |
Decoder Inference: | # decoder inference
#create Input object for hidden and cell state for decoder
#shape of layer with hidden or latent dimension
dec_state_input_h = Input(shape=(latent_dim,))
dec_state_input_c = Input(shape=(latent_dim,))
dec_hidden_state_input = Input(shape=(max_in_len,latent_dim))
# Get the embeddings and input layer from the model
dec_inputs = model.input[1]
dec_emb_layer = model.layers[5]
dec_lstm = model.layers[7]
dec_embedding= dec_emb_layer(dec_inputs)
#add input and initialize LSTM layer with encoder LSTM states.
dec_outputs2, state_h2, state_c2 = dec_lstm(dec_embedding, initial_state=[dec_state_input_h,dec_state_input_c]) | _____no_output_____ | MIT | text-summarization-attention-mechanism.ipynb | buddhadeb33/Text-Summarization-Attention-Mechanism |
Attention Inference: | #Attention layer
attention = model.layers[8]
attn_out2 = attention([dec_outputs2,dec_hidden_state_input])
merge2 = Concatenate(axis=-1)([dec_outputs2, attn_out2]) | _____no_output_____ | MIT | text-summarization-attention-mechanism.ipynb | buddhadeb33/Text-Summarization-Attention-Mechanism |
Dense layer | #Dense layer
dec_dense = model.layers[10]
dec_outputs2 = dec_dense(merge2)
# Finally define the Model Class
dec_model = Model(
[dec_inputs] + [dec_hidden_state_input,dec_state_input_h,dec_state_input_c],
[dec_outputs2] + [state_h2, state_c2])
#create a dictionary with a key as index and value as words.
reverse_target_word_index = tr_tokenizer.index_word
reverse_source_word_index = in_tokenizer.index_word
target_word_index = tr_tokenizer.word_index
def decode_sequence(input_seq):
# get the encoder output and states by passing the input sequence
en_out, en_h, en_c = en_model.predict(input_seq)
# target sequence with inital word as 'sos'
target_seq = np.zeros((1, 1))
target_seq[0, 0] = target_word_index['sos']
# if the iteration reaches the end of text than it will be stop the iteration
stop_condition = False
# append every predicted word in decoded sentence
decoded_sentence = ""
while not stop_condition:
# get predicted output, hidden and cell state.
output_words, dec_h, dec_c = dec_model.predict([target_seq] + [en_out, en_h, en_c])
# get the index and from the dictionary get the word for that index.
word_index = np.argmax(output_words[0, -1, :])
text_word = reverse_target_word_index[word_index]
decoded_sentence += text_word + " "
# Exit condition: either hit max length
# or find a stop word or last word.
if text_word == "eos" or len(decoded_sentence) > max_tr_len:
stop_condition = True
# update target sequence to the current word index.
target_seq = np.zeros((1, 1))
target_seq[0, 0] = word_index
en_h, en_c = dec_h, dec_c
# return the deocded sentence
return decoded_sentence
# inp_review = input("Enter : ")
inp_review = "Both the Google platforms provide a great cloud environment for any ML work to be deployed to. The features of them both are equally competent. Notebooks can be downloaded and later uploaded between the two. However, Colab comparatively provides greater flexibility to adjust the batch sizes.Saving or storing of models is easier on Colab since it allows them to be saved and stored to Google Drive. Also if one is using TensorFlow, using TPUs would be preferred on Colab. It is also faster than Kaggle. For a use case demanding more power and longer running processes, Colab is preferred."
print("Review :", inp_review)
inp_review = clean(inp_review, "inputs")
inp_review = ' '.join(inp_review)
inp_x = in_tokenizer.texts_to_sequences([inp_review])
inp_x = pad_sequences(inp_x, maxlen=max_in_len, padding='post')
summary = decode_sequence(inp_x.reshape(1, max_in_len))
if 'eos' in summary:
summary = summary.replace('eos', '')
print("\nPredicted summary:", summary);
print("\n") | Review : Both the Google platforms provide a great cloud environment for any ML work to be deployed to. The features of them both are equally competent. Notebooks can be downloaded and later uploaded between the two. However, Colab comparatively provides greater flexibility to adjust the batch sizes.Saving or storing of models is easier on Colab since it allows them to be saved and stored to Google Drive. Also if one is using TensorFlow, using TPUs would be preferred on Colab. It is also faster than Kaggle. For a use case demanding more power and longer running processes, Colab is preferred.
Predicted summary: great
| MIT | text-summarization-attention-mechanism.ipynb | buddhadeb33/Text-Summarization-Attention-Mechanism |
Brainstorm CTF phantom tutorial datasetHere we compute the evoked from raw for the Brainstorm CTF phantomtutorial dataset. For comparison, see [1]_ and: http://neuroimage.usc.edu/brainstorm/Tutorials/PhantomCtfReferences----------.. [1] Tadel F, Baillet S, Mosher JC, Pantazis D, Leahy RM. Brainstorm: A User-Friendly Application for MEG/EEG Analysis. Computational Intelligence and Neuroscience, vol. 2011, Article ID 879716, 13 pages, 2011. doi:10.1155/2011/879716 | # Authors: Eric Larson <larson.eric.d@gmail.com>
#
# License: BSD (3-clause)
import os.path as op
import numpy as np
import matplotlib.pyplot as plt
import mne
from mne import fit_dipole
from mne.datasets.brainstorm import bst_phantom_ctf
from mne.io import read_raw_ctf
print(__doc__) | _____no_output_____ | BSD-3-Clause | 0.15/_downloads/plot_brainstorm_phantom_ctf.ipynb | drammock/mne-tools.github.io |
The data were collected with a CTF system at 2400 Hz. | data_path = bst_phantom_ctf.data_path()
# Switch to these to use the higher-SNR data:
# raw_path = op.join(data_path, 'phantom_200uA_20150709_01.ds')
# dip_freq = 7.
raw_path = op.join(data_path, 'phantom_20uA_20150603_03.ds')
dip_freq = 23.
erm_path = op.join(data_path, 'emptyroom_20150709_01.ds')
raw = read_raw_ctf(raw_path, preload=True) | _____no_output_____ | BSD-3-Clause | 0.15/_downloads/plot_brainstorm_phantom_ctf.ipynb | drammock/mne-tools.github.io |
The sinusoidal signal is generated on channel HDAC006, so we can usethat to obtain precise timing. | sinusoid, times = raw[raw.ch_names.index('HDAC006-4408')]
plt.figure()
plt.plot(times[times < 1.], sinusoid.T[times < 1.]) | _____no_output_____ | BSD-3-Clause | 0.15/_downloads/plot_brainstorm_phantom_ctf.ipynb | drammock/mne-tools.github.io |
Let's create some events using this signal by thresholding the sinusoid. | events = np.where(np.diff(sinusoid > 0.5) > 0)[1] + raw.first_samp
events = np.vstack((events, np.zeros_like(events), np.ones_like(events))).T | _____no_output_____ | BSD-3-Clause | 0.15/_downloads/plot_brainstorm_phantom_ctf.ipynb | drammock/mne-tools.github.io |
The CTF software compensation works reasonably well: | raw.plot() | _____no_output_____ | BSD-3-Clause | 0.15/_downloads/plot_brainstorm_phantom_ctf.ipynb | drammock/mne-tools.github.io |
But here we can get slightly better noise suppression, lower localizationbias, and a better dipole goodness of fit with spatio-temporal (tSSS)Maxwell filtering: | raw.apply_gradient_compensation(0) # must un-do software compensation first
mf_kwargs = dict(origin=(0., 0., 0.), st_duration=10.)
raw = mne.preprocessing.maxwell_filter(raw, **mf_kwargs)
raw.plot() | _____no_output_____ | BSD-3-Clause | 0.15/_downloads/plot_brainstorm_phantom_ctf.ipynb | drammock/mne-tools.github.io |
Our choice of tmin and tmax should capture exactly one cycle, sowe can make the unusual choice of baselining using the entire epochwhen creating our evoked data. We also then crop to a single time point(@t=0) because this is a peak in our signal. | tmin = -0.5 / dip_freq
tmax = -tmin
epochs = mne.Epochs(raw, events, event_id=1, tmin=tmin, tmax=tmax,
baseline=(None, None))
evoked = epochs.average()
evoked.plot()
evoked.crop(0., 0.) | _____no_output_____ | BSD-3-Clause | 0.15/_downloads/plot_brainstorm_phantom_ctf.ipynb | drammock/mne-tools.github.io |
Let's use a sphere head geometry model and let's see the coordinatealignement and the sphere location. | sphere = mne.make_sphere_model(r0=(0., 0., 0.), head_radius=None)
mne.viz.plot_alignment(raw.info, subject='sample',
meg='helmet', bem=sphere, dig=True,
surfaces=['brain'])
del raw, epochs | _____no_output_____ | BSD-3-Clause | 0.15/_downloads/plot_brainstorm_phantom_ctf.ipynb | drammock/mne-tools.github.io |
To do a dipole fit, let's use the covariance provided by the empty roomrecording. | raw_erm = read_raw_ctf(erm_path).apply_gradient_compensation(0)
raw_erm = mne.preprocessing.maxwell_filter(raw_erm, coord_frame='meg',
**mf_kwargs)
cov = mne.compute_raw_covariance(raw_erm)
del raw_erm
dip, residual = fit_dipole(evoked, cov, sphere) | _____no_output_____ | BSD-3-Clause | 0.15/_downloads/plot_brainstorm_phantom_ctf.ipynb | drammock/mne-tools.github.io |
Compare the actual position with the estimated one. | expected_pos = np.array([18., 0., 49.])
diff = np.sqrt(np.sum((dip.pos[0] * 1000 - expected_pos) ** 2))
print('Actual pos: %s mm' % np.array_str(expected_pos, precision=1))
print('Estimated pos: %s mm' % np.array_str(dip.pos[0] * 1000, precision=1))
print('Difference: %0.1f mm' % diff)
print('Amplitude: %0.1f nAm' % (1e9 * dip.amplitude[0]))
print('GOF: %0.1f %%' % dip.gof[0]) | _____no_output_____ | BSD-3-Clause | 0.15/_downloads/plot_brainstorm_phantom_ctf.ipynb | drammock/mne-tools.github.io |
Bracketshttps://app.codility.com/programmers/lessons/7-stacks_and_queues/brackets/ | from typing import List
def solution(S) :
stack : List[str] = []
for ch in S :
if ch == '{' or ch == '(' or ch == '[' : stack.append(ch)
else:
if len(stack) == 0 : return 0
lastch = stack.pop()
if ch == '}' and lastch != '{' : return 0
if ch == ')' and lastch != '(' : return 0
if ch == ']' and lastch != '[' : return 0
return 0 if (len(stack) > 0) else 1
assert(solution("{[()()]}") == 1)
assert(solution("([)()]") == 0)
assert(solution("") == 1)
assert(solution("[]{}") == 1)
assert(solution("[]{") == 0) | _____no_output_____ | Apache-2.0 | codility-lessons/7 Stacks and Queues.ipynb | stanislawbartkowski/learnml |
Fishhttps://app.codility.com/programmers/lessons/7-stacks_and_queues/fish/ | from typing import List
def solution(A : List[int], B : List[int]) -> int :
assert(len(A) == len(B))
stackup : List[int] = []
eatenfish : int = 0
for i in range(len(B)) :
if B[i] == 1 : stackup.append(A[i])
else :
while len(stackup) > 0 :
eatenfish += 1
currup : int = stackup.pop()
if currup > A[i] :
stackup.append(currup)
break
return len(A) - eatenfish
assert(solution([4,3,2,1,5],[0,1,0,0,0]) == 2)
assert(solution([4],[1])==1) | _____no_output_____ | Apache-2.0 | codility-lessons/7 Stacks and Queues.ipynb | stanislawbartkowski/learnml |
Nestinghttps://app.codility.com/programmers/lessons/7-stacks_and_queues/nesting/ | def solution(S : str) -> int :
numof : int = 0
for c in S :
if c == "(" :
numof += 1
else:
if numof == 0 : return 0
numof -= 1
return 1 if numof == 0 else 0
assert (solution("(()(())())") == 1)
assert (solution("())") == 0)
assert (solution("") == 1) | _____no_output_____ | Apache-2.0 | codility-lessons/7 Stacks and Queues.ipynb | stanislawbartkowski/learnml |
StoneWallhttps://app.codility.com/programmers/lessons/7-stacks_and_queues/stone_wall/ | from typing import List
def solution(H : List[int]) -> int :
assert(len(H) > 0)
stack : List[int] = []
no : int = 0
for i in range(len(H)) :
while (len(stack) > 0) and H[i] < stack[len(stack) -1] :
no += 1
stack.pop()
if len(stack) == 0 or H[i] > stack[len(stack) -1] :
stack.append(H[i])
return no + len(stack)
assert(solution([8,8,5,7,9,8,7,4,8]) ==7)
assert(solution([8,8,5,7,9,8,7,8,4]) == 7)
assert(solution([8,8]) == 1) | _____no_output_____ | Apache-2.0 | codility-lessons/7 Stacks and Queues.ipynb | stanislawbartkowski/learnml |
Ensemble Learning Initial Imports | import warnings
warnings.filterwarnings('ignore')
import numpy as np
import pandas as pd
from pathlib import Path
from collections import Counter
from sklearn.metrics import balanced_accuracy_score
from sklearn.metrics import confusion_matrix
from imblearn.metrics import classification_report_imbalanced | _____no_output_____ | ADSL | credit_risk_ensemble.ipynb | THaoV1001/Classification-Homework |
Read the CSV and Perform Basic Data Cleaning | # Load the data
file_path = Path('lending_data.csv')
df = pd.read_csv(file_path)
# Preview the data
df.head()
# homeowner column is categorical, change to numerical so it can be scaled later on
from sklearn.preprocessing import LabelEncoder
label_encoder = LabelEncoder()
label_encoder.fit(df["homeowner"])
df["homeowner"] = label_encoder.transform(df["homeowner"])
df.head() | _____no_output_____ | ADSL | credit_risk_ensemble.ipynb | THaoV1001/Classification-Homework |
Split the Data into Training and Testing | # Create our features
X = df.drop(columns="loan_status")
# Create our target
y = df["loan_status"].to_frame()
X.describe()
# Check the balance of our target values
y['loan_status'].value_counts()
# Split the X and y into X_train, X_test, y_train, y_test
# Create X_train, X_test, y_train, y_test
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1, stratify=y)
X_train | _____no_output_____ | ADSL | credit_risk_ensemble.ipynb | THaoV1001/Classification-Homework |
Data Pre-ProcessingScale the training and testing data using the `StandardScaler` from `sklearn`. Remember that when scaling the data, you only scale the features data (`X_train` and `X_testing`). | # Create the StandardScaler instance
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
# Fit the Standard Scaler with the training data
# When fitting scaling functions, only train on the training dataset
X_scaler = scaler.fit(X_train)
# Scale the training and testing data
X_train_scaled = X_scaler.transform(X_train)
X_test_scaled = X_scaler.transform(X_test) | _____no_output_____ | ADSL | credit_risk_ensemble.ipynb | THaoV1001/Classification-Homework |
Ensemble LearnersIn this section, you will compare two ensemble algorithms to determine which algorithm results in the best performance. You will train a Balanced Random Forest Classifier and an Easy Ensemble classifier . For each algorithm, be sure to complete the folliowing steps:1. Train the model using the training data. 2. Calculate the balanced accuracy score from sklearn.metrics.3. Display the confusion matrix from sklearn.metrics.4. Generate a classication report using the `imbalanced_classification_report` from imbalanced-learn.5. For the Balanced Random Forest Classifier only, print the feature importance sorted in descending order (most important feature to least important) along with the feature scoreNote: Use a random state of 1 for each algorithm to ensure consistency between tests Balanced Random Forest Classifier | # Resample the training data with the BalancedRandomForestClassifier
from imblearn.ensemble import BalancedRandomForestClassifier
brf = BalancedRandomForestClassifier(n_estimators=100, random_state=1) #100 trees
# random forest use 50/50 probability decision, so I think scaled data is not required
brf.fit(X_train, y_train)
# Calculated the balanced accuracy score
from sklearn.metrics import balanced_accuracy_score
y_pred = brf.predict(X_test)
balanced_accuracy_score(y_test, y_pred)
# Display the confusion matrix
from sklearn.metrics import confusion_matrix
confusion_matrix(y_test, y_pred)
# Print the imbalanced classification report
from imblearn.metrics import classification_report_imbalanced
print(classification_report_imbalanced(y_test, y_pred))
# List the features sorted in descending order by feature importance
importances = brf.feature_importances_
sorted(zip(brf.feature_importances_, X.columns), reverse=True) | _____no_output_____ | ADSL | credit_risk_ensemble.ipynb | THaoV1001/Classification-Homework |
Easy Ensemble Classifier | # Train the Classifier
from imblearn.ensemble import EasyEnsembleClassifier
eec = EasyEnsembleClassifier(n_estimators=100, random_state=1)
eec.fit(X_train, y_train)
# Calculated the balanced accuracy score
y_pred = eec.predict(X_test)
balanced_accuracy_score(y_test, y_pred)
# Display the confusion matrix
confusion_matrix(y_test, y_pred)
# Print the imbalanced classification report
print(classification_report_imbalanced(y_test, y_pred)) | pre rec spe f1 geo iba sup
high_risk 0.84 1.00 0.99 0.91 0.99 0.99 625
low_risk 1.00 0.99 1.00 1.00 0.99 0.99 18759
avg / total 0.99 0.99 1.00 0.99 0.99 0.99 19384
| ADSL | credit_risk_ensemble.ipynb | THaoV1001/Classification-Homework |
pip install pennylane
pip install torch
pip install tensorflow
pip install sklearn
pip install pennylane-qiskit
import pennylane as qml
from pennylane import numpy as np
dev = qml.device("default.qubit", wires=2)
@qml.qnode(device=dev)
def cos_func(x, w):
qml.RX(x, wires=0)
qml.templates.BasicEntanglerLayers(w, wires=range(2))
return qml.expval(qml.PauliZ(0))
layer = 4
weights = qml.init.basic_entangler_layers_uniform(layer, 2)
xs = np.linspace(-np.pi, 4*np.pi, requires_grad=False)
ys = np.cos(xs)
opt = qml.AdamOptimizer()
epochs = 10
for epoch in range(epochs):
for x, y in zip(xs, ys):
cost = lambda weights:(cos_func(x, weights) - y) ** 2
weights = opt.step(cost, weights)
ys_trained = [cos_func(x, weights) for x in xs]
import matplotlib.pyplot as plt
plt.figure()
plt.plot(xs, ys_trained, marker="o", label="Cos(x")
plt.legend()
plt.show()
| _____no_output_____ | MIT | Xanadu3.ipynb | olgOk/XanaduTraining |
|
Preparing GHZ stateUsing the Autograd interface, train a circuit to prepare the 3-qubit W state:$|W> = {1/sqrt(3)}(001|> + |010> + |100>) | qubits = 3
w = np.array([0, 1, 1, 0, 1, 0, 0, 0]) / np.sqrt(3)
w_projector = w[:, np.newaxis] * w
w_decomp = qml.utils.decompose_hamiltonian(w_projector)
H = qml.Hamiltonian(*w_decomp)
def prepare_w(weights, wires):
qml.templates.StronglyEntanglingLayers(weights, wires=wires)
dev = qml.device("default.qubit", wires=qubits)
qnodes = qml.map(prepare_w, H.ops, dev)
w_overlap = qml.dot(H.coeffs, qnodes)
layers = 4
weights = qml.init.strong_ent_layers_uniform(layers, qubits)
opt = qml.RMSPropOptimizer()
epochs = 50
for i in range(epochs):
weights = opt.step(lambda weights: -w_overlap(weights), weights)
if i % 5 == 0:
print(i, w_overlap(weights))
output_overlap = w_overlap(weights)
output_state = np.round(dev.state, 3)
| _____no_output_____ | MIT | Xanadu3.ipynb | olgOk/XanaduTraining |
Quantum-based Optimization | dev = qml.device('default.qubit', wires=1)
@qml.qnode(dev)
def rotation(thetas):
qml.RX(1, wires=0)
qml.RZ(1, wires=0)
qml.RX(thetas[0], wires=0)
qml.RY(thetas[1], wires=0)
return qml.expval(qml.PauliZ(0))
opt = qml.RotoselectOptimizer()
import sklearn.datasets
data = sklearn.datasets.load_iris()
x = data["data"]
y = data["target"]
np.random.seed(1967)
x, y = zip(*np.random.permutation(list(zip(x, y))))
split = 125
x_train = x[:split]
x_test = x[split:]
y_train = y[:split]
y_test = y[split:]
| _____no_output_____ | MIT | Xanadu3.ipynb | olgOk/XanaduTraining |
Parte 1 - Imagens coloridas**TIAGO PEREIRA DALL'OCA - 206341** | from scipy import misc
from scipy import ndimage
import cv2
import numpy as np
import matplotlib.pyplot as plt
img = cv2.imread('imagens/baboon.png')
img.shape | _____no_output_____ | MIT | parte1.ipynb | tiagodalloca/mc920-trabalho1 |
a)Aqui é bem autoexplicativo. É criado uma matriz que irá multiplicar os vetores que representam os três canais de cores de cada pixel. | matriz_a = np.array([[0.393, 0.769, 0.189],
[0.394, 0.686, 0.168],
[0.272, 0.534, 0.131]])
img_a = np.dot(img, matriz_a)/255
img_a = img_a.clip(max=[1,1,1])
img_a.shape
plt.imshow(img_a) | _____no_output_____ | MIT | parte1.ipynb | tiagodalloca/mc920-trabalho1 |
b)Semelhante ao item "a", porém agora faremos uma multiplicação vetorial que nos resultará em uma imagem de canal único (imagem cinza). | vetor_b = np.array([0.2989, 0.5870, 0.1140])
img_b = np.tensordot(img, vetor_b, axes=([2], [0]))/255
img_b = img_b.clip(max=[1]).reshape(img.shape[0:2])
img_b.shape
plt.imshow(img_b) | _____no_output_____ | MIT | parte1.ipynb | tiagodalloca/mc920-trabalho1 |
Regular ExpressionsRegular expressions are text-matching patterns described with a formal syntax. You'll often hear regular expressions referred to as 'regex' or 'regexp' in conversation. Regular expressions can include a variety of rules, from finding repetition, to text-matching, and much more. As you advance in Python you'll see that a lot of your parsing problems can be solved with regular expressions (they're also a common interview question!).If you're familiar with Perl, you'll notice that the syntax for regular expressions are very similar in Python. We will be using the re module with Python for this lecture.Let's get started! Searching for Patterns in TextOne of the most common uses for the re module is for finding patterns in text. Let's do a quick example of using the search method in the re module to find some text: | import re
# List of patterns to search for
patterns = ['term1', 'term2']
# Text to parse
text = 'This is a string with term1, but it does not have the other term.'
for pattern in patterns:
print('Searching for "%s" in:\n "%s"\n' %(pattern,text))
#Check for match
if re.search(pattern,text):
print('Match was found. \n')
else:
print('No Match was found.\n') | Searching for "term1" in:
"This is a string with term1, but it does not have the other term."
Match was found.
Searching for "term2" in:
"This is a string with term1, but it does not have the other term."
No Match was found.
| MIT | Python-Programming/Python-3-Bootcamp/13-Advanced Python Modules/.ipynb_checkpoints/05-Regular Expressions - re-checkpoint.ipynb | vivekparasharr/Learn-Programming |
Now we've seen that re.search() will take the pattern, scan the text, and then return a **Match** object. If no pattern is found, **None** is returned. To give a clearer picture of this match object, check out the cell below: | # List of patterns to search for
pattern = 'term1'
# Text to parse
text = 'This is a string with term1, but it does not have the other term.'
match = re.search(pattern,text)
type(match) | _____no_output_____ | MIT | Python-Programming/Python-3-Bootcamp/13-Advanced Python Modules/.ipynb_checkpoints/05-Regular Expressions - re-checkpoint.ipynb | vivekparasharr/Learn-Programming |
This **Match** object returned by the search() method is more than just a Boolean or None, it contains information about the match, including the original input string, the regular expression that was used, and the location of the match. Let's see the methods we can use on the match object: | # Show start of match
match.start()
# Show end
match.end() | _____no_output_____ | MIT | Python-Programming/Python-3-Bootcamp/13-Advanced Python Modules/.ipynb_checkpoints/05-Regular Expressions - re-checkpoint.ipynb | vivekparasharr/Learn-Programming |
Split with regular expressionsLet's see how we can split with the re syntax. This should look similar to how you used the split() method with strings. | # Term to split on
split_term = '@'
phrase = 'What is the domain name of someone with the email: hello@gmail.com'
# Split the phrase
re.split(split_term,phrase) | _____no_output_____ | MIT | Python-Programming/Python-3-Bootcamp/13-Advanced Python Modules/.ipynb_checkpoints/05-Regular Expressions - re-checkpoint.ipynb | vivekparasharr/Learn-Programming |
Note how re.split() returns a list with the term to split on removed and the terms in the list are a split up version of the string. Create a couple of more examples for yourself to make sure you understand! Finding all instances of a patternYou can use re.findall() to find all the instances of a pattern in a string. For example: | # Returns a list of all matches
re.findall('match','test phrase match is in middle') | _____no_output_____ | MIT | Python-Programming/Python-3-Bootcamp/13-Advanced Python Modules/.ipynb_checkpoints/05-Regular Expressions - re-checkpoint.ipynb | vivekparasharr/Learn-Programming |
re Pattern SyntaxThis will be the bulk of this lecture on using re with Python. Regular expressions support a huge variety of patterns beyond just simply finding where a single string occurred. We can use *metacharacters* along with re to find specific types of patterns. Since we will be testing multiple re syntax forms, let's create a function that will print out results given a list of various regular expressions and a phrase to parse: | def multi_re_find(patterns,phrase):
'''
Takes in a list of regex patterns
Prints a list of all matches
'''
for pattern in patterns:
print('Searching the phrase using the re check: %r' %(pattern))
print(re.findall(pattern,phrase))
print('\n') | _____no_output_____ | MIT | Python-Programming/Python-3-Bootcamp/13-Advanced Python Modules/.ipynb_checkpoints/05-Regular Expressions - re-checkpoint.ipynb | vivekparasharr/Learn-Programming |
Repetition SyntaxThere are five ways to express repetition in a pattern: 1. A pattern followed by the meta-character * is repeated zero or more times. 2. Replace the * with + and the pattern must appear at least once. 3. Using ? means the pattern appears zero or one time. 4. For a specific number of occurrences, use {m} after the pattern, where **m** is replaced with the number of times the pattern should repeat. 5. Use {m,n} where **m** is the minimum number of repetitions and **n** is the maximum. Leaving out **n** {m,} means the value appears at least **m** times, with no maximum. Now we will see an example of each of these using our multi_re_find function: | test_phrase = 'sdsd..sssddd...sdddsddd...dsds...dsssss...sdddd'
test_patterns = [ 'sd*', # s followed by zero or more d's
'sd+', # s followed by one or more d's
'sd?', # s followed by zero or one d's
'sd{3}', # s followed by three d's
'sd{2,3}', # s followed by two to three d's
]
multi_re_find(test_patterns,test_phrase) | Searching the phrase using the re check: 'sd*'
['sd', 'sd', 's', 's', 'sddd', 'sddd', 'sddd', 'sd', 's', 's', 's', 's', 's', 's', 'sdddd']
Searching the phrase using the re check: 'sd+'
['sd', 'sd', 'sddd', 'sddd', 'sddd', 'sd', 'sdddd']
Searching the phrase using the re check: 'sd?'
['sd', 'sd', 's', 's', 'sd', 'sd', 'sd', 'sd', 's', 's', 's', 's', 's', 's', 'sd']
Searching the phrase using the re check: 'sd{3}'
['sddd', 'sddd', 'sddd', 'sddd']
Searching the phrase using the re check: 'sd{2,3}'
['sddd', 'sddd', 'sddd', 'sddd']
| MIT | Python-Programming/Python-3-Bootcamp/13-Advanced Python Modules/.ipynb_checkpoints/05-Regular Expressions - re-checkpoint.ipynb | vivekparasharr/Learn-Programming |
Character SetsCharacter sets are used when you wish to match any one of a group of characters at a point in the input. Brackets are used to construct character set inputs. For example: the input [ab] searches for occurrences of either **a** or **b**.Let's see some examples: | test_phrase = 'sdsd..sssddd...sdddsddd...dsds...dsssss...sdddd'
test_patterns = ['[sd]', # either s or d
's[sd]+'] # s followed by one or more s or d
multi_re_find(test_patterns,test_phrase) | Searching the phrase using the re check: '[sd]'
['s', 'd', 's', 'd', 's', 's', 's', 'd', 'd', 'd', 's', 'd', 'd', 'd', 's', 'd', 'd', 'd', 'd', 's', 'd', 's', 'd', 's', 's', 's', 's', 's', 's', 'd', 'd', 'd', 'd']
Searching the phrase using the re check: 's[sd]+'
['sdsd', 'sssddd', 'sdddsddd', 'sds', 'sssss', 'sdddd']
| MIT | Python-Programming/Python-3-Bootcamp/13-Advanced Python Modules/.ipynb_checkpoints/05-Regular Expressions - re-checkpoint.ipynb | vivekparasharr/Learn-Programming |
It makes sense that the first input [sd] returns every instance of s or d. Also, the second input s[sd]+ returns any full strings that begin with an s and continue with s or d characters until another character is reached. ExclusionWe can use ^ to exclude terms by incorporating it into the bracket syntax notation. For example: [^...] will match any single character not in the brackets. Let's see some examples: | test_phrase = 'This is a string! But it has punctuation. How can we remove it?' | _____no_output_____ | MIT | Python-Programming/Python-3-Bootcamp/13-Advanced Python Modules/.ipynb_checkpoints/05-Regular Expressions - re-checkpoint.ipynb | vivekparasharr/Learn-Programming |
Use [^!.? ] to check for matches that are not a !,.,?, or space. Add a + to check that the match appears at least once. This basically translates into finding the words. | re.findall('[^!.? ]+',test_phrase) | _____no_output_____ | MIT | Python-Programming/Python-3-Bootcamp/13-Advanced Python Modules/.ipynb_checkpoints/05-Regular Expressions - re-checkpoint.ipynb | vivekparasharr/Learn-Programming |
Character RangesAs character sets grow larger, typing every character that should (or should not) match could become very tedious. A more compact format using character ranges lets you define a character set to include all of the contiguous characters between a start and stop point. The format used is [start-end].Common use cases are to search for a specific range of letters in the alphabet. For instance, [a-f] would return matches with any occurrence of letters between a and f. Let's walk through some examples: |
test_phrase = 'This is an example sentence. Lets see if we can find some letters.'
test_patterns=['[a-z]+', # sequences of lower case letters
'[A-Z]+', # sequences of upper case letters
'[a-zA-Z]+', # sequences of lower or upper case letters
'[A-Z][a-z]+'] # one upper case letter followed by lower case letters
multi_re_find(test_patterns,test_phrase) | Searching the phrase using the re check: '[a-z]+'
['his', 'is', 'an', 'example', 'sentence', 'ets', 'see', 'if', 'we', 'can', 'find', 'some', 'letters']
Searching the phrase using the re check: '[A-Z]+'
['T', 'L']
Searching the phrase using the re check: '[a-zA-Z]+'
['This', 'is', 'an', 'example', 'sentence', 'Lets', 'see', 'if', 'we', 'can', 'find', 'some', 'letters']
Searching the phrase using the re check: '[A-Z][a-z]+'
['This', 'Lets']
| MIT | Python-Programming/Python-3-Bootcamp/13-Advanced Python Modules/.ipynb_checkpoints/05-Regular Expressions - re-checkpoint.ipynb | vivekparasharr/Learn-Programming |
Escape CodesYou can use special escape codes to find specific types of patterns in your data, such as digits, non-digits, whitespace, and more. For example:CodeMeaning\da digit\Da non-digit\swhitespace (tab, space, newline, etc.)\Snon-whitespace\walphanumeric\Wnon-alphanumericEscapes are indicated by prefixing the character with a backslash \. Unfortunately, a backslash must itself be escaped in normal Python strings, and that results in expressions that are difficult to read. Using raw strings, created by prefixing the literal value with r, eliminates this problem and maintains readability.Personally, I think this use of r to escape a backslash is probably one of the things that block someone who is not familiar with regex in Python from being able to read regex code at first. Hopefully after seeing these examples this syntax will become clear. | test_phrase = 'This is a string with some numbers 1233 and a symbol #hashtag'
test_patterns=[ r'\d+', # sequence of digits
r'\D+', # sequence of non-digits
r'\s+', # sequence of whitespace
r'\S+', # sequence of non-whitespace
r'\w+', # alphanumeric characters
r'\W+', # non-alphanumeric
]
multi_re_find(test_patterns,test_phrase) | Searching the phrase using the re check: '\\d+'
['1233']
Searching the phrase using the re check: '\\D+'
['This is a string with some numbers ', ' and a symbol #hashtag']
Searching the phrase using the re check: '\\s+'
[' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ']
Searching the phrase using the re check: '\\S+'
['This', 'is', 'a', 'string', 'with', 'some', 'numbers', '1233', 'and', 'a', 'symbol', '#hashtag']
Searching the phrase using the re check: '\\w+'
['This', 'is', 'a', 'string', 'with', 'some', 'numbers', '1233', 'and', 'a', 'symbol', 'hashtag']
Searching the phrase using the re check: '\\W+'
[' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' #']
| MIT | Python-Programming/Python-3-Bootcamp/13-Advanced Python Modules/.ipynb_checkpoints/05-Regular Expressions - re-checkpoint.ipynb | vivekparasharr/Learn-Programming |
PTN TemplateThis notebook serves as a template for single dataset PTN experiments It can be run on its own by setting STANDALONE to True (do a find for "STANDALONE" to see where) But it is intended to be executed as part of a *papermill.py script. See any of the experimentes with a papermill script to get started with that workflow. | %load_ext autoreload
%autoreload 2
%matplotlib inline
import os, json, sys, time, random
import numpy as np
import torch
from torch.optim import Adam
from easydict import EasyDict
import matplotlib.pyplot as plt
from steves_models.steves_ptn import Steves_Prototypical_Network
from steves_utils.lazy_iterable_wrapper import Lazy_Iterable_Wrapper
from steves_utils.iterable_aggregator import Iterable_Aggregator
from steves_utils.ptn_train_eval_test_jig import PTN_Train_Eval_Test_Jig
from steves_utils.torch_sequential_builder import build_sequential
from steves_utils.torch_utils import get_dataset_metrics, ptn_confusion_by_domain_over_dataloader
from steves_utils.utils_v2 import (per_domain_accuracy_from_confusion, get_datasets_base_path)
from steves_utils.PTN.utils import independent_accuracy_assesment
from steves_utils.stratified_dataset.episodic_accessor import Episodic_Accessor_Factory
from steves_utils.ptn_do_report import (
get_loss_curve,
get_results_table,
get_parameters_table,
get_domain_accuracies,
)
from steves_utils.transforms import get_chained_transform | _____no_output_____ | MIT | experiments/tuned_1v2/oracle.run2/trials/4/trial.ipynb | stevester94/csc500-notebooks |
Required ParametersThese are allowed parameters, not defaultsEach of these values need to be present in the injected parameters (the notebook will raise an exception if they are not present)Papermill uses the cell tag "parameters" to inject the real parameters below this cell.Enable tags to see what I mean | required_parameters = {
"experiment_name",
"lr",
"device",
"seed",
"dataset_seed",
"labels_source",
"labels_target",
"domains_source",
"domains_target",
"num_examples_per_domain_per_label_source",
"num_examples_per_domain_per_label_target",
"n_shot",
"n_way",
"n_query",
"train_k_factor",
"val_k_factor",
"test_k_factor",
"n_epoch",
"patience",
"criteria_for_best",
"x_transforms_source",
"x_transforms_target",
"episode_transforms_source",
"episode_transforms_target",
"pickle_name",
"x_net",
"NUM_LOGS_PER_EPOCH",
"BEST_MODEL_PATH",
"torch_default_dtype"
}
standalone_parameters = {}
standalone_parameters["experiment_name"] = "STANDALONE PTN"
standalone_parameters["lr"] = 0.0001
standalone_parameters["device"] = "cuda"
standalone_parameters["seed"] = 1337
standalone_parameters["dataset_seed"] = 1337
standalone_parameters["num_examples_per_domain_per_label_source"]=100
standalone_parameters["num_examples_per_domain_per_label_target"]=100
standalone_parameters["n_shot"] = 3
standalone_parameters["n_query"] = 2
standalone_parameters["train_k_factor"] = 1
standalone_parameters["val_k_factor"] = 2
standalone_parameters["test_k_factor"] = 2
standalone_parameters["n_epoch"] = 100
standalone_parameters["patience"] = 10
standalone_parameters["criteria_for_best"] = "target_accuracy"
standalone_parameters["x_transforms_source"] = ["unit_power"]
standalone_parameters["x_transforms_target"] = ["unit_power"]
standalone_parameters["episode_transforms_source"] = []
standalone_parameters["episode_transforms_target"] = []
standalone_parameters["torch_default_dtype"] = "torch.float32"
standalone_parameters["x_net"] = [
{"class": "nnReshape", "kargs": {"shape":[-1, 1, 2, 256]}},
{"class": "Conv2d", "kargs": { "in_channels":1, "out_channels":256, "kernel_size":(1,7), "bias":False, "padding":(0,3), },},
{"class": "ReLU", "kargs": {"inplace": True}},
{"class": "BatchNorm2d", "kargs": {"num_features":256}},
{"class": "Conv2d", "kargs": { "in_channels":256, "out_channels":80, "kernel_size":(2,7), "bias":True, "padding":(0,3), },},
{"class": "ReLU", "kargs": {"inplace": True}},
{"class": "BatchNorm2d", "kargs": {"num_features":80}},
{"class": "Flatten", "kargs": {}},
{"class": "Linear", "kargs": {"in_features": 80*256, "out_features": 256}}, # 80 units per IQ pair
{"class": "ReLU", "kargs": {"inplace": True}},
{"class": "BatchNorm1d", "kargs": {"num_features":256}},
{"class": "Linear", "kargs": {"in_features": 256, "out_features": 256}},
]
# Parameters relevant to results
# These parameters will basically never need to change
standalone_parameters["NUM_LOGS_PER_EPOCH"] = 10
standalone_parameters["BEST_MODEL_PATH"] = "./best_model.pth"
# uncomment for CORES dataset
from steves_utils.CORES.utils import (
ALL_NODES,
ALL_NODES_MINIMUM_1000_EXAMPLES,
ALL_DAYS
)
standalone_parameters["labels_source"] = ALL_NODES
standalone_parameters["labels_target"] = ALL_NODES
standalone_parameters["domains_source"] = [1]
standalone_parameters["domains_target"] = [2,3,4,5]
standalone_parameters["pickle_name"] = "cores.stratified_ds.2022A.pkl"
# Uncomment these for ORACLE dataset
# from steves_utils.ORACLE.utils_v2 import (
# ALL_DISTANCES_FEET,
# ALL_RUNS,
# ALL_SERIAL_NUMBERS,
# )
# standalone_parameters["labels_source"] = ALL_SERIAL_NUMBERS
# standalone_parameters["labels_target"] = ALL_SERIAL_NUMBERS
# standalone_parameters["domains_source"] = [8,20, 38,50]
# standalone_parameters["domains_target"] = [14, 26, 32, 44, 56]
# standalone_parameters["pickle_name"] = "oracle.frame_indexed.stratified_ds.2022A.pkl"
# standalone_parameters["num_examples_per_domain_per_label_source"]=1000
# standalone_parameters["num_examples_per_domain_per_label_target"]=1000
# Uncomment these for Metahan dataset
# standalone_parameters["labels_source"] = list(range(19))
# standalone_parameters["labels_target"] = list(range(19))
# standalone_parameters["domains_source"] = [0]
# standalone_parameters["domains_target"] = [1]
# standalone_parameters["pickle_name"] = "metehan.stratified_ds.2022A.pkl"
# standalone_parameters["n_way"] = len(standalone_parameters["labels_source"])
# standalone_parameters["num_examples_per_domain_per_label_source"]=200
# standalone_parameters["num_examples_per_domain_per_label_target"]=100
standalone_parameters["n_way"] = len(standalone_parameters["labels_source"])
# Parameters
parameters = {
"experiment_name": "tuned_1v2:oracle.run2",
"device": "cuda",
"lr": 0.0001,
"labels_source": [
"3123D52",
"3123D65",
"3123D79",
"3123D80",
"3123D54",
"3123D70",
"3123D7B",
"3123D89",
"3123D58",
"3123D76",
"3123D7D",
"3123EFE",
"3123D64",
"3123D78",
"3123D7E",
"3124E4A",
],
"labels_target": [
"3123D52",
"3123D65",
"3123D79",
"3123D80",
"3123D54",
"3123D70",
"3123D7B",
"3123D89",
"3123D58",
"3123D76",
"3123D7D",
"3123EFE",
"3123D64",
"3123D78",
"3123D7E",
"3124E4A",
],
"episode_transforms_source": [],
"episode_transforms_target": [],
"domains_source": [8, 32, 50],
"domains_target": [14, 20, 26, 38, 44],
"num_examples_per_domain_per_label_source": -1,
"num_examples_per_domain_per_label_target": -1,
"n_shot": 3,
"n_way": 16,
"n_query": 2,
"train_k_factor": 3,
"val_k_factor": 2,
"test_k_factor": 2,
"torch_default_dtype": "torch.float32",
"n_epoch": 50,
"patience": 3,
"criteria_for_best": "target_accuracy",
"x_net": [
{"class": "nnReshape", "kargs": {"shape": [-1, 1, 2, 256]}},
{
"class": "Conv2d",
"kargs": {
"in_channels": 1,
"out_channels": 256,
"kernel_size": [1, 7],
"bias": False,
"padding": [0, 3],
},
},
{"class": "ReLU", "kargs": {"inplace": True}},
{"class": "BatchNorm2d", "kargs": {"num_features": 256}},
{
"class": "Conv2d",
"kargs": {
"in_channels": 256,
"out_channels": 80,
"kernel_size": [2, 7],
"bias": True,
"padding": [0, 3],
},
},
{"class": "ReLU", "kargs": {"inplace": True}},
{"class": "BatchNorm2d", "kargs": {"num_features": 80}},
{"class": "Flatten", "kargs": {}},
{"class": "Linear", "kargs": {"in_features": 20480, "out_features": 256}},
{"class": "ReLU", "kargs": {"inplace": True}},
{"class": "BatchNorm1d", "kargs": {"num_features": 256}},
{"class": "Linear", "kargs": {"in_features": 256, "out_features": 256}},
],
"NUM_LOGS_PER_EPOCH": 10,
"BEST_MODEL_PATH": "./best_model.pth",
"pickle_name": "oracle.Run2_10kExamples_stratified_ds.2022A.pkl",
"x_transforms_source": ["unit_mag"],
"x_transforms_target": ["unit_mag"],
"dataset_seed": 500,
"seed": 500,
}
# Set this to True if you want to run this template directly
STANDALONE = False
if STANDALONE:
print("parameters not injected, running with standalone_parameters")
parameters = standalone_parameters
if not 'parameters' in locals() and not 'parameters' in globals():
raise Exception("Parameter injection failed")
#Use an easy dict for all the parameters
p = EasyDict(parameters)
supplied_keys = set(p.keys())
if supplied_keys != required_parameters:
print("Parameters are incorrect")
if len(supplied_keys - required_parameters)>0: print("Shouldn't have:", str(supplied_keys - required_parameters))
if len(required_parameters - supplied_keys)>0: print("Need to have:", str(required_parameters - supplied_keys))
raise RuntimeError("Parameters are incorrect")
###################################
# Set the RNGs and make it all deterministic
###################################
np.random.seed(p.seed)
random.seed(p.seed)
torch.manual_seed(p.seed)
torch.use_deterministic_algorithms(True)
###########################################
# The stratified datasets honor this
###########################################
torch.set_default_dtype(eval(p.torch_default_dtype))
###################################
# Build the network(s)
# Note: It's critical to do this AFTER setting the RNG
# (This is due to the randomized initial weights)
###################################
x_net = build_sequential(p.x_net)
start_time_secs = time.time()
###################################
# Build the dataset
###################################
if p.x_transforms_source == []: x_transform_source = None
else: x_transform_source = get_chained_transform(p.x_transforms_source)
if p.x_transforms_target == []: x_transform_target = None
else: x_transform_target = get_chained_transform(p.x_transforms_target)
if p.episode_transforms_source == []: episode_transform_source = None
else: raise Exception("episode_transform_source not implemented")
if p.episode_transforms_target == []: episode_transform_target = None
else: raise Exception("episode_transform_target not implemented")
eaf_source = Episodic_Accessor_Factory(
labels=p.labels_source,
domains=p.domains_source,
num_examples_per_domain_per_label=p.num_examples_per_domain_per_label_source,
iterator_seed=p.seed,
dataset_seed=p.dataset_seed,
n_shot=p.n_shot,
n_way=p.n_way,
n_query=p.n_query,
train_val_test_k_factors=(p.train_k_factor,p.val_k_factor,p.test_k_factor),
pickle_path=os.path.join(get_datasets_base_path(), p.pickle_name),
x_transform_func=x_transform_source,
example_transform_func=episode_transform_source,
)
train_original_source, val_original_source, test_original_source = eaf_source.get_train(), eaf_source.get_val(), eaf_source.get_test()
eaf_target = Episodic_Accessor_Factory(
labels=p.labels_target,
domains=p.domains_target,
num_examples_per_domain_per_label=p.num_examples_per_domain_per_label_target,
iterator_seed=p.seed,
dataset_seed=p.dataset_seed,
n_shot=p.n_shot,
n_way=p.n_way,
n_query=p.n_query,
train_val_test_k_factors=(p.train_k_factor,p.val_k_factor,p.test_k_factor),
pickle_path=os.path.join(get_datasets_base_path(), p.pickle_name),
x_transform_func=x_transform_target,
example_transform_func=episode_transform_target,
)
train_original_target, val_original_target, test_original_target = eaf_target.get_train(), eaf_target.get_val(), eaf_target.get_test()
transform_lambda = lambda ex: ex[1] # Original is (<domain>, <episode>) so we strip down to episode only
train_processed_source = Lazy_Iterable_Wrapper(train_original_source, transform_lambda)
val_processed_source = Lazy_Iterable_Wrapper(val_original_source, transform_lambda)
test_processed_source = Lazy_Iterable_Wrapper(test_original_source, transform_lambda)
train_processed_target = Lazy_Iterable_Wrapper(train_original_target, transform_lambda)
val_processed_target = Lazy_Iterable_Wrapper(val_original_target, transform_lambda)
test_processed_target = Lazy_Iterable_Wrapper(test_original_target, transform_lambda)
datasets = EasyDict({
"source": {
"original": {"train":train_original_source, "val":val_original_source, "test":test_original_source},
"processed": {"train":train_processed_source, "val":val_processed_source, "test":test_processed_source}
},
"target": {
"original": {"train":train_original_target, "val":val_original_target, "test":test_original_target},
"processed": {"train":train_processed_target, "val":val_processed_target, "test":test_processed_target}
},
})
# Some quick unit tests on the data
from steves_utils.transforms import get_average_power, get_average_magnitude
q_x, q_y, s_x, s_y, truth = next(iter(train_processed_source))
assert q_x.dtype == eval(p.torch_default_dtype)
assert s_x.dtype == eval(p.torch_default_dtype)
print("Visually inspect these to see if they line up with expected values given the transforms")
print('x_transforms_source', p.x_transforms_source)
print('x_transforms_target', p.x_transforms_target)
print("Average magnitude, source:", get_average_magnitude(q_x[0].numpy()))
print("Average power, source:", get_average_power(q_x[0].numpy()))
q_x, q_y, s_x, s_y, truth = next(iter(train_processed_target))
print("Average magnitude, target:", get_average_magnitude(q_x[0].numpy()))
print("Average power, target:", get_average_power(q_x[0].numpy()))
###################################
# Build the model
###################################
model = Steves_Prototypical_Network(x_net, device=p.device, x_shape=(2,256))
optimizer = Adam(params=model.parameters(), lr=p.lr)
###################################
# train
###################################
jig = PTN_Train_Eval_Test_Jig(model, p.BEST_MODEL_PATH, p.device)
jig.train(
train_iterable=datasets.source.processed.train,
source_val_iterable=datasets.source.processed.val,
target_val_iterable=datasets.target.processed.val,
num_epochs=p.n_epoch,
num_logs_per_epoch=p.NUM_LOGS_PER_EPOCH,
patience=p.patience,
optimizer=optimizer,
criteria_for_best=p.criteria_for_best,
)
total_experiment_time_secs = time.time() - start_time_secs
###################################
# Evaluate the model
###################################
source_test_label_accuracy, source_test_label_loss = jig.test(datasets.source.processed.test)
target_test_label_accuracy, target_test_label_loss = jig.test(datasets.target.processed.test)
source_val_label_accuracy, source_val_label_loss = jig.test(datasets.source.processed.val)
target_val_label_accuracy, target_val_label_loss = jig.test(datasets.target.processed.val)
history = jig.get_history()
total_epochs_trained = len(history["epoch_indices"])
val_dl = Iterable_Aggregator((datasets.source.original.val,datasets.target.original.val))
confusion = ptn_confusion_by_domain_over_dataloader(model, p.device, val_dl)
per_domain_accuracy = per_domain_accuracy_from_confusion(confusion)
# Add a key to per_domain_accuracy for if it was a source domain
for domain, accuracy in per_domain_accuracy.items():
per_domain_accuracy[domain] = {
"accuracy": accuracy,
"source?": domain in p.domains_source
}
# Do an independent accuracy assesment JUST TO BE SURE!
# _source_test_label_accuracy = independent_accuracy_assesment(model, datasets.source.processed.test, p.device)
# _target_test_label_accuracy = independent_accuracy_assesment(model, datasets.target.processed.test, p.device)
# _source_val_label_accuracy = independent_accuracy_assesment(model, datasets.source.processed.val, p.device)
# _target_val_label_accuracy = independent_accuracy_assesment(model, datasets.target.processed.val, p.device)
# assert(_source_test_label_accuracy == source_test_label_accuracy)
# assert(_target_test_label_accuracy == target_test_label_accuracy)
# assert(_source_val_label_accuracy == source_val_label_accuracy)
# assert(_target_val_label_accuracy == target_val_label_accuracy)
experiment = {
"experiment_name": p.experiment_name,
"parameters": dict(p),
"results": {
"source_test_label_accuracy": source_test_label_accuracy,
"source_test_label_loss": source_test_label_loss,
"target_test_label_accuracy": target_test_label_accuracy,
"target_test_label_loss": target_test_label_loss,
"source_val_label_accuracy": source_val_label_accuracy,
"source_val_label_loss": source_val_label_loss,
"target_val_label_accuracy": target_val_label_accuracy,
"target_val_label_loss": target_val_label_loss,
"total_epochs_trained": total_epochs_trained,
"total_experiment_time_secs": total_experiment_time_secs,
"confusion": confusion,
"per_domain_accuracy": per_domain_accuracy,
},
"history": history,
"dataset_metrics": get_dataset_metrics(datasets, "ptn"),
}
ax = get_loss_curve(experiment)
plt.show()
get_results_table(experiment)
get_domain_accuracies(experiment)
print("Source Test Label Accuracy:", experiment["results"]["source_test_label_accuracy"], "Target Test Label Accuracy:", experiment["results"]["target_test_label_accuracy"])
print("Source Val Label Accuracy:", experiment["results"]["source_val_label_accuracy"], "Target Val Label Accuracy:", experiment["results"]["target_val_label_accuracy"])
json.dumps(experiment) | _____no_output_____ | MIT | experiments/tuned_1v2/oracle.run2/trials/4/trial.ipynb | stevester94/csc500-notebooks |
Recommender Systems 2018/19 Practice 4 - Similarity with Cython Cython is a superset of Python, allowing you to use C-like operations and import C code. Cython files (.pyx) are compiled and support static typing. | import time
import numpy as np | _____no_output_____ | MIT | Jupyter notebook/Practice 4 - Cython.ipynb | marcomussi/RecommenderSystemPolimi |
Let's implement something simple | def isPrime(n):
i = 2
# Usually you loop up to sqrt(n)
while i < n:
if n % i == 0:
return False
i += 1
return True
print("Is prime 2? {}".format(isPrime(2)))
print("Is prime 3? {}".format(isPrime(3)))
print("Is prime 5? {}".format(isPrime(5)))
print("Is prime 15? {}".format(isPrime(15)))
print("Is prime 20? {}".format(isPrime(20)))
start_time = time.time()
result = isPrime(80000023)
print("Is Prime 80000023? {}, time required {:.2f} sec".format(result, time.time()-start_time)) | Is Prime 80000023? True, time required 8.19 sec
| MIT | Jupyter notebook/Practice 4 - Cython.ipynb | marcomussi/RecommenderSystemPolimi |
Load Cython magic command, this takes care of the compilation step. If you are writing code outside Jupyter you'll have to compile using other tools | %load_ext Cython | _____no_output_____ | MIT | Jupyter notebook/Practice 4 - Cython.ipynb | marcomussi/RecommenderSystemPolimi |
Declare Cython function, paste the same code as before. The function will be compiled and then executed with a Python interface | %%cython
def isPrime(n):
i = 2
# Usually you loop up to sqrt(n)
while i < n:
if n % i == 0:
return False
i += 1
return True
start_time = time.time()
result = isPrime(80000023)
print("Is Prime 80000023? {}, time required {:.2f} sec".format(result, time.time()-start_time)) | Is Prime 80000023? True, time required 4.81 sec
| MIT | Jupyter notebook/Practice 4 - Cython.ipynb | marcomussi/RecommenderSystemPolimi |
As you can see by just compiling the same code we got some improvement. To go seriously higher, we have to use some static tiping | %%cython
# Declare the tipe of the arguments
def isPrime(long n):
# Declare index of for loop
cdef long i
i = 2
# Usually you loop up to sqrt(n)
while i < n:
if n % i == 0:
return False
i += 1
return True
start_time = time.time()
result = isPrime(80000023)
print("Is Prime 80000023? {}, time required {:.2f} sec".format(result, time.time()-start_time)) | Is Prime 80000023? True, time required 0.94 sec
| MIT | Jupyter notebook/Practice 4 - Cython.ipynb | marcomussi/RecommenderSystemPolimi |
Cython code with two tipe declaration, for n and i, runs 50x faster than Python Main benefits of Cython:* Compiled, no interpreter* Static typing, no overhead* Fast loops, no need to vectorize. Vectorization sometimes performes lots of useless operations* Numpy, which is fast in python, becomes often slooooow compared to a carefully written Cython code Similarity with Cython Load the usual data. | from urllib.request import urlretrieve
import zipfile
# skip the download
#urlretrieve ("http://files.grouplens.org/datasets/movielens/ml-10m.zip", "data/Movielens_10M/movielens_10m.zip")
dataFile = zipfile.ZipFile("data/Movielens_10M/movielens_10m.zip")
URM_path = dataFile.extract("ml-10M100K/ratings.dat", path = "data/Movielens_10M")
URM_file = open(URM_path, 'r')
def rowSplit (rowString):
split = rowString.split("::")
split[3] = split[3].replace("\n","")
split[0] = int(split[0])
split[1] = int(split[1])
split[2] = float(split[2])
split[3] = int(split[3])
result = tuple(split)
return result
URM_file.seek(0)
URM_tuples = []
for line in URM_file:
URM_tuples.append(rowSplit (line))
userList, itemList, ratingList, timestampList = zip(*URM_tuples)
userList = list(userList)
itemList = list(itemList)
ratingList = list(ratingList)
timestampList = list(timestampList)
import scipy.sparse as sps
URM_all = sps.coo_matrix((ratingList, (userList, itemList)))
URM_all = URM_all.tocsr()
URM_all
from Notebooks_utils.data_splitter import train_test_holdout
URM_train, URM_test = train_test_holdout(URM_all, train_perc = 0.8)
URM_train | _____no_output_____ | MIT | Jupyter notebook/Practice 4 - Cython.ipynb | marcomussi/RecommenderSystemPolimi |
Since we cannot store in memory the whole similarity, we compute it one row at a time | itemIndex=1
item_ratings = URM_train[:,itemIndex]
item_ratings = item_ratings.toarray().squeeze()
item_ratings.shape
this_item_weights = URM_train.T.dot(item_ratings)
this_item_weights.shape | _____no_output_____ | MIT | Jupyter notebook/Practice 4 - Cython.ipynb | marcomussi/RecommenderSystemPolimi |
Once we have the scores for that row, we get the TopK | k=10
top_k_idx = np.argsort(this_item_weights) [-k:]
top_k_idx
import scipy.sparse as sps
# Function hiding some conversion checks
def check_matrix(X, format='csc', dtype=np.float32):
if format == 'csc' and not isinstance(X, sps.csc_matrix):
return X.tocsc().astype(dtype)
elif format == 'csr' and not isinstance(X, sps.csr_matrix):
return X.tocsr().astype(dtype)
elif format == 'coo' and not isinstance(X, sps.coo_matrix):
return X.tocoo().astype(dtype)
elif format == 'dok' and not isinstance(X, sps.dok_matrix):
return X.todok().astype(dtype)
elif format == 'bsr' and not isinstance(X, sps.bsr_matrix):
return X.tobsr().astype(dtype)
elif format == 'dia' and not isinstance(X, sps.dia_matrix):
return X.todia().astype(dtype)
elif format == 'lil' and not isinstance(X, sps.lil_matrix):
return X.tolil().astype(dtype)
else:
return X.astype(dtype) | _____no_output_____ | MIT | Jupyter notebook/Practice 4 - Cython.ipynb | marcomussi/RecommenderSystemPolimi |
Create a Basic Collaborative filtering recommender using only cosine similarity | class BasicItemKNN_CF_Recommender(object):
""" ItemKNN recommender with cosine similarity and no shrinkage"""
def __init__(self, URM):
self.dataset = URM
def compute_similarity(self, URM):
# We explore the matrix column-wise
URM = check_matrix(URM, 'csc')
values = []
rows = []
cols = []
start_time = time.time()
processedItems = 0
# Compute all similarities for each item using vectorization
for itemIndex in range(URM.shape[0]):
processedItems += 1
if processedItems % 100==0:
itemPerSec = processedItems/(time.time()-start_time)
print("Similarity item {}, {:.2f} item/sec, required time {:.2f} min".format(
processedItems, itemPerSec, URM.shape[0]/itemPerSec/60))
# All ratings for a given item
item_ratings = URM[:,itemIndex]
item_ratings = item_ratings.toarray().squeeze()
# Compute item similarities
this_item_weights = URM_train.T.dot(item_ratings)
# Sort indices and select TopK
top_k_idx = np.argsort(this_item_weights) [-self.k:]
# Incrementally build sparse matrix
values.extend(this_item_weights[top_k_idx])
rows.extend(np.arange(URM.shape[0])[top_k_idx])
cols.extend(np.ones(self.k) * itemIndex)
self.W_sparse = sps.csc_matrix((values, (rows, cols)),
shape=(URM.shape[0], URM.shape[0]),
dtype=np.float32)
def fit(self, k=50, shrinkage=100):
self.k = k
self.shrinkage = shrinkage
item_weights = self.compute_similarity(self.dataset)
item_weights = check_matrix(item_weights, 'csr')
def recommend(self, user_id, at=None, exclude_seen=True):
# compute the scores using the dot product
user_profile = self.URM[user_id]
scores = user_profile.dot(self.W_sparse).toarray().ravel()
if exclude_seen:
scores = self.filter_seen(user_id, scores)
# rank items
ranking = scores.argsort()[::-1]
return ranking[:at]
def filter_seen(self, user_id, scores):
start_pos = self.URM.indptr[user_id]
end_pos = self.URM.indptr[user_id+1]
user_profile = self.URM.indices[start_pos:end_pos]
scores[user_profile] = -np.inf
return scores | _____no_output_____ | MIT | Jupyter notebook/Practice 4 - Cython.ipynb | marcomussi/RecommenderSystemPolimi |
Let's isolate the compute_similarity function | def compute_similarity(URM, k=100):
# We explore the matrix column-wise
URM = check_matrix(URM, 'csc')
n_items = URM.shape[0]
values = []
rows = []
cols = []
start_time = time.time()
processedItems = 0
# Compute all similarities for each item using vectorization
# for itemIndex in range(n_items):
for itemIndex in range(1000):
processedItems += 1
if processedItems % 100==0:
itemPerSec = processedItems/(time.time()-start_time)
print("Similarity item {}, {:.2f} item/sec, required time {:.2f} min".format(
processedItems, itemPerSec, n_items/itemPerSec/60))
# All ratings for a given item
item_ratings = URM[:,itemIndex]
item_ratings = item_ratings.toarray().squeeze()
# Compute item similarities
this_item_weights = URM.T.dot(item_ratings)
# Sort indices and select TopK
top_k_idx = np.argsort(this_item_weights) [-k:]
# Incrementally build sparse matrix
values.extend(this_item_weights[top_k_idx])
rows.extend(np.arange(URM.shape[0])[top_k_idx])
cols.extend(np.ones(k) * itemIndex)
W_sparse = sps.csc_matrix((values, (rows, cols)),
shape=(n_items, n_items),
dtype=np.float32)
return W_sparse
compute_similarity(URM_train) | Similarity item 100, 81.61 item/sec, required time 14.62 min
Similarity item 200, 80.34 item/sec, required time 14.85 min
Similarity item 300, 80.08 item/sec, required time 14.89 min
Similarity item 400, 80.50 item/sec, required time 14.82 min
Similarity item 500, 80.02 item/sec, required time 14.91 min
Similarity item 600, 80.30 item/sec, required time 14.85 min
Similarity item 700, 80.23 item/sec, required time 14.87 min
Similarity item 800, 80.58 item/sec, required time 14.80 min
Similarity item 900, 81.18 item/sec, required time 14.69 min
Similarity item 1000, 81.15 item/sec, required time 14.70 min
| MIT | Jupyter notebook/Practice 4 - Cython.ipynb | marcomussi/RecommenderSystemPolimi |
We see that computing the similarity takes more or less 15 minutes Now we use the same identical code, but we compile it | %%cython
import time
import numpy as np
import scipy.sparse as sps
def compute_similarity_compiled(URM, k=100):
# We explore the matrix column-wise
URM = URM.tocsc()
n_items = URM.shape[0]
values = []
rows = []
cols = []
start_time = time.time()
processedItems = 0
# Compute all similarities for each item using vectorization
# for itemIndex in range(n_items):
for itemIndex in range(1000):
processedItems += 1
if processedItems % 100==0:
itemPerSec = processedItems/(time.time()-start_time)
print("Similarity item {}, {:.2f} item/sec, required time {:.2f} min".format(
processedItems, itemPerSec, n_items/itemPerSec/60))
# All ratings for a given item
item_ratings = URM[:,itemIndex]
item_ratings = item_ratings.toarray().squeeze()
# Compute item similarities
this_item_weights = URM.T.dot(item_ratings)
# Sort indices and select TopK
top_k_idx = np.argsort(this_item_weights) [-k:]
# Incrementally build sparse matrix
values.extend(this_item_weights[top_k_idx])
rows.extend(np.arange(URM.shape[0])[top_k_idx])
cols.extend(np.ones(k) * itemIndex)
W_sparse = sps.csc_matrix((values, (rows, cols)),
shape=(n_items, n_items),
dtype=np.float32)
return W_sparse
compute_similarity_compiled(URM_train) | Similarity item 100, 56.48 item/sec, required time 21.12 min
Similarity item 200, 56.12 item/sec, required time 21.25 min
Similarity item 300, 56.58 item/sec, required time 21.08 min
Similarity item 400, 56.42 item/sec, required time 21.14 min
Similarity item 500, 56.74 item/sec, required time 21.02 min
Similarity item 600, 56.90 item/sec, required time 20.96 min
Similarity item 700, 56.90 item/sec, required time 20.96 min
Similarity item 800, 56.97 item/sec, required time 20.94 min
Similarity item 900, 56.84 item/sec, required time 20.99 min
Similarity item 1000, 56.57 item/sec, required time 21.08 min
| MIT | Jupyter notebook/Practice 4 - Cython.ipynb | marcomussi/RecommenderSystemPolimi |
As opposed to the previous example, compilation by itself is not very helpful. Why? Because the compiler is just porting in C all operations that the python interpreter would have to perform, dynamic tiping included Now try to add some tipes | %%cython
import time
import numpy as np
import scipy.sparse as sps
cimport numpy as np
def compute_similarity_compiled(URM, int k=100):
cdef int itemIndex, processedItems
# We use the numpy syntax, allowing us to perform vectorized operations
cdef np.ndarray[double, ndim=1] item_ratings, this_item_weights
cdef np.ndarray[long, ndim=1] top_k_idx
# We explore the matrix column-wise
URM = URM.tocsc()
n_items = URM.shape[0]
values = []
rows = []
cols = []
start_time = time.time()
processedItems = 0
# Compute all similarities for each item using vectorization
# for itemIndex in range(n_items):
for itemIndex in range(1000):
processedItems += 1
if processedItems % 100==0:
itemPerSec = processedItems/(time.time()-start_time)
print("Similarity item {}, {:.2f} item/sec, required time {:.2f} min".format(
processedItems, itemPerSec, n_items/itemPerSec/60))
# All ratings for a given item
item_ratings = URM[:,itemIndex].toarray().squeeze()
# Compute item similarities
this_item_weights = URM.T.dot(item_ratings)
# Sort indices and select TopK
top_k_idx = np.argsort(this_item_weights) [-k:]
# Incrementally build sparse matrix
values.extend(this_item_weights[top_k_idx])
rows.extend(np.arange(URM.shape[0])[top_k_idx])
cols.extend(np.ones(k) * itemIndex)
W_sparse = sps.csc_matrix((values, (rows, cols)),
shape=(n_items, n_items),
dtype=np.float32)
return W_sparse
compute_similarity_compiled(URM_train) | Similarity item 100, 57.80 item/sec, required time 20.64 min
Similarity item 200, 53.69 item/sec, required time 22.22 min
Similarity item 300, 54.57 item/sec, required time 21.86 min
Similarity item 400, 54.07 item/sec, required time 22.06 min
Similarity item 500, 54.65 item/sec, required time 21.83 min
Similarity item 600, 54.82 item/sec, required time 21.76 min
Similarity item 700, 55.08 item/sec, required time 21.66 min
Similarity item 800, 55.30 item/sec, required time 21.57 min
Similarity item 900, 55.64 item/sec, required time 21.44 min
Similarity item 1000, 55.80 item/sec, required time 21.38 min
| MIT | Jupyter notebook/Practice 4 - Cython.ipynb | marcomussi/RecommenderSystemPolimi |
Still no luck! Why? There are a few reasons:* We are getting the data from the sparse matrix using its interface, which is SLOW* We are transforming sparse data into a dense array, which is SLOW* We are performing a dot product against a dense vector You colud find a workaround... here we do something different Proposed solution Change the algorithm! Instead of performing the dot product, let's implement somenting that computes the similarity using sparse data directly We loop through the data and update selectively the similarity matrix cells. Underlying idea:* When I select an item I can know which users rated it* Instead of looping through the other items trying to find common users, I use the URM to find which other items that user rated* The user I am considering will be common between the two, so I increment the similarity of the two items* Instead of following the path item1 -> loop item2 -> find user, i go item1 -> loop user -> loop item2 | data_matrix = np.array([[1,1,0,1],[0,1,1,1],[1,0,1,0]])
data_matrix = sps.csc_matrix(data_matrix)
data_matrix.todense() | _____no_output_____ | MIT | Jupyter notebook/Practice 4 - Cython.ipynb | marcomussi/RecommenderSystemPolimi |
Example: Compute the similarities for item 1 Step 1: get users that rated item 1 | users_rated_item = data_matrix[:,1]
users_rated_item.indices | _____no_output_____ | MIT | Jupyter notebook/Practice 4 - Cython.ipynb | marcomussi/RecommenderSystemPolimi |
Step 2: count how many times those users rated other items | item_similarity = data_matrix[users_rated_item.indices].sum(axis = 0)
np.array(item_similarity).squeeze() | _____no_output_____ | MIT | Jupyter notebook/Practice 4 - Cython.ipynb | marcomussi/RecommenderSystemPolimi |
Verify our result against the common method. We can see that the similarity values for col 1 are identical | similarity_matrix_product = data_matrix.T.dot(data_matrix)
similarity_matrix_product.toarray()[:,1]
# The following code works for implicit feedback only
def compute_similarity_new_algorithm(URM, k=100):
# We explore the matrix column-wise
URM = check_matrix(URM, 'csc')
URM.data = np.ones_like(URM.data)
n_items = URM.shape[0]
values = []
rows = []
cols = []
start_time = time.time()
processedItems = 0
# Compute all similarities for each item using vectorization
# for itemIndex in range(n_items):
for itemIndex in range(1000):
processedItems += 1
if processedItems % 100==0:
itemPerSec = processedItems/(time.time()-start_time)
print("Similarity item {}, {:.2f} item/sec, required time {:.2f} min".format(
processedItems, itemPerSec, n_items/itemPerSec/60))
# All ratings for a given item
users_rated_item = URM.indices[URM.indptr[itemIndex]:URM.indptr[itemIndex+1]]
# Compute item similarities
this_item_weights = URM[users_rated_item].sum(axis = 0)
this_item_weights = np.array(this_item_weights).squeeze()
# Sort indices and select TopK
top_k_idx = np.argsort(this_item_weights) [-k:]
# Incrementally build sparse matrix
values.extend(this_item_weights[top_k_idx])
rows.extend(np.arange(URM.shape[0])[top_k_idx])
cols.extend(np.ones(k) * itemIndex)
W_sparse = sps.csc_matrix((values, (rows, cols)),
shape=(n_items, n_items),
dtype=np.float32)
return W_sparse
compute_similarity_new_algorithm(URM_train) | Similarity item 100, 28.04 item/sec, required time 42.53 min
Similarity item 200, 28.37 item/sec, required time 42.04 min
Similarity item 300, 28.85 item/sec, required time 41.35 min
Similarity item 400, 28.77 item/sec, required time 41.45 min
Similarity item 500, 29.20 item/sec, required time 40.85 min
Similarity item 600, 28.85 item/sec, required time 41.34 min
Similarity item 700, 29.60 item/sec, required time 40.30 min
Similarity item 800, 29.91 item/sec, required time 39.88 min
Similarity item 900, 30.54 item/sec, required time 39.06 min
Similarity item 1000, 30.61 item/sec, required time 38.96 min
| MIT | Jupyter notebook/Practice 4 - Cython.ipynb | marcomussi/RecommenderSystemPolimi |
Slower but expected, dot product operations are implemented in an efficient way and here we are using an indirect approach Now let's write this algorithm in Cython | %%cython
import time
import numpy as np
cimport numpy as np
from cpython.array cimport array, clone
import scipy.sparse as sps
cdef class Cosine_Similarity:
cdef int TopK
cdef long n_items
# Arrays containing the sparse data
cdef int[:] user_to_item_row_ptr, user_to_item_cols
cdef int[:] item_to_user_rows, item_to_user_col_ptr
cdef double[:] user_to_item_data, item_to_user_data
# In case you select no TopK
cdef double[:,:] W_dense
def __init__(self, URM, TopK = 100):
"""
Dataset must be a matrix with items as columns
:param dataset:
:param TopK:
"""
super(Cosine_Similarity, self).__init__()
self.n_items = URM.shape[1]
self.TopK = min(TopK, self.n_items)
URM = URM.tocsr()
self.user_to_item_row_ptr = URM.indptr
self.user_to_item_cols = URM.indices
self.user_to_item_data = np.array(URM.data, dtype=np.float64)
URM = URM.tocsc()
self.item_to_user_rows = URM.indices
self.item_to_user_col_ptr = URM.indptr
self.item_to_user_data = np.array(URM.data, dtype=np.float64)
if self.TopK == 0:
self.W_dense = np.zeros((self.n_items,self.n_items))
cdef int[:] getUsersThatRatedItem(self, long item_id):
return self.item_to_user_rows[self.item_to_user_col_ptr[item_id]:self.item_to_user_col_ptr[item_id+1]]
cdef int[:] getItemsRatedByUser(self, long user_id):
return self.user_to_item_cols[self.user_to_item_row_ptr[user_id]:self.user_to_item_row_ptr[user_id+1]]
cdef double[:] computeItemSimilarities(self, long item_id_input):
"""
For every item the cosine similarity against other items depends on whether they have users in common.
The more common users the higher the similarity.
The basic implementation is:
- Select the first item
- Loop through all other items
-- Given the two items, get the users they have in common
-- Update the similarity considering all common users
That is VERY slow due to the common user part, in which a long data structure is looped multiple times.
A better way is to use the data structure in a different way skipping the search part, getting directly
the information we need.
The implementation here used is:
- Select the first item
- Initialize a zero valued array for the similarities
- Get the users who rated the first item
- Loop through the users
-- Given a user, get the items he rated (second item)
-- Update the similarity of the items he rated
"""
# Create template used to initialize an array with zeros
# Much faster than np.zeros(self.n_items)
cdef array[double] template_zero = array('d')
cdef array[double] result = clone(template_zero, self.n_items, zero=True)
cdef long user_index, user_id, item_index, item_id_second
cdef int[:] users_that_rated_item = self.getUsersThatRatedItem(item_id_input)
cdef int[:] items_rated_by_user
cdef double rating_item_input, rating_item_second
# Get users that rated the items
for user_index in range(len(users_that_rated_item)):
user_id = users_that_rated_item[user_index]
rating_item_input = self.item_to_user_data[self.item_to_user_col_ptr[item_id_input]+user_index]
# Get all items rated by that user
items_rated_by_user = self.getItemsRatedByUser(user_id)
for item_index in range(len(items_rated_by_user)):
item_id_second = items_rated_by_user[item_index]
# Do not compute the similarity on the diagonal
if item_id_second != item_id_input:
# Increment similairty
rating_item_second = self.user_to_item_data[self.user_to_item_row_ptr[user_id]+item_index]
result[item_id_second] += rating_item_input*rating_item_second
return result
def compute_similarity(self):
cdef int itemIndex, innerItemIndex
cdef long long topKItemIndex
cdef long long[:] top_k_idx
# Declare numpy data type to use vetor indexing and simplify the topK selection code
cdef np.ndarray[long, ndim=1] top_k_partition, top_k_partition_sorting
cdef np.ndarray[np.float64_t, ndim=1] this_item_weights_np
#cdef long[:] top_k_idx
cdef double[:] this_item_weights
cdef long processedItems = 0
# Data structure to incrementally build sparse matrix
# Preinitialize max possible length
cdef double[:] values = np.zeros((self.n_items*self.TopK))
cdef int[:] rows = np.zeros((self.n_items*self.TopK,), dtype=np.int32)
cdef int[:] cols = np.zeros((self.n_items*self.TopK,), dtype=np.int32)
cdef long sparse_data_pointer = 0
start_time = time.time()
# Compute all similarities for each item
for itemIndex in range(self.n_items):
processedItems += 1
if processedItems % 10000==0 or processedItems==self.n_items:
itemPerSec = processedItems/(time.time()-start_time)
print("Similarity item {} ( {:2.0f} % ), {:.2f} item/sec, required time {:.2f} min".format(
processedItems, processedItems*1.0/self.n_items*100, itemPerSec, (self.n_items-processedItems) / itemPerSec / 60))
this_item_weights = self.computeItemSimilarities(itemIndex)
if self.TopK == 0:
for innerItemIndex in range(self.n_items):
self.W_dense[innerItemIndex,itemIndex] = this_item_weights[innerItemIndex]
else:
# Sort indices and select TopK
# Using numpy implies some overhead, unfortunately the plain C qsort function is even slower
# top_k_idx = np.argsort(this_item_weights) [-self.TopK:]
# Sorting is done in three steps. Faster then plain np.argsort for higher number of items
# because we avoid sorting elements we already know we don't care about
# - Partition the data to extract the set of TopK items, this set is unsorted
# - Sort only the TopK items, discarding the rest
# - Get the original item index
this_item_weights_np = - np.array(this_item_weights)
# Get the unordered set of topK items
top_k_partition = np.argpartition(this_item_weights_np, self.TopK-1)[0:self.TopK]
# Sort only the elements in the partition
top_k_partition_sorting = np.argsort(this_item_weights_np[top_k_partition])
# Get original index
top_k_idx = top_k_partition[top_k_partition_sorting]
# Incrementally build sparse matrix
for innerItemIndex in range(len(top_k_idx)):
topKItemIndex = top_k_idx[innerItemIndex]
values[sparse_data_pointer] = this_item_weights[topKItemIndex]
rows[sparse_data_pointer] = topKItemIndex
cols[sparse_data_pointer] = itemIndex
sparse_data_pointer += 1
if self.TopK == 0:
return np.array(self.W_dense)
else:
values = np.array(values[0:sparse_data_pointer])
rows = np.array(rows[0:sparse_data_pointer])
cols = np.array(cols[0:sparse_data_pointer])
W_sparse = sps.csr_matrix((values, (rows, cols)),
shape=(self.n_items, self.n_items),
dtype=np.float32)
return W_sparse
cosine_cython = Cosine_Similarity(URM_train, TopK=100)
start_time = time.time()
cosine_cython.compute_similarity()
print("Similarity computed in {:.2f} seconds".format(time.time()-start_time)) | Similarity item 10000 ( 15 % ), 722.73 item/sec, required time 1.27 min
Similarity item 20000 ( 31 % ), 1152.12 item/sec, required time 0.65 min
Similarity item 30000 ( 46 % ), 1413.59 item/sec, required time 0.41 min
Similarity item 40000 ( 61 % ), 1611.02 item/sec, required time 0.26 min
Similarity item 50000 ( 77 % ), 1761.78 item/sec, required time 0.14 min
Similarity item 60000 ( 92 % ), 1876.49 item/sec, required time 0.05 min
Similarity item 65134 ( 100 % ), 1929.34 item/sec, required time 0.00 min
Similarity computed in 33.94 seconds
| MIT | Jupyter notebook/Practice 4 - Cython.ipynb | marcomussi/RecommenderSystemPolimi |
Better... much better. There are a few other things you could do, but at this point it is not worth the effort How to use Cython outside a notebook Step1: Create a .pyx file and write your code Step2: Create a compilation script "compileCython.py" with the following content | # This code will not run in a notebook cell
try:
from setuptools import setup
from setuptools import Extension
except ImportError:
from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext
import numpy
import sys
import re
if len(sys.argv) != 4:
raise ValueError("Wrong number of paramethers received. Expected 4, got {}".format(sys.argv))
# Get the name of the file to compile
fileToCompile = sys.argv[1]
# Remove the argument from sys argv in order for it to contain only what setup needs
del sys.argv[1]
extensionName = re.sub("\.pyx", "", fileToCompile)
ext_modules = Extension(extensionName,
[fileToCompile],
extra_compile_args=['-O3'],
include_dirs=[numpy.get_include(),],
)
setup(
cmdclass={'build_ext': build_ext},
ext_modules=[ext_modules]
)
| _____no_output_____ | MIT | Jupyter notebook/Practice 4 - Cython.ipynb | marcomussi/RecommenderSystemPolimi |
Step3: Compile your code with the following command python compileCython.py Cosine_Similarity_Cython.pyx build_ext --inplace Step4: Generate cython report and look for "yellow lines". The report is an .html file which represents how many operations are necessary to translate each python operation in cython code. If a line is white, it has a direct C translation. If it is yellow it will require many indirect steps that will slow down execution. Some of those steps may be inevitable, some may be removed via static typing. IMPORTANT: white does not mean fast!! If a system call is involved that part might be slow anyway.cython -a Cosine_Similarity_Cython.pyx Step5: Add static types and C functions to remove "yellow" lines. If you use a variable only as a C object, use primitive tipes cdef int namevardef double namevarcdef float namevar If you call a function only within C code, use a specific declaration "cdef"cdef function_name(self, int param1, double param2):... Step6: Iterate step 4 and 5 until you are satisfied with how clean your code is, then compile. An example of non optimized code can be found in the source folder of this notebook with the _SLOW suffix Step7: the compilation generates a file wose name is something like "Cosine_Similarity_Cython.cpython-36m-x86_64-linux-gnu.so" and tells you the source file, the architecture it is compiled for and the OS Step8: Import and use the compiled file as if it were a python class | from Base.Simialrity.Cython.Cosine_Similarity_Cython import Cosine_Similarity
cosine_cython = Cosine_Similarity(URM_train, TopK=100)
start_time = time.time()
cosine_cython.compute_similarity()
print("Similarity computed in {:.2f} seconds".format(time.time()-start_time)) | _____no_output_____ | MIT | Jupyter notebook/Practice 4 - Cython.ipynb | marcomussi/RecommenderSystemPolimi |
15 PDEs: Solution with Time Stepping Heat EquationThe **heat equation** can be derived from Fourier's law and energy conservation (see the [lecture notes on the heat equation (PDF)](https://github.com/ASU-CompMethodsPhysics-PHY494/PHY494-resources/blob/master/15_PDEs/15_PDEs_LectureNotes_HeatEquation.pdf))$$\frac{\partial T(\mathbf{x}, t)}{\partial t} = \frac{K}{C\rho} \nabla^2 T(\mathbf{x}, t),$$ Problem: insulated metal bar (1D heat equation)A metal bar of length $L$ is insulated along it lengths and held at 0ºC at its ends. Initially, the whole bar is at 100ºC. Calculate $T(x, t)$ for $t>0$. Analytic solutionSolve by separation of variables and power series: The general solution that obeys the boundary conditions $T(0, t) = T(L, t) = 0$ is$$T(x, t) = \sum_{n=1}^{+\infty} A_n \sin(k_n x)\, \exp\left(-\frac{k_n^2 K t}{C\rho}\right), \quad k_n = \frac{n\pi}{L}$$ The specific solution that satisfies $T(x, 0) = T_0 = 100^\circ\text{C}$ leads to $A_n = 4 T_0/n\pi$ for $n$ odd:$$T(x, t) = \sum_{n=1,3,5,\dots}^{+\infty} \frac{4 T_0}{n \pi} \sin(k_n x)\, \exp\left(-\frac{k_n^2 K t}{C\rho}\right)$$ | import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
plt.style.use('ggplot')
def T_bar(x, t, T0, L, K=237, C=900, rho=2700, nmax=1000):
T = np.zeros_like(x)
eta = K / (C*rho)
for n in range(1, nmax, 2):
kn = n*np.pi/L
T += 4*T0/(np.pi * n) * np.sin(kn*x) * np.exp(-kn*kn * eta * t)
return T
T0 = 100.
L = 1.0
X = np.linspace(0, L, 100)
for t in np.linspace(0, 3000, 50):
plt.plot(X, T_bar(X, t, T0, L))
plt.xlabel(r"$x$ (m)")
plt.ylabel(r"$T$ ($^\circ$C)"); | _____no_output_____ | CC-BY-4.0 | 15_PDEs/15_PDEs.ipynb | ASU-CompMethodsPhysics-PHY494/PHY494-resources-2018 |
Numerical solution: Leap frogDiscretize (finite difference):For the time domain we only have the initial values so we use a simple forward difference for the time derivative:$$\frac{\partial T(x,t)}{\partial t} \approx \frac{T(x, t+\Delta t) - T(x, t)}{\Delta t}$$ For the spatial derivative we have initially all values so we can use the more accurate central difference approximation:$$\frac{\partial^2 T(x, t)}{\partial x^2} \approx \frac{T(x+\Delta x, t) + T(x-\Delta x, t) - 2 T(x, t)}{\Delta x^2}$$ Thus, the heat equation can be written as the finite difference equation$$\frac{T(x, t+\Delta t) - T(x, t)}{\Delta t} = \frac{K}{C\rho} \frac{T(x+\Delta x, t) + T(x-\Delta x, t) - 2 T(x, t)}{\Delta x^2}$$ which can be reordered so that the RHS contains only known terms and the LHS future terms. Index $i$ is the spatial index, and $j$ the time index: $x = x_0 + i \Delta x$, $t = t_0 + j \Delta t$.$$T_{i, j+1} = (1 - 2\eta) T_{i,j} + \eta(T_{i+1,j} + T_{i-1, j}), \quad \eta := \frac{K \Delta t}{C \rho \Delta x^2}$$Thus we can step forward in time ("leap frog"), using only known values. Solve the 1D heat equation numerically for an iron bar* $K = 237$ W/mK* $C = 900$ J/K* $\rho = 2700$ kg/m3* $L = 1$ m* $T_0 = 373$ K and $T_b = 273$ K* $T(x, 0) = T_0$ and $T(0, t) = T(L, t) = T_b$ Key considerations The key line is the computation of the new temperature field at time step $j+1$ from the temperature distribution at time step $j$. It can be written purely with numpy array operations (see last lecture!):```pythonT[1:-1] = (1 - 2*eta) * T[1:-1] + eta * (T[2:] + T[:-2])```Note that the range operator `T[start:end]` *excludes* `end`, so in order to include `T[1], T[2], ..., T[-2]` (but not the rightmost `T[-1]`) we have to use `T[1:-1]`. The *boundary conditions* are fixed for all times:```pythonT[0] = T[-1] = Tb```The *initial conditions* (at time step `j=0`)```pythonT[1:-1] = T0```are only used to compute the distribution of temperatures at the next step `j=1`. Solution | import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
%matplotlib notebook | _____no_output_____ | CC-BY-4.0 | 15_PDEs/15_PDEs.ipynb | ASU-CompMethodsPhysics-PHY494/PHY494-resources-2018 |
For HTML/nbviewer output, use inline: | %matplotlib inline
L_rod = 1. # m
t_max = 3000. # s
Dx = 0.02 # m
Dt = 2 # s
Nx = int(L_rod // Dx)
Nt = int(t_max // Dt)
Kappa = 237 # W/(m K)
CHeat = 900 # J/K
rho = 2700 # kg/m^3
T0 = 373 # K
Tb = 273 # K
eta = Kappa * Dt / (CHeat * rho * Dx**2)
eta2 = 1 - 2*eta
step = 20 # plot solution every n steps
print("Nx = {0}, Nt = {1}".format(Nx, Nt))
print("eta = {0}".format(eta))
T = np.zeros(Nx)
T_plot = np.zeros((Nt//step + 1, Nx))
# initial conditions
T[1:-1] = T0
# boundary conditions
T[0] = T[-1] = Tb
t_index = 0
T_plot[t_index, :] = T
for jt in range(1, Nt):
T[1:-1] = eta2 * T[1:-1] + eta*(T[2:] + T[:-2])
if jt % step == 0 or jt == Nt-1:
t_index += 1
T_plot[t_index, :] = T
print("Iteration {0:5d}".format(jt), end="\r")
else:
print("Completed {0:5d} iterations: t={1} s".format(jt, jt*Dt)) | Nx = 49, Nt = 1500
eta = 0.4876543209876543
Iteration 20
Iteration 40
Iteration 60
Iteration 80
Iteration 100
Iteration 120
Iteration 140
Iteration 160
Iteration 180
Iteration 200
Iteration 220
Iteration 240
Iteration 260
Iteration 280
Iteration 300
Iteration 320
Iteration 340
Iteration 360
Iteration 380
Iteration 400
Iteration 420
Iteration 440
Iteration 460
Iteration 480
Iteration 500
Iteration 520
Iteration 540
Iteration 560
Iteration 580
Iteration 600
Iteration 620
Iteration 640
Iteration 660
Iteration 680
Iteration 700
Iteration 720
Iteration 740
Iteration 760
Iteration 780
Iteration 800
Iteration 820
Iteration 840
Iteration 860
Iteration 880
Iteration 900
Iteration 920
Iteration 940
Iteration 960
Iteration 980
Iteration 1000
Iteration 1020
Iteration 1040
Iteration 1060
Iteration 1080
Iteration 1100
Iteration 1120
Iteration 1140
Iteration 1160
Iteration 1180
Iteration 1200
Iteration 1220
Iteration 1240
Iteration 1260
Iteration 1280
Iteration 1300
Iteration 1320
Iteration 1340
Iteration 1360
Iteration 1380
Iteration 1400
Iteration 1420
Iteration 1440
Iteration 1460
Iteration 1480
Iteration 1499
Completed 1499 iterations: t=2998 s
| CC-BY-4.0 | 15_PDEs/15_PDEs.ipynb | ASU-CompMethodsPhysics-PHY494/PHY494-resources-2018 |
VisualizationVisualize (you can use the code as is). Note how we are making the plot use proper units by mutiplying with `Dt * step` and `Dx`. | X, Y = np.meshgrid(range(T_plot.shape[0]), range(T_plot.shape[1]))
Z = T_plot[X, Y]
fig = plt.figure()
ax = fig.add_subplot(111, projection="3d")
ax.plot_wireframe(X*Dt*step, Y*Dx, Z)
ax.set_xlabel(r"time $t$ (s)")
ax.set_ylabel(r"position $x$ (m)")
ax.set_zlabel(r"temperature $T$ (K)")
fig.tight_layout() | _____no_output_____ | CC-BY-4.0 | 15_PDEs/15_PDEs.ipynb | ASU-CompMethodsPhysics-PHY494/PHY494-resources-2018 |
2D as above for the analytical solution… | X = Dx * np.arange(T_plot.shape[1])
plt.plot(X, T_plot.T)
plt.xlabel(r"$x$ (m)")
plt.ylabel(r"$T$ (K)"); | _____no_output_____ | CC-BY-4.0 | 15_PDEs/15_PDEs.ipynb | ASU-CompMethodsPhysics-PHY494/PHY494-resources-2018 |
Slower solution I benchmarked this slow solution at 89.7 ms and the fast solution at 14.8 ms (commented out all `print`) so the explicit loop is not that much worse (probably because the overhead on array copying etc is high). | L_rod = 1. # m
t_max = 3000. # s
Dx = 0.02 # m
Dt = 2 # s
Nx = int(L_rod // Dx)
Nt = int(t_max // Dt)
Kappa = 237 # W/(m K)
CHeat = 900 # J/K
rho = 2700 # kg/m^3
T0 = 373 # K
Tb = 273 # K
eta = Kappa * Dt / (CHeat * rho * Dx**2)
eta2 = 1 - 2*eta
step = 20 # plot solution every n steps
print("Nx = {0}, Nt = {1}".format(Nx, Nt))
print("eta = {0}".format(eta))
T = np.zeros(Nx)
T_new = np.zeros_like(T)
T_plot = np.zeros((int(np.ceil(Nt/step)) + 1, Nx))
# initial conditions
T[1:-1] = T0
# boundary conditions
T[0] = T[-1] = Tb
T_new[:] = T
t_index = 0
T_plot[t_index, :] = T
for jt in range(1, Nt):
# T[1:-1] = eta2 * T[1:-1] + eta*(T[2:] + T[:-2])
for ix in range(1, Nx-1):
T_new[ix] = eta2 * T[ix] + eta*(T[ix+1] + T[ix-1])
T[:] = T_new
if jt % step == 0 or jt == Nt-1:
t_index += 1
T_plot[t_index, :] = T
print("Iteration {0:5d}".format(jt), end="\r")
else:
print("Completed {0:5d} iterations: t={1} s".format(jt, jt*Dt))
X, Y = np.meshgrid(range(T_plot.shape[0]), range(T_plot.shape[1]))
Z = T_plot[X, Y]
fig = plt.figure()
ax = fig.add_subplot(111, projection="3d")
ax.plot_wireframe(X*Dt*step, Y*Dx, Z)
ax.set_xlabel(r"time $t$ (s)")
ax.set_ylabel(r"position $x$ (m)")
ax.set_zlabel(r"temperature $T$ (K)")
fig.tight_layout() | _____no_output_____ | CC-BY-4.0 | 15_PDEs/15_PDEs.ipynb | ASU-CompMethodsPhysics-PHY494/PHY494-resources-2018 |
Stability of the solution Empirical investigation of the stabilityInvestigate the solution for different values of `Dt` and `Dx`. Can you discern patters for stable/unstable solutions?Report `Dt`, `Dx`, and `eta`* for 3 stable solutions * for 3 unstable solutions | def calculate_T(L_rod=1, t_max=3000, Dx=0.02, Dt=2, T0=373, Tb=273,
step=20):
Nx = int(L_rod // Dx)
Nt = int(t_max // Dt)
Kappa = 237 # W/(m K)
CHeat = 900 # J/K
rho = 2700 # kg/m^3
eta = Kappa * Dt / (CHeat * rho * Dx**2)
eta2 = 1 - 2*eta
print("Nx = {0}, Nt = {1}".format(Nx, Nt))
print("eta = {0}".format(eta))
T = np.zeros(Nx)
T_plot = np.zeros((int(np.ceil(Nt/step)) + 1, Nx))
# initial conditions
T[1:-1] = T0
# boundary conditions
T[0] = T[-1] = Tb
t_index = 0
T_plot[t_index, :] = T
for jt in range(1, Nt):
T[1:-1] = eta2 * T[1:-1] + eta*(T[2:] + T[:-2])
if jt % step == 0 or jt == Nt-1:
t_index += 1
T_plot[t_index, :] = T
print("Iteration {0:5d}".format(jt), end="\r")
else:
print("Completed {0:5d} iterations: t={1} s".format(jt, jt*Dt))
return T_plot
def plot_T(T_plot, Dx, Dt, step):
X, Y = np.meshgrid(range(T_plot.shape[0]), range(T_plot.shape[1]))
Z = T_plot[X, Y]
fig = plt.figure()
ax = fig.add_subplot(111, projection="3d")
ax.plot_wireframe(X*Dt*step, Y*Dx, Z)
ax.set_xlabel(r"time $t$ (s)")
ax.set_ylabel(r"position $x$ (m)")
ax.set_zlabel(r"temperature $T$ (K)")
fig.tight_layout()
return ax
T_plot = calculate_T(Dx=0.01, Dt=2, step=20)
plot_T(T_plot, 0.01, 2, 20) | Nx = 99, Nt = 1500
eta = 1.9506172839506173
Iteration 20
Iteration 40
Iteration 60
Iteration 80
Iteration 100
Iteration 120
Iteration 140
Iteration 160
Iteration 180
Iteration 200
Iteration 220
Iteration 240
Iteration 260
Iteration 280
Iteration 300
Iteration 320
Iteration 340
Iteration 360
Iteration 380
Iteration 400
Iteration 420
Iteration 440
Iteration 460
Iteration 480
Iteration 500
Iteration 520
Iteration 540
Iteration 560
Iteration 580
Iteration 600
Iteration 620
Iteration 640
Iteration 660
Iteration 680
Iteration 700
Iteration 720
Iteration 740
Iteration 760
Iteration 780
Iteration 800
Iteration 820
Iteration 840
Iteration 860
Iteration 880
Iteration 900
Iteration 920
Iteration 940
Iteration 960
Iteration 980
Iteration 1000
Iteration 1020
Iteration 1040
Iteration 1060
Iteration 1080
Iteration 1100
Iteration 1120
Iteration 1140
Iteration 1160
Iteration 1180
Iteration 1200
Iteration 1220
Iteration 1240
Iteration 1260
Iteration 1280
Iteration 1300
Iteration 1320
Iteration 1340
Iteration 1360
Iteration 1380
Iteration 1400
Iteration 1420
Iteration 1440
Iteration 1460
Iteration 1480
Iteration 1499
Completed 1499 iterations: t=2998 s
| CC-BY-4.0 | 15_PDEs/15_PDEs.ipynb | ASU-CompMethodsPhysics-PHY494/PHY494-resources-2018 |
Note that *decreasing* the value of $\Delta x$ made the solution *unstable*. This is strange, we have gotten used to the idea that working on a finer mesh will increase the detail (until we hit round-off error) and just become computationally more expensive. But here the algorithm suddenly becomes unstable (and it is not just round-off). For certain combination of values of $\Delta t$ and $\Delta x$ the solution become unstable. Empirically, bigger $\eta$ leads to instability. (In fact, $\eta \geq \frac{1}{2}$ is unstable for the leapfrog algorithm as we will see.) Von Neumann stability analysis If the difference equation solution diverges then we *know* that we have a bad approximation to the original PDE. Von Neumann stability analysis starts from the assumption that *eigenmodes* of the difference equation can be written as$$T_{m,j} = \xi(k)^j e^{ikm\Delta x}, \quad t=j\Delta t,\ x=m\Delta x $$with the unknown wave vectors $k=2\pi/\lambda$ and unknown complex functions – the *amplification factors* – $\xi(k)$. Solutions of the difference equation can be written as linear superpositions of these basis functions. But they are only stable if the eigenmodes are stable, i.e., will not grow in time (with $j$). This is the case when $$|\xi(k)| < 1$$for all $k$. Insert the eigenmodes into the finite difference equation$$T_{m, j+1} = (1 - 2\eta) T_{m,j} + \eta(T_{m+1,j} + T_{m-1, j})$$to obtain \begin{align}\xi(k)^{j+1} e^{ikm\Delta x} &= (1 - 2\eta) \xi(k)^{j} e^{ikm\Delta x} + \eta(\xi(k)^{j} e^{ik(m+1)\Delta x} + \xi(k)^{j} e^{ik(m-1)\Delta x})\\\xi(k) &= (1 - 2\eta) + \eta(e^{ik\Delta x} + e^{-ik\Delta x})\\\xi(k) &= 1 - 2\eta + 2\eta \cos k\Delta x\\\xi(k) &= 1 + 2\eta\big(\cos k\Delta x - 1\big)\end{align} For $|\xi(k)| < 1$ (and all possible $k$):\begin{align}|\xi(k)| < 1 \quad &\Leftrightarrow \quad \xi^2(k) < 1\\(1 + 2y)^2 = 1 + 4y + 4y^2 &< 1 \quad \text{with}\ \ y = \eta(\cos k\Delta x - 1)\\y(1 + y) &< 0 \quad \Leftrightarrow \quad -1 < y < 0\\\eta(\cos k\Delta x - 1) &\leq 0 \quad \forall k \quad (\eta > 0, -1 \leq \cos x \leq 1)\\\eta(\cos k\Delta x - 1) &> -1\\\eta &< \frac{1}{1 - \cos k\Delta x}\\\eta = \frac{K \Delta t}{C \rho \Delta x^2} &< \frac{1}{2} \le \frac{1}{1 - \cos k\Delta x}\end{align} Thus, solutions are only stable for $\eta < 1/2$. In particular, decreasing $\Delta t$ will always improve stability, But decreasing $\Delta x$ requires an quadratic *increase* in $\Delta t$! Note* Perform von Neumann stability analysis when possible (depends on PDE and the specific discretization).* Test different combinations of $\Delta t$ and $\Delta x$.* Not guarantee that decreasing both will lead to more stable solutions! Check my inputs:This was stable and it conforms to the stability criterion: | Dt = 2
Dx = 0.02
eta = Kappa * Dt /(CHeat * rho * Dx*Dx)
print(eta) | 0.4876543209876543
| CC-BY-4.0 | 15_PDEs/15_PDEs.ipynb | ASU-CompMethodsPhysics-PHY494/PHY494-resources-2018 |
... and this was unstable, despite a seemingly small change: | Dt = 2
Dx = 0.01
eta = Kappa * Dt /(CHeat * rho * Dx*Dx)
print(eta) | 1.9506172839506173
| CC-BY-4.0 | 15_PDEs/15_PDEs.ipynb | ASU-CompMethodsPhysics-PHY494/PHY494-resources-2018 |
Build a sklearn Pipeline for a to ML contest submissionIn the ML_coruse_train notebook we at first analyzed the housing dataset to gain statistical insights and then e.g. features added new, replaced missing values and scaled the colums using pandas dataset methods.In the following we will use sklearn [Pipelines](https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html) to integrate all these steps into one final *estimator*. The resulting pipeline can be used for saving an ML estimator to a file and use it later for production.*Optional:*If you want, you can save your estimator as explained in the last cell at the bottom of this notebook.Based on a hidden dataset, it's performance will then be ranked against all other submissions. | # read housing data again
import pandas as pd
import numpy as np
housing = pd.read_csv("datasets/housing/housing.csv")
# Try to get header information of the dataframe:
housing.head() | _____no_output_____ | Apache-2.0 | ML_course/ML_Contest_train.ipynb | Riwedieb/handson-ml |
One remark: sklearn transformers do **not** act on pandas dataframes. Instead, they use numpy arrays. Now try to [convert](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_numpy.html) a dataframe to a numpy array: | housing.head().to_numpy() | _____no_output_____ | Apache-2.0 | ML_course/ML_Contest_train.ipynb | Riwedieb/handson-ml |
As you can see, the column names are lost now.In a numpy array, columns indexed using integers and no more by their names. Add extra feature columnsAt first, we again add some extra columns (e.g. `rooms_per_household, population_per_household, bedrooms_per_household`) which might correlate better with the predicted parameter `median_house_value`.For modifying the dataset, we now use a [FunctionTransformer](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.FunctionTransformer.html), which we later can put into a pipeline. Hints: * For finding the index number of a given column name, you can use the method [get_loc()](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Index.get_loc.html)* For concatenating the new columns with the given array, you can use numpy method [c_](https://docs.scipy.org/doc/numpy/reference/generated/numpy.c_.html) | from sklearn.preprocessing import FunctionTransformer
# At first, get the indexes as integers from the column names:
rooms_ix = housing.columns.get_loc("total_rooms")
bedrooms_ix =
population_ix =
household_ix =
# Now implement a function which takes a numpy array a argument and adds the new feature columns
def add_extra_features(X):
rooms_per_household = X[:, rooms_ix] / X[:, household_ix]
population_per_household =
bedrooms_per_household =
# Concatenate the original array X with the new columns
return
attr_adder = FunctionTransformer(add_extra_features, validate = False)
housing_extra_attribs = attr_adder.fit_transform(housing.values)
assert housing_extra_attribs.shape == (17999, 13)
housing_extra_attribs | _____no_output_____ | Apache-2.0 | ML_course/ML_Contest_train.ipynb | Riwedieb/handson-ml |
Imputing missing elementsFor replacing nan values in the dataset with the mean or median of the column they are in, you can also use a [SimpleImputer](https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html) : | from sklearn.impute import SimpleImputer
# Drop the categorial column ocean_proximity
housing_num = housing.drop(...)
print("We have %d nan elements in the numerical columns" %np.count_nonzero(np.isnan(housing_num.to_numpy())))
imp_mean = ...
housing_num_cleaned = imp_mean.fit_transform(housing_num)
assert np.count_nonzero(np.isnan(housing_num_cleaned)) == 0
housing_num_cleaned[1,:] | _____no_output_____ | Apache-2.0 | ML_course/ML_Contest_train.ipynb | Riwedieb/handson-ml |
Column scalingFor scaling and normalizing the columns, you can use the class [StandardScaler](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html)Use numpy [mean](https://docs.scipy.org/doc/numpy/reference/generated/numpy.mean.html) and [std](https://docs.scipy.org/doc/numpy/reference/generated/numpy.std.html) to calculate the mean and standard deviation of each column (Hint: columns are axis = 0! ) after scaling. | from sklearn.preprocessing import StandardScaler
scaler = ...
scaled = scaler.fit_transform(housing_num_cleaned)
print("mean of the columns is: " , ...)
print("standard deviation of the columns is: " , ...) | _____no_output_____ | Apache-2.0 | ML_course/ML_Contest_train.ipynb | Riwedieb/handson-ml |
Putting all preprocessing steps together Now let's build a pipeline for preprocessing the **numerical** attributes.The pipeline shall process the data in the following steps:* [Impute](https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html) median or mean values for elements which are NaN* Add attributes using the FunctionTransformer with the function add_extra_features().* Scale the numerical values using the [StandardScaler()](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html) | from sklearn.pipeline import Pipeline
num_pipeline = Pipeline([
('give a name', ...), # Imputer
('give a name', ...), # FunctionTransformer
('give a name', ...), # Scaler
])
# Now test the pipeline on housing_num
num_pipeline.fit_transform(housing_num) | _____no_output_____ | Apache-2.0 | ML_course/ML_Contest_train.ipynb | Riwedieb/handson-ml |
Now we have a pipeline for the numerical columns. But we still have a categorical column: | housing['ocean_proximity'].head() | _____no_output_____ | Apache-2.0 | ML_course/ML_Contest_train.ipynb | Riwedieb/handson-ml |
We need one more pipeline for the categorical column. Instead of the "Dummy encoding" we used before, we now use the [OneHotEncoder](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html) from sklearn. Hint: to make things easier, set the sparse option of the OneHotEncoder to False. | from sklearn.preprocessing import OneHotEncoder
housing_cat = housing[] #get the right column
cat_encoder =
housing_cat_1hot = cat_encoder.fit_transform(housing_cat)
housing_cat_1hot | _____no_output_____ | Apache-2.0 | ML_course/ML_Contest_train.ipynb | Riwedieb/handson-ml |
We have everything we need for building a preprocessing pipeline which transforms the columns including all the steps before. Since we have columns where different transformations should be applied, we use the class [ColumnTransformer](https://scikit-learn.org/stable/modules/generated/sklearn.compose.ColumnTransformer.html) | from sklearn.compose import ColumnTransformer
# These are the columns with the numerical features:
num_attribs = ["longitude", ...]
# Here are the columns with categorical features:
cat_attribs = [...]
full_prep_pipeline = ColumnTransformer([
("give a name", ..., ...), # Add the numerical pipeline and specify the columns it should work on
("give a name", ..., ...), # Add a OneHotEncoder and specify the columns it should work on
])
full_prep_pipeline.fit_transform(housing) | _____no_output_____ | Apache-2.0 | ML_course/ML_Contest_train.ipynb | Riwedieb/handson-ml |
Train an estimatorInclude `full_prep_pipeline` into a further pipeline where it is followed by an RandomForestRegressor. This way, at first our data is prepared using `full_prep_pipeline` and then the RandomForestRegressor is trained on it. | from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
full_pipeline_with_predictor = Pipeline([
("give a name", full_prep_pipeline), # add the full_prep_pipeline
("give a name", RandomForestRegressor()) # Add a RandomForestRegressor
]) | _____no_output_____ | Apache-2.0 | ML_course/ML_Contest_train.ipynb | Riwedieb/handson-ml |
For training the regressor, seperate the label colum (`median_house_value`) and feature columns (all other columns).Split the data into a training and testing dataset using train_test_split. | # Create two dataframes, one for the labels one for the features
housing_features = housing...
housing_labels = housing
# Split the two dataframes into a training and a test dataset
X_train, X_test, y_train, y_test = train_test_split(housing_features, housing_labels, test_size = 0.20)
# Now train the full_pipeline_with_predictor on the training dataset
full_pipeline_with_predictor.fit(X_train, y_train) | _____no_output_____ | Apache-2.0 | ML_course/ML_Contest_train.ipynb | Riwedieb/handson-ml |
As usual, calculate some score metrics: | from sklearn.metrics import mean_squared_error
y_pred = full_pipeline_with_predictor.predict(X_test)
tree_mse = mean_squared_error(y_pred, y_test)
tree_rmse = np.sqrt(tree_mse)
tree_rmse
from sklearn.metrics import r2_score
r2_score(y_pred, y_test) | _____no_output_____ | Apache-2.0 | ML_course/ML_Contest_train.ipynb | Riwedieb/handson-ml |
Use the [pickle serializer](https://docs.python.org/3/library/pickle.html) to save your estimator to a file for contest participation. | import pickle
import getpass
from sklearn.utils.validation import check_is_fitted
your_regressor = ... # Put your regression pipeline here
assert isinstance(your_regressor, Pipeline)
pickle.dump(your_regressor, open(getpass.getuser() + "s_model.p", "wb" ) ) | _____no_output_____ | Apache-2.0 | ML_course/ML_Contest_train.ipynb | Riwedieb/handson-ml |
Running the Direct Fidelity Estimation (DFE) algorithmThis example walks through the steps of running the direct fidelity estimation (DFE) algorithm as described in these two papers:* Direct Fidelity Estimation from Few Pauli Measurements (https://arxiv.org/abs/1104.4695)* Practical characterization of quantum devices without tomography (https://arxiv.org/abs/1104.3835)Optimizations for Clifford circuits are based on a tableau-based simulator:* Improved Simulation of Stabilizer Circuits (https://arxiv.org/pdf/quant-ph/0406196.pdf) | try:
import cirq
except ImportError:
print("installing cirq...")
!pip install --quiet cirq
print("installed cirq.")
# Import Cirq, DFE, and create a circuit
import cirq
from cirq.contrib.svg import SVGCircuit
import examples.direct_fidelity_estimation as dfe
qubits = cirq.LineQubit.range(3)
circuit = cirq.Circuit(cirq.CNOT(qubits[0], qubits[2]),
cirq.Z(qubits[0]),
cirq.H(qubits[2]),
cirq.CNOT(qubits[2], qubits[1]))
SVGCircuit(circuit)
# We then create a sampler. For this example, we use a simulator but the code can accept a hardware sampler.
noise = cirq.ConstantQubitNoiseModel(cirq.depolarize(0.1))
sampler = cirq.DensityMatrixSimulator(noise=noise)
# We run the DFE:
estimated_fidelity, intermediate_results = dfe.direct_fidelity_estimation(
circuit,
qubits,
sampler,
n_measured_operators=None, # None=returns all the Pauli strings
samples_per_term=0) # 0=use dense matrix simulator
print('Estimated fidelity: %.2f' % (estimated_fidelity)) | _____no_output_____ | Apache-2.0 | examples/direct_fidelity_estimation.ipynb | mganahl/Cirq |
What is happening under the hood?Now, let's look at the `intermediate_results` and correlate what is happening in the code with the papers. The definition of fidelity is:$$F = F(\hat{\rho},\hat{\sigma}) = \mathrm{Tr} \left(\hat{\rho} \hat{\sigma}\right)$$where $\hat{\rho}$ is the theoretical pure state and $\hat{\sigma}$ is the actual state. The idea of DFE is to write fidelity as:$$F= \sum _i \frac{\rho _i \sigma _i}{d}$$where $d=4^{\mathit{number-of-qubits}}$, $\rho _i = \mathrm{Tr} \left( \hat{\rho} P_i \right)$, and $\sigma _i = \mathrm{Tr} \left(\hat{\sigma} P_i \right)$. Each of the $P_i$ is a Pauli operator. We can then finally rewrite the fidelity as:$$F= \sum _i Pr(i) \frac{\sigma _i}{\rho_i}$$with $Pr(i) = \frac{\rho_i ^2}{d}$, which is a probability-like set of numbers (between 0.0 and 1.0 and they add up to 1.0).One important question is how do we choose these Pauli operators $P_i$? It depends on whether the circuit is Clifford or not. In case it is, we know that there are "only" $2^{\mathit{number-of-qubits}}$ operators for which $Pr(i)$ is non-zero. In fact, we know that they are all equiprobable with $Pr(i) = \frac{1}{2^{\mathit{number-of-qubits}}}$. The code does detect the Cliffordness automatically and switches to this mode. In case the circuit is not Clifford, the code just uses all the operators.Let's inspect that in the case of our example, we do see the Pauli operators with equiprobability (i.e. the $\rho_i$): | for pauli_trace in intermediate_results.pauli_traces:
print('Probability %.3f\tPauli: %s' % (pauli_trace.Pr_i, pauli_trace.P_i)) | _____no_output_____ | Apache-2.0 | examples/direct_fidelity_estimation.ipynb | mganahl/Cirq |
Yay! We do see 8 entries (we have 3 qubits) with all the same 1/8 probability. What if we had a 23 qubit circuit? In this case, that would be quite many of them. That is where the parameter `n_measured_operators` becomes useful. If it is set to `None` we return *all* the Pauli strings (regardless of whether the circuit is Clifford or not). If set to an integer, we randomly sample the Pauli strings.Then, let's actually look at the measurements, i.e. $\sigma_i$: | for trial_result in intermediate_results.trial_results:
print('rho_i=%.3f\tsigma_i=%.3f\tPauli:%s' % (trial_result.pauli_trace.rho_i, trial_result.sigma_i, trial_result.pauli_trace.P_i)) | _____no_output_____ | Apache-2.0 | examples/direct_fidelity_estimation.ipynb | mganahl/Cirq |
Gujarati with CLTK See how you can analyse your Gujarati texts with CLTK ! Let's begin by adding the `USER_PATH`.. | import os
USER_PATH = os.path.expanduser('~') | _____no_output_____ | MIT | languages/south_asia/Gujarati_tutorial.ipynb | glaserti/tutorials |
In order to be able to download Gujarati texts from CLTK's Github repo, we will require an importer. | from cltk.corpus.utils.importer import CorpusImporter
gujarati_downloader = CorpusImporter('gujarati') | _____no_output_____ | MIT | languages/south_asia/Gujarati_tutorial.ipynb | glaserti/tutorials |
We can now see the corpora available for download, by using `list_corpora` feature of the importer. Let's go ahead and try it out! | gujarati_downloader.list_corpora | _____no_output_____ | MIT | languages/south_asia/Gujarati_tutorial.ipynb | glaserti/tutorials |
The corpus gujarati_text_wikisource can be downloaded from the Github repo. The corpus will be downloaded to the directory `cltk_data/gujarati` at the above mentioned `USER_PATH` | gujarati_downloader.import_corpus('gujarati_text_wikisource') | _____no_output_____ | MIT | languages/south_asia/Gujarati_tutorial.ipynb | glaserti/tutorials |
You can see the texts downloaded by doing the following, or checking out the `cltk_data/gujarati/text/gujarati_text_wikisource` directory. | gujarati_corpus_path = os.path.join(USER_PATH,'cltk_data/gujarati/text/gujarati_text_wikisource')
list_of_texts = [text for text in os.listdir(gujarati_corpus_path) if '.' not in text]
print(list_of_texts) | ['narsinh_mehta', 'kabir', 'vallabhacharya']
| MIT | languages/south_asia/Gujarati_tutorial.ipynb | glaserti/tutorials |
Great, now that we have our texts, let's take a sample from one of them. For this tutorial, we shall be using govinda_khele_holi , a text by the Gujarati poet Narsinh Mehta. | gujarati_text_path = os.path.join(gujarati_corpus_path,'narsinh_mehta/govinda_khele_holi.txt')
gujarati_text = open(gujarati_text_path,'r').read()
print(gujarati_text) | વૃંદાવન જઈએ,
જીહાં ગોવિંદ ખેલે હોળી;
નટવર વેશ ધર્યો નંદ નંદન,
મળી મહાવન ટોળી... ચાલો સખી !
એક નાચે એક ચંગ વજાડે,
છાંટે કેસર ઘોળી;
એક અબીરગુલાલ ઉડાડે,
એક ગાય ભાંભર ભોળી... ચાલો સખી !
એક એકને કરે છમકલાં,
હસી હસી કર લે તાળી;
માહોમાહે કરે મરકલાં,
મધ્ય ખેલે વનમાળી... ચાલો સખી !
વસંત ઋતુ વૃંદાવન સરી,
ફૂલ્યો ફાગણ માસ;
ગોવિંદગોપી રમે રંગભર,
જુએ નરસૈંયો દાસ... ચાલો સખી !
| MIT | languages/south_asia/Gujarati_tutorial.ipynb | glaserti/tutorials |
Gujarati Alphabets There are 13 vowels, 33 consonants, which are grouped as follows: | from cltk.corpus.gujarati.alphabet import *
print("Digits:",DIGITS)
print("Vowels:",VOWELS)
print("Dependent vowels:",DEPENDENT_VOWELS)
print("Consonants:",CONSONANTS)
print("Velar consonants:",VELAR_CONSONANTS)
print("Palatal consonants:",PALATAL_CONSONANTS)
print("Retroflex consonants:",RETROFLEX_CONSONANTS)
print("Dental consonants:",DENTAL_CONSONANTS)
print("Labial consonants:",LABIAL_CONSONANTS)
print("Sonorant consonants:",SONORANT_CONSONANTS)
print("Sibilant consonants:",SIBILANT_CONSONANTS)
print("Guttural consonant:",GUTTURAL_CONSONANT)
print("Additional consonants:",ADDITIONAL_CONSONANTS)
print("Modifiers:",MODIFIERS) | Digits: ['૦', '૧', '૨', '૩', '૪', '૫', '૬', '૭', '૮', '૯', '૧૦']
Vowels: ['અ', 'આ', 'ઇ', 'ઈ', 'ઉ', 'ઊ', 'ઋ', 'એ', 'ઐ', 'ઓ', 'ઔ', 'અં', 'અઃ']
Dependent vowels: ['ા ', 'િ', 'ી', 'ો', 'ૌ']
Consonants: ['ક', 'ખ', 'ગ', 'ઘ', 'ચ', 'છ', 'જ', 'ઝ', 'ઞ', 'ટ', 'ઠ', 'ડ', 'ઢ', 'ણ', 'ત', 'થ', 'દ', 'ધ', 'ન', 'પ', 'ફ', 'બ', 'ભ', 'મ', 'ય', 'ર', 'લ', 'ળ', 'વ', 'શ', 'ષ', 'સ', 'હ']
Velar consonants: ['ક', 'ખ', 'ગ', 'ઘ', 'ઙ']
Palatal consonants: ['ચ', 'છ', 'જ', 'ઝ', 'ઞ']
Retroflex consonants: ['ટ', 'ઠ', 'ડ', 'ઢ', 'ણ']
Dental consonants: ['ત', 'થ', 'દ', 'ધ', 'ન']
Labial consonants: ['પ', 'ફ', 'બ', 'ભ', 'મ']
Sonorant consonants: ['ય', 'ર', 'લ', 'વ']
Sibilant consonants: ['શ', 'ષ', 'સ']
Guttural consonant: ['હ']
Additional consonants: ['ળ', 'ક્ષ', 'જ્ઞ']
Modifiers: [' ्', ' ॓', ' ॔']
| MIT | languages/south_asia/Gujarati_tutorial.ipynb | glaserti/tutorials |
Transliterations We can transliterate Gujarati scripts to that of other Indic languages. Let us transliterate `કમળ ભારતનો રાષ્ટ્રીય ફૂલ છે`to Kannada: | gujarati_text_two = 'કમળ ભારતનો રાષ્ટ્રીય ફૂલ છે'
from cltk.corpus.sanskrit.itrans.unicode_transliterate import UnicodeIndicTransliterator
UnicodeIndicTransliterator.transliterate(gujarati_text_two,"gu","kn") | _____no_output_____ | MIT | languages/south_asia/Gujarati_tutorial.ipynb | glaserti/tutorials |
We can also romanize the text as shown: | from cltk.corpus.sanskrit.itrans.unicode_transliterate import ItransTransliterator
ItransTransliterator.to_itrans(gujarati_text_two,'gu') | _____no_output_____ | MIT | languages/south_asia/Gujarati_tutorial.ipynb | glaserti/tutorials |
Similarly, we can indicize a text given in its ITRANS-transliteration | gujarati_text_itrans = 'bhaawanaa'
ItransTransliterator.from_itrans(gujarati_text_itrans,'gu') | _____no_output_____ | MIT | languages/south_asia/Gujarati_tutorial.ipynb | glaserti/tutorials |
Syllabifier We can use the indian_syllabifier to syllabify the Gujarati sentences. To do this, we will have to import models as follows. The importing of `sanskrit_models_cltk` might take some time. | phonetics_model_importer = CorpusImporter('sanskrit')
phonetics_model_importer.list_corpora
phonetics_model_importer.import_corpus('sanskrit_models_cltk') | _____no_output_____ | MIT | languages/south_asia/Gujarati_tutorial.ipynb | glaserti/tutorials |
Now we import the syllabifier and syllabify as follows: | %%capture
from cltk.stem.sanskrit.indian_syllabifier import Syllabifier
gujarati_syllabifier = Syllabifier('gujarati')
gujarati_syllables = gujarati_syllabifier.orthographic_syllabify('ભાવના') | _____no_output_____ | MIT | languages/south_asia/Gujarati_tutorial.ipynb | glaserti/tutorials |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.