Datasets:

Languages:
code
ArXiv:
Tags:
code
License:
humanevalpack / README.md
Muennighoff's picture
Update README.md
330274d
|
raw
history blame
5.52 kB
metadata
license: apache-2.0
pretty_name: HumanEvalPack
language:
  - code

Dataset Card for CommitPackFT

Table of Contents

Dataset Description

Dataset Summary

HumanEvalPack is ...

  • Languages: Python, JavaScript, Java, Go, C++, Rust
  • OctoPack:

Dataset Structure

Data Instances

An example looks as follows:

{
  "task_id": "Python/0",
  "prompt": "from typing import List\n\n\ndef has_close_elements(numbers: List[float], threshold: float) -> bool:\n    \"\"\" Check if in given list of numbers, are any two numbers closer to each other than\n    given threshold.\n    >>> has_close_elements([1.0, 2.0, 3.0], 0.5)\n    False\n    >>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)\n    True\n    \"\"\"\n",
  "canonical_solution": "    for idx, elem in enumerate(numbers):\n        for idx2, elem2 in enumerate(numbers):\n            if idx != idx2:\n                distance = abs(elem - elem2)\n                if distance < threshold:\n                    return True\n\n    return False\n",
  "test": "\n\n\n\n\ndef check(has_close_elements):\n    assert has_close_elements([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n    assert has_close_elements([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n    assert has_close_elements([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n    assert has_close_elements([1.0, 2.0, 5.9, 4.0, 5.0], 0.8) == False\n    assert has_close_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.0], 0.1) == True\n    assert has_close_elements([1.1, 2.2, 3.1, 4.1, 5.1], 1.0) == True\n    assert has_close_elements([1.1, 2.2, 3.1, 4.1, 5.1], 0.5) == False\n\ncheck(has_close_elements)",
  "text": "    Check if in given list of numbers, are any two numbers closer to each other than\n    given threshold.\n    >>> has_close_elements([1.0, 2.0, 3.0], 0.5)\n    False\n    >>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)\n    True",
  "declaration": "from typing import List\n\n\ndef has_close_elements(numbers: List[float], threshold: float) -> bool:\n",
  "example_test": "def check(has_close_elements):\n    assert has_close_elements([1.0, 2.0, 3.0], 0.5) == False\n    assert has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3) == True\ncheck(has_close_elements)\n",
  "buggy_solution": "    for idx, elem in enumerate(numbers):\n        for idx2, elem2 in enumerate(numbers):\n            if idx != idx2:\n                distance = elem - elem2\n                if distance < threshold:\n                    return True\n\n    return False\n",
  "bug_type": "missing logic",
  "failure_symptoms": "incorrect output",
  "entry_point": "has_close_elements",
  "signature": "has_close_elements(numbers: List[float], threshold: float) -> bool",
  "docstring": "Check if in given list of numbers, are any two numbers closer to each other than\ngiven threshold.\n>>> has_close_elements([1.0, 2.0, 3.0], 0.5)\nFalse\n>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)\nTrue",
  "instruction": "Write a Python function `has_close_elements(numbers: List[float], threshold: float) -> bool` to solve the following problem:\nCheck if in given list of numbers, are any two numbers closer to each other than\ngiven threshold.\n>>> has_close_elements([1.0, 2.0, 3.0], 0.5)\nFalse\n>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)\nTrue"
}

Data Fields

The data fields are the same among all splits:

  • task_id: task id (from 0 to 163)
  • prompt: the prompt for models relying on code continuation
  • canonical_solution: the correct solution passing all unit tests for the problem
  • test: the unit tests for the problem
  • text: ???
  • declaration: the declaration of the function (same as prompt but without the docstring)
  • example_test: ??? Same as test but fewer tests
  • buggy_solution: same as canonical_solution but with a subtle human-written bug causing the unit tests to fail
  • bug_type: the type of the bug in buggy_solution (one of [missing logic, excess logic, value misuse, operator misuse, variable misuse, function misuse])
  • failure_symptoms: the problem the bug causes (one of [incorrect output, stackoverflow, infinite loop])
  • entry_point: the name of the function
  • signature: the signature of the function
  • docstring: the docstring describing the problem
  • instruction: an instruction for HumanEvalSynthesize in the form Write a {language_name} function {signature} to solve the following problem:\n{docstring}

Data Splits

Additional Information

Licensing Information

Each sample has comes from a code repository with a permissive license. The license is provided by the license field for each sample.

Citation Information