Datasets:

Modalities:
Text
Languages:
English
Size:
< 1K
Libraries:
Datasets
License:
scai_disease / scai_disease.py
gabrielaltay's picture
upload hubscripts/scai_disease_hub.py to hub from bigbio repo
ac9365b
raw
history blame
9.08 kB
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
A dataset loader for the SCAI Disease dataset.
SCAI Disease is a dataset annotated in 2010 with mentions of diseases and
adverse effects. It is a corpus containing 400 randomly selected MEDLINE
abstracts generated using ‘Disease OR Adverse effect’ as a PubMed query. This
evaluation corpus was annotated by two individuals who hold a Master’s degree
in life sciences.
"""
import os
from typing import Dict, List, Tuple
import datasets
from .bigbiohub import kb_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks
_LANGUAGES = ['English']
_PUBMED = True
_LOCAL = False
_CITATION = """\
@inproceedings{gurulingappa:lrec-ws10,
author = {Harsha Gurulingappa and Roman Klinger and Martin Hofmann-Apitius and Juliane Fluck},
title = {An Empirical Evaluation of Resources for the Identification of Diseases and Adverse Effects in Biomedical Literature},
booktitle = {LREC Workshop on Building and Evaluating Resources for Biomedical Text Mining},
year = {2010},
}
"""
_DATASETNAME = "scai_disease"
_DISPLAYNAME = "SCAI Disease"
_DESCRIPTION = """\
SCAI Disease is a dataset annotated in 2010 with mentions of diseases and
adverse effects. It is a corpus containing 400 randomly selected MEDLINE
abstracts generated using ‘Disease OR Adverse effect’ as a PubMed query. This
evaluation corpus was annotated by two individuals who hold a Master’s degree
in life sciences.
"""
_HOMEPAGE = "https://www.scai.fraunhofer.de/en/business-research-areas/bioinformatics/downloads/corpus-for-disease-names-and-adverse-effects.html"
_LICENSE = 'License information unavailable'
_URLS = {
_DATASETNAME: "https://www.scai.fraunhofer.de/content/dam/scai/de/downloads/bioinformatik/Disease-ae-corpus.iob",
}
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION]
_SOURCE_VERSION = "1.0.0"
_BIGBIO_VERSION = "1.0.0"
class ScaiDiseaseDataset(datasets.GeneratorBasedBuilder):
"""SCAI Disease is a dataset annotated in 2010 with mentions of diseases and
adverse effects."""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
BUILDER_CONFIGS = [
BigBioConfig(
name="scai_disease_source",
version=SOURCE_VERSION,
description="SCAI Disease source schema",
schema="source",
subset_id="scai_disease",
),
BigBioConfig(
name="scai_disease_bigbio_kb",
version=BIGBIO_VERSION,
description="SCAI Disease BigBio schema",
schema="bigbio_kb",
subset_id="scai_disease",
),
]
DEFAULT_CONFIG_NAME = "scai_disease_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"document_id": datasets.Value("string"),
"text": datasets.Value("string"),
"tokens": [
{
"offsets": [datasets.Value("int64")],
"text": datasets.Value("string"),
"tag": datasets.Value("string"),
}
],
"entities": [
{
"offsets": [datasets.Value("int64")],
"text": datasets.Value("string"),
"type": datasets.Value("string"),
}
],
}
)
elif self.config.schema == "bigbio_kb":
features = kb_features
else:
raise ValueError("Unrecognized schema: %s" % self.config.schema)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=str(_LICENSE),
citation=_CITATION,
)
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
url = _URLS[_DATASETNAME]
filepath = dl_manager.download(url)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": filepath,
"split": "train",
},
),
]
def _generate_examples(self, filepath, split: str) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
# Iterates through lines in file, collecting all lines belonging
# to an example and converting into a single dict
examples = []
tokens = None
with open(filepath, "r") as data_file:
for line in data_file:
line = line.strip()
if line.startswith("###"):
tokens = [line]
elif line == "":
examples.append(self._make_example(tokens))
else:
tokens.append(line)
# Returns the examples using the desired schema
if self.config.schema == "source":
for i, example in enumerate(examples):
yield i, example
elif self.config.schema == "bigbio_kb":
for i, example in enumerate(examples):
bigbio_example = {
"id": "example-" + str(i),
"document_id": example["document_id"],
"passages": [
{
"id": "passage-" + str(i),
"type": "abstract",
"text": [example["text"]],
"offsets": [[0, len(example["text"])]],
}
],
"entities": [],
"events": [],
"coreferences": [],
"relations": [],
}
# Converts entities to BigBio format
for j, entity in enumerate(example["entities"]):
bigbio_example["entities"].append(
{
"id": "entity-" + str(i) + "-" + str(j),
"offsets": [entity["offsets"]],
"text": [entity["text"]],
"type": entity["type"],
"normalized": [],
}
)
yield i, bigbio_example
@staticmethod
def _make_example(tokens):
"""
Converts a list of lines representing tokens into an example dictionary
formatted according to the source schema
:param tokens: list of strings
:return: dictionary in the source schema
"""
document_id = tokens[0][4:]
text = ""
processed_tokens = []
entities = []
last_offset = 0
for token in tokens[1:]:
token_pieces = token.split("\t")
if len(token_pieces) != 5:
raise ValueError("Failed to parse line: %s" % token)
token_text = str(token_pieces[0])
token_start = int(token_pieces[1])
token_end = int(token_pieces[2])
entity_text = str(token_pieces[3])
token_tag = str(token_pieces[4])[1:]
if token_start > last_offset:
for _ in range(token_start - last_offset):
text += " "
elif token_start < last_offset:
raise ValueError("Invalid start index: %s" % token)
last_offset = token_end
text += token_text
processed_tokens.append(
{
"offsets": [token_start, token_end],
"text": token_text,
"tag": token_tag,
}
)
if entity_text != "":
entities.append(
{
"offsets": [token_start, token_start + len(entity_text)],
"text": entity_text,
"type": token_tag[2:],
}
)
return {
"document_id": document_id,
"text": text,
"entities": entities,
"tokens": processed_tokens,
}