Datasets:

Languages:
English
License:
psytar / psytar.py
gabrielaltay's picture
fix bigbio import
70f44a4
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
The "Psychiatric Treatment Adverse Reactions" (PsyTAR) dataset contains 891 drugs
reviews posted by patients on "askapatient.com", about the effectiveness and adverse
drug events associated with Zoloft, Lexapro, Cymbalta, and Effexor XR.
For each drug review, patient demographics, duration of treatment, and satisfaction
with the drugs were reported.
This dataset can be used for:
1. (multi-label) sentence classification, across 5 labels:
Adverse Drug Reaction (ADR)
Withdrawal Symptoms (WDs)
Sign/Symptoms/Illness (SSIs)
Drug Indications (DIs)
Drug Effectiveness (EF)
Drug Infectiveness (INF)
and Others (not applicable)
2. Recognition of 5 different types of entity:
ADRs (4813 mentions)
WDs (590 mentions)
SSIs (1219 mentions)
DIs (792 mentions)
In the source schema, systematic annotation with UMLS and SNOMED-CT concepts are provided.
"""
import re
from dataclasses import dataclass
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
import pandas as pd
from .bigbiohub import kb_features
from .bigbiohub import text_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks
_LANGUAGES = ['English']
_PUBMED = False
_LOCAL = True
_CITATION = """\
@article{Zolnoori2019,
author = {Maryam Zolnoori and
Kin Wah Fung and
Timothy B. Patrick and
Paul Fontelo and
Hadi Kharrazi and
Anthony Faiola and
Yi Shuan Shirley Wu and
Christina E. Eldredge and
Jake Luo and
Mike Conway and
Jiaxi Zhu and
Soo Kyung Park and
Kelly Xu and
Hamideh Moayyed and
Somaieh Goudarzvand},
title = {A systematic approach for developing a corpus of patient \
reported adverse drug events: A case study for {SSRI} and {SNRI} medications},
journal = {Journal of Biomedical Informatics},
volume = {90},
year = {2019},
url = {https://doi.org/10.1016/j.jbi.2018.12.005},
doi = {10.1016/j.jbi.2018.12.005},
}
"""
_DATASETNAME = "psytar"
_DISPLAYNAME = "PsyTAR"
_DESCRIPTION = """\
The "Psychiatric Treatment Adverse Reactions" (PsyTAR) dataset contains 891 drugs
reviews posted by patients on "askapatient.com", about the effectiveness and adverse
drug events associated with Zoloft, Lexapro, Cymbalta, and Effexor XR.
This dataset can be used for (multi-label) sentence classification of Adverse Drug
Reaction (ADR), Withdrawal Symptoms (WDs), Sign/Symptoms/Illness (SSIs), Drug
Indications (DIs), Drug Effectiveness (EF), Drug Infectiveness (INF) and Others, as well
as for recognition of 5 different types of named entity (in the categories ADRs, WDs,
SSIs and DIs)
"""
_HOMEPAGE = "https://www.askapatient.com/research/pharmacovigilance/corpus-ades-psychiatric-medications.asp"
_LICENSE = 'Creative Commons Attribution 4.0 International'
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.TEXT_CLASSIFICATION]
_SOURCE_VERSION = "1.0.0"
_BIGBIO_VERSION = "1.0.0"
@dataclass
class PsyTARBigBioConfig(BigBioConfig):
schema: str = "source"
name: str = "psytar_source"
version: datasets.Version = _SOURCE_VERSION
description: str = "PsyTAR source schema"
subset_id: str = "psytar"
class PsyTARDataset(datasets.GeneratorBasedBuilder):
"""The PsyTAR dataset contains patient's reviews on the effectiveness and adverse
drug events associated with Zoloft, Lexapro, Cymbalta, and Effexor XR."""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
BUILDER_CONFIGS = [
PsyTARBigBioConfig(
name="psytar_source",
version=SOURCE_VERSION,
description="PsyTAR source schema",
schema="source",
subset_id="psytar",
),
PsyTARBigBioConfig(
name="psytar_bigbio_kb",
version=BIGBIO_VERSION,
description="PsyTAR BigBio KB schema",
schema="bigbio_kb",
subset_id="psytar",
),
PsyTARBigBioConfig(
name="psytar_bigbio_text",
version=BIGBIO_VERSION,
description="PsyTAR BigBio text classification schema",
schema="bigbio_text",
subset_id="psytar",
),
]
BUILDER_CONFIG_CLASS = PsyTARBigBioConfig
DEFAULT_CONFIG_NAME = "psytar_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"id": datasets.Value("string"),
"doc_id": datasets.Value("string"),
"disorder": datasets.Value("string"),
"side_effect": datasets.Value("string"),
"comment": datasets.Value("string"),
"gender": datasets.Value("string"),
"age": datasets.Value("int32"),
"dosage_duration": datasets.Value("string"),
"date": datasets.Value("string"),
"category": datasets.Value("string"),
"sentences": [
{
"text": datasets.Value("string"),
"label": datasets.Sequence([datasets.Value("string")]),
"findings": datasets.Value("string"),
"others": datasets.Value("string"),
"rating": datasets.Value("string"),
"category": datasets.Value("string"),
"entities": [
{
"text": datasets.Value("string"),
"type": datasets.Value("string"),
"mild": datasets.Value("string"),
"moderate": datasets.Value("string"),
"severe": datasets.Value("string"),
"persistent": datasets.Value("string"),
"non_persistent": datasets.Value("string"),
"body_site": datasets.Value("string"),
"rating": datasets.Value("string"),
"drug": datasets.Value("string"),
"class": datasets.Value("string"),
"entity_type": datasets.Value("string"),
"UMLS": datasets.Sequence(
[datasets.Value("string")]
),
"SNOMED": datasets.Sequence(
[datasets.Value("string")]
),
}
],
}
],
}
)
elif self.config.schema == "bigbio_kb":
features = kb_features
elif self.config.schema == "bigbio_text":
features = text_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=str(_LICENSE),
citation=_CITATION,
)
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
if self.config.data_dir is None:
raise ValueError(
"This is a local dataset. Please pass the data_dir kwarg to load_dataset."
)
else:
data_dir = self.config.data_dir
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": Path(data_dir),
},
),
]
def _extract_labels(self, row):
label = [
"ADR" * row.ADR,
"WD" * row.WD,
"EF" * row.EF,
"INF" * row.INF,
"SSI" * row.SSI,
"DI" * row.DI,
"Others" * row.others,
]
label = [_l for _l in label if _l != ""]
return label
def _columns_to_list(self, row, sheet="ADR"):
annotations = []
for i in range(30 if sheet == "ADR" else 10):
annotations.append(row[f"{sheet}{i + 1}"])
annotations = [a for a in annotations if not pd.isna(a)]
return annotations
def _columns_to_bigbio_kb(self, row, sheet="ADR"):
annotations = []
for i in range(30 if sheet == "ADR" else 10):
annotation = row[f"{sheet}{i + 1}"]
if not pd.isna(annotation):
start_index = row.sentences.lower().find(annotation.lower())
if start_index != -1:
end_index = start_index + len(annotation)
entity = {
"id": f"T{i+1}",
"offsets": [[start_index, end_index]],
"text": [annotation],
"type": sheet,
}
annotations.append(entity)
return annotations
def _standards_columns_to_list(self, row, standard="UMLS"):
standards = {"UMLS": ["UMLS1", "UMLS2"], "SNOMED": ["SNOMED-CT", "SNOMED-CT.1"]}
_out_list = []
for s in standards[standard]:
_out_list.append(row[s])
_out_list = [a for a in _out_list if not pd.isna(a)]
return _out_list
def _read_sentence_xlsx(self, filepath: Path) -> pd.DataFrame:
sentence_df = pd.read_excel(
filepath,
sheet_name="Sentence_Labeling",
dtype={"drug_id": str, "sentences": str},
)
sentence_df = sentence_df.dropna(subset=["sentences"])
sentence_df = sentence_df.loc[
sentence_df.sentences.apply(lambda x: len(x.strip())) > 0
]
sentence_df = sentence_df.fillna(0)
sentence_df[["ADR", "WD", "EF", "INF", "SSI", "DI"]] = (
sentence_df[["ADR", "WD", "EF", "INF", "SSI", "DI"]]
.replace(re.compile("[!* ]+"), 1)
.astype(int)
)
sentence_df["sentence_index"] = sentence_df["sentence_index"].astype("int32")
sentence_df["drug_id"] = sentence_df["drug_id"].astype("str")
return sentence_df
def _read_samples_xlsx(self, filepath: Path) -> pd.DataFrame:
samples_df = pd.read_excel(
filepath, sheet_name="Sample", dtype={"drug_id": str}
)
samples_df["age"] = samples_df["age"].fillna(0).astype(int)
samples_df["drug_id"] = samples_df["drug_id"].astype("str")
return samples_df
def _read_identified_xlsx_to_bigbio_kb(self, filepath: Path) -> Dict:
sheet_names = ["ADR", "WD", "SSI", "DI"]
identified_entities = {}
for sheet in sheet_names:
identified_entities[sheet] = pd.read_excel(
filepath, sheet_name=sheet + "_Identified"
)
identified_entities[sheet]["bigbio_kb"] = identified_entities[sheet].apply(
lambda x: self._columns_to_bigbio_kb(x, sheet), axis=1
)
return identified_entities
TYPE_TO_COLNAME = {"ADR": "ADRs", "DI": "DIs", "SSI": "SSI", "WD": "WDs"}
def _identified_mapped_xlsx_to_df(self, filepath: Path) -> pd.DataFrame:
sheet_names_mapped = [
["ADR_Mapped", "ADR"],
["WD-Mapped ", "WD"],
["SSI_Mapped", "SSI"],
["DI_Mapped", "DI"],
]
_mappings = []
# Read the specific XLSX sheet with _Mapped annotations
for sheet, sheet_short in sheet_names_mapped:
_df_mapping = pd.read_excel(filepath, sheet_name=sheet)
# Correcting column names
if sheet_short in ["WD"]:
_df_mapping = _df_mapping.rename(
columns={"sentence_id": "sentence_index"}
)
# Changing column names to allow concatenation
_df_mapping = _df_mapping.rename(
columns={self.TYPE_TO_COLNAME[sheet_short]: "entity"}
)
# Putting UMLS and SNOMED annotations in a single column
_df_mapping["UMLS"] = _df_mapping.apply(
lambda x: self._standards_columns_to_list(x), axis=1
)
_df_mapping["SNOMED"] = _df_mapping.apply(
lambda x: self._standards_columns_to_list(x, standard="SNOMED"), axis=1
)
_mappings.append(_df_mapping)
df_mappings = pd.concat(_mappings).fillna(0)
df_mappings["sentence_index"] = df_mappings["sentence_index"].astype("int32")
df_mappings["drug_id"] = df_mappings["drug_id"].astype("str")
return df_mappings
def _convert_xlsx_to_source(self, filepath: Path) -> Dict:
# Read XLSX files
df_sentences = self._read_sentence_xlsx(filepath)
df_sentences["label"] = df_sentences.apply(
lambda x: self._extract_labels(x), axis=1
)
df_mappings = self._identified_mapped_xlsx_to_df(filepath)
df_samples = self._read_samples_xlsx(filepath)
# Configure indices
df_samples = df_samples.set_index("drug_id").sort_index()
df_sentences = df_sentences.set_index(
["drug_id", "sentence_index"]
).sort_index()
df_mappings = df_mappings.set_index(["drug_id", "sentence_index"]).sort_index()
# Iterate over samples
for sample_row_id, sample in df_samples.iterrows():
sentences = []
try:
df_sentence_selection = df_sentences.loc[sample_row_id]
# Iterate over sentences
for sentence_row_id, sentence in df_sentence_selection.iterrows():
entities = []
try:
df_mapped_selection = df_mappings.loc[
sample_row_id, sentence_row_id
]
# Iterate over entities per sentence
for mapped_row_id, row in df_mapped_selection.iterrows():
entities.append(
{
"text": row["entity"],
"UMLS": row.UMLS,
"SNOMED": row.SNOMED,
"entity_type": row.entity_type,
"type": row.type,
"class": row["class"],
"drug": row.drug,
"rating": row.rating,
"body_site": row["body-site"],
"non_persistent": row["not-persistent"],
"persistent": row["persistent"],
"severe": row.severe,
"moderate": row.moderate,
"mild": row.mild,
}
)
except KeyError:
pass
sentences.append(
{
"text": sentence.sentences,
"entities": entities,
"label": sentence.label,
"findings": sentence.Findings,
"others": sentence.others,
"rating": sentence.rating,
"category": sentence.category,
}
)
except KeyError:
pass
example = {
"id": sample_row_id,
"doc_id": sample_row_id,
"disorder": sample.disorder,
"side_effect": sample["side-effect"],
"comment": sample.comment,
"gender": sample.gender,
"age": sample.age,
"dosage_duration": sample.dosage_duration,
"date": str(sample.date),
"category": sample.category,
"sentences": sentences,
}
yield example
def _convert_xlsx_to_bigbio_kb(self, filepath: Path) -> Dict:
bigbio_kb = self._read_identified_xlsx_to_bigbio_kb(filepath)
i_doc = 0
for _, df in bigbio_kb.items():
for _, row in df.iterrows():
text = row.sentences
entities = row["bigbio_kb"]
doc_id = f"{row['drug_id']}_{row['sentence_index']}_{i_doc}"
if len(entities) != 0:
example = parsing.brat_parse_to_bigbio_kb(
{
"document_id": doc_id,
"text": text,
"text_bound_annotations": entities,
"normalizations": [],
"events": [],
"relations": [],
"equivalences": [],
"attributes": [],
},
)
example["id"] = i_doc
i_doc += 1
yield example
def _convert_xlsx_to_bigbio_text(self, filepath: Path) -> Dict:
df = self._read_sentence_xlsx(filepath)
df["label"] = df.apply(lambda x: self._extract_labels(x), axis=1)
for idx, row in df.iterrows():
example = {
"id": idx,
"document_id": f"{row['drug_id']}_{row['sentence_index']}",
"text": row["label"],
"labels": row["category"],
}
yield example
def _generate_examples(self, filepath) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
if self.config.schema == "source":
examples = self._convert_xlsx_to_source(filepath)
elif self.config.schema == "bigbio_kb":
examples = self._convert_xlsx_to_bigbio_kb(filepath)
elif self.config.schema == "bigbio_text":
examples = self._convert_xlsx_to_bigbio_text(filepath)
for idx, example in enumerate(examples):
yield idx, example