|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
The "Psychiatric Treatment Adverse Reactions" (PsyTAR) dataset contains 891 drugs |
|
reviews posted by patients on "askapatient.com", about the effectiveness and adverse |
|
drug events associated with Zoloft, Lexapro, Cymbalta, and Effexor XR. |
|
|
|
For each drug review, patient demographics, duration of treatment, and satisfaction |
|
with the drugs were reported. |
|
|
|
This dataset can be used for: |
|
|
|
1. (multi-label) sentence classification, across 5 labels: |
|
Adverse Drug Reaction (ADR) |
|
Withdrawal Symptoms (WDs) |
|
Sign/Symptoms/Illness (SSIs) |
|
Drug Indications (DIs) |
|
Drug Effectiveness (EF) |
|
Drug Infectiveness (INF) |
|
and Others (not applicable) |
|
|
|
2. Recognition of 5 different types of entity: |
|
ADRs (4813 mentions) |
|
WDs (590 mentions) |
|
SSIs (1219 mentions) |
|
DIs (792 mentions) |
|
|
|
In the source schema, systematic annotation with UMLS and SNOMED-CT concepts are provided. |
|
""" |
|
|
|
import re |
|
from dataclasses import dataclass |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
import pandas as pd |
|
|
|
from .bigbiohub import kb_features |
|
from .bigbiohub import text_features |
|
from .bigbiohub import BigBioConfig |
|
from .bigbiohub import Tasks |
|
|
|
_LANGUAGES = ['English'] |
|
_PUBMED = False |
|
_LOCAL = True |
|
_CITATION = """\ |
|
@article{Zolnoori2019, |
|
author = {Maryam Zolnoori and |
|
Kin Wah Fung and |
|
Timothy B. Patrick and |
|
Paul Fontelo and |
|
Hadi Kharrazi and |
|
Anthony Faiola and |
|
Yi Shuan Shirley Wu and |
|
Christina E. Eldredge and |
|
Jake Luo and |
|
Mike Conway and |
|
Jiaxi Zhu and |
|
Soo Kyung Park and |
|
Kelly Xu and |
|
Hamideh Moayyed and |
|
Somaieh Goudarzvand}, |
|
title = {A systematic approach for developing a corpus of patient \ |
|
reported adverse drug events: A case study for {SSRI} and {SNRI} medications}, |
|
journal = {Journal of Biomedical Informatics}, |
|
volume = {90}, |
|
year = {2019}, |
|
url = {https://doi.org/10.1016/j.jbi.2018.12.005}, |
|
doi = {10.1016/j.jbi.2018.12.005}, |
|
} |
|
""" |
|
|
|
_DATASETNAME = "psytar" |
|
_DISPLAYNAME = "PsyTAR" |
|
|
|
_DESCRIPTION = """\ |
|
The "Psychiatric Treatment Adverse Reactions" (PsyTAR) dataset contains 891 drugs |
|
reviews posted by patients on "askapatient.com", about the effectiveness and adverse |
|
drug events associated with Zoloft, Lexapro, Cymbalta, and Effexor XR. |
|
|
|
This dataset can be used for (multi-label) sentence classification of Adverse Drug |
|
Reaction (ADR), Withdrawal Symptoms (WDs), Sign/Symptoms/Illness (SSIs), Drug |
|
Indications (DIs), Drug Effectiveness (EF), Drug Infectiveness (INF) and Others, as well |
|
as for recognition of 5 different types of named entity (in the categories ADRs, WDs, |
|
SSIs and DIs) |
|
""" |
|
|
|
_HOMEPAGE = "https://www.askapatient.com/research/pharmacovigilance/corpus-ades-psychiatric-medications.asp" |
|
|
|
_LICENSE = 'Creative Commons Attribution 4.0 International' |
|
|
|
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.TEXT_CLASSIFICATION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
_BIGBIO_VERSION = "1.0.0" |
|
|
|
|
|
@dataclass |
|
class PsyTARBigBioConfig(BigBioConfig): |
|
schema: str = "source" |
|
name: str = "psytar_source" |
|
version: datasets.Version = _SOURCE_VERSION |
|
description: str = "PsyTAR source schema" |
|
subset_id: str = "psytar" |
|
|
|
|
|
class PsyTARDataset(datasets.GeneratorBasedBuilder): |
|
"""The PsyTAR dataset contains patient's reviews on the effectiveness and adverse |
|
drug events associated with Zoloft, Lexapro, Cymbalta, and Effexor XR.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
PsyTARBigBioConfig( |
|
name="psytar_source", |
|
version=SOURCE_VERSION, |
|
description="PsyTAR source schema", |
|
schema="source", |
|
subset_id="psytar", |
|
), |
|
PsyTARBigBioConfig( |
|
name="psytar_bigbio_kb", |
|
version=BIGBIO_VERSION, |
|
description="PsyTAR BigBio KB schema", |
|
schema="bigbio_kb", |
|
subset_id="psytar", |
|
), |
|
PsyTARBigBioConfig( |
|
name="psytar_bigbio_text", |
|
version=BIGBIO_VERSION, |
|
description="PsyTAR BigBio text classification schema", |
|
schema="bigbio_text", |
|
subset_id="psytar", |
|
), |
|
] |
|
|
|
BUILDER_CONFIG_CLASS = PsyTARBigBioConfig |
|
|
|
DEFAULT_CONFIG_NAME = "psytar_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"doc_id": datasets.Value("string"), |
|
"disorder": datasets.Value("string"), |
|
"side_effect": datasets.Value("string"), |
|
"comment": datasets.Value("string"), |
|
"gender": datasets.Value("string"), |
|
"age": datasets.Value("int32"), |
|
"dosage_duration": datasets.Value("string"), |
|
"date": datasets.Value("string"), |
|
"category": datasets.Value("string"), |
|
"sentences": [ |
|
{ |
|
"text": datasets.Value("string"), |
|
"label": datasets.Sequence([datasets.Value("string")]), |
|
"findings": datasets.Value("string"), |
|
"others": datasets.Value("string"), |
|
"rating": datasets.Value("string"), |
|
"category": datasets.Value("string"), |
|
"entities": [ |
|
{ |
|
"text": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"mild": datasets.Value("string"), |
|
"moderate": datasets.Value("string"), |
|
"severe": datasets.Value("string"), |
|
"persistent": datasets.Value("string"), |
|
"non_persistent": datasets.Value("string"), |
|
"body_site": datasets.Value("string"), |
|
"rating": datasets.Value("string"), |
|
"drug": datasets.Value("string"), |
|
"class": datasets.Value("string"), |
|
"entity_type": datasets.Value("string"), |
|
"UMLS": datasets.Sequence( |
|
[datasets.Value("string")] |
|
), |
|
"SNOMED": datasets.Sequence( |
|
[datasets.Value("string")] |
|
), |
|
} |
|
], |
|
} |
|
], |
|
} |
|
) |
|
elif self.config.schema == "bigbio_kb": |
|
features = kb_features |
|
elif self.config.schema == "bigbio_text": |
|
features = text_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=str(_LICENSE), |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
if self.config.data_dir is None: |
|
raise ValueError( |
|
"This is a local dataset. Please pass the data_dir kwarg to load_dataset." |
|
) |
|
else: |
|
data_dir = self.config.data_dir |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": Path(data_dir), |
|
}, |
|
), |
|
] |
|
|
|
def _extract_labels(self, row): |
|
label = [ |
|
"ADR" * row.ADR, |
|
"WD" * row.WD, |
|
"EF" * row.EF, |
|
"INF" * row.INF, |
|
"SSI" * row.SSI, |
|
"DI" * row.DI, |
|
"Others" * row.others, |
|
] |
|
label = [_l for _l in label if _l != ""] |
|
return label |
|
|
|
def _columns_to_list(self, row, sheet="ADR"): |
|
annotations = [] |
|
for i in range(30 if sheet == "ADR" else 10): |
|
annotations.append(row[f"{sheet}{i + 1}"]) |
|
annotations = [a for a in annotations if not pd.isna(a)] |
|
return annotations |
|
|
|
def _columns_to_bigbio_kb(self, row, sheet="ADR"): |
|
annotations = [] |
|
for i in range(30 if sheet == "ADR" else 10): |
|
annotation = row[f"{sheet}{i + 1}"] |
|
if not pd.isna(annotation): |
|
start_index = row.sentences.lower().find(annotation.lower()) |
|
if start_index != -1: |
|
end_index = start_index + len(annotation) |
|
entity = { |
|
"id": f"T{i+1}", |
|
"offsets": [[start_index, end_index]], |
|
"text": [annotation], |
|
"type": sheet, |
|
} |
|
|
|
annotations.append(entity) |
|
return annotations |
|
|
|
def _standards_columns_to_list(self, row, standard="UMLS"): |
|
standards = {"UMLS": ["UMLS1", "UMLS2"], "SNOMED": ["SNOMED-CT", "SNOMED-CT.1"]} |
|
_out_list = [] |
|
for s in standards[standard]: |
|
_out_list.append(row[s]) |
|
_out_list = [a for a in _out_list if not pd.isna(a)] |
|
return _out_list |
|
|
|
def _read_sentence_xlsx(self, filepath: Path) -> pd.DataFrame: |
|
sentence_df = pd.read_excel( |
|
filepath, |
|
sheet_name="Sentence_Labeling", |
|
dtype={"drug_id": str, "sentences": str}, |
|
) |
|
|
|
sentence_df = sentence_df.dropna(subset=["sentences"]) |
|
sentence_df = sentence_df.loc[ |
|
sentence_df.sentences.apply(lambda x: len(x.strip())) > 0 |
|
] |
|
sentence_df = sentence_df.fillna(0) |
|
|
|
sentence_df[["ADR", "WD", "EF", "INF", "SSI", "DI"]] = ( |
|
sentence_df[["ADR", "WD", "EF", "INF", "SSI", "DI"]] |
|
.replace(re.compile("[!* ]+"), 1) |
|
.astype(int) |
|
) |
|
|
|
sentence_df["sentence_index"] = sentence_df["sentence_index"].astype("int32") |
|
sentence_df["drug_id"] = sentence_df["drug_id"].astype("str") |
|
|
|
return sentence_df |
|
|
|
def _read_samples_xlsx(self, filepath: Path) -> pd.DataFrame: |
|
samples_df = pd.read_excel( |
|
filepath, sheet_name="Sample", dtype={"drug_id": str} |
|
) |
|
samples_df["age"] = samples_df["age"].fillna(0).astype(int) |
|
samples_df["drug_id"] = samples_df["drug_id"].astype("str") |
|
|
|
return samples_df |
|
|
|
def _read_identified_xlsx_to_bigbio_kb(self, filepath: Path) -> Dict: |
|
sheet_names = ["ADR", "WD", "SSI", "DI"] |
|
identified_entities = {} |
|
|
|
for sheet in sheet_names: |
|
identified_entities[sheet] = pd.read_excel( |
|
filepath, sheet_name=sheet + "_Identified" |
|
) |
|
identified_entities[sheet]["bigbio_kb"] = identified_entities[sheet].apply( |
|
lambda x: self._columns_to_bigbio_kb(x, sheet), axis=1 |
|
) |
|
|
|
return identified_entities |
|
|
|
TYPE_TO_COLNAME = {"ADR": "ADRs", "DI": "DIs", "SSI": "SSI", "WD": "WDs"} |
|
|
|
def _identified_mapped_xlsx_to_df(self, filepath: Path) -> pd.DataFrame: |
|
sheet_names_mapped = [ |
|
["ADR_Mapped", "ADR"], |
|
["WD-Mapped ", "WD"], |
|
["SSI_Mapped", "SSI"], |
|
["DI_Mapped", "DI"], |
|
] |
|
|
|
_mappings = [] |
|
|
|
|
|
for sheet, sheet_short in sheet_names_mapped: |
|
_df_mapping = pd.read_excel(filepath, sheet_name=sheet) |
|
|
|
|
|
if sheet_short in ["WD"]: |
|
_df_mapping = _df_mapping.rename( |
|
columns={"sentence_id": "sentence_index"} |
|
) |
|
|
|
|
|
_df_mapping = _df_mapping.rename( |
|
columns={self.TYPE_TO_COLNAME[sheet_short]: "entity"} |
|
) |
|
|
|
|
|
_df_mapping["UMLS"] = _df_mapping.apply( |
|
lambda x: self._standards_columns_to_list(x), axis=1 |
|
) |
|
_df_mapping["SNOMED"] = _df_mapping.apply( |
|
lambda x: self._standards_columns_to_list(x, standard="SNOMED"), axis=1 |
|
) |
|
|
|
_mappings.append(_df_mapping) |
|
|
|
df_mappings = pd.concat(_mappings).fillna(0) |
|
df_mappings["sentence_index"] = df_mappings["sentence_index"].astype("int32") |
|
df_mappings["drug_id"] = df_mappings["drug_id"].astype("str") |
|
|
|
return df_mappings |
|
|
|
def _convert_xlsx_to_source(self, filepath: Path) -> Dict: |
|
|
|
df_sentences = self._read_sentence_xlsx(filepath) |
|
df_sentences["label"] = df_sentences.apply( |
|
lambda x: self._extract_labels(x), axis=1 |
|
) |
|
df_mappings = self._identified_mapped_xlsx_to_df(filepath) |
|
df_samples = self._read_samples_xlsx(filepath) |
|
|
|
|
|
df_samples = df_samples.set_index("drug_id").sort_index() |
|
df_sentences = df_sentences.set_index( |
|
["drug_id", "sentence_index"] |
|
).sort_index() |
|
df_mappings = df_mappings.set_index(["drug_id", "sentence_index"]).sort_index() |
|
|
|
|
|
for sample_row_id, sample in df_samples.iterrows(): |
|
sentences = [] |
|
try: |
|
df_sentence_selection = df_sentences.loc[sample_row_id] |
|
|
|
|
|
for sentence_row_id, sentence in df_sentence_selection.iterrows(): |
|
entities = [] |
|
try: |
|
df_mapped_selection = df_mappings.loc[ |
|
sample_row_id, sentence_row_id |
|
] |
|
|
|
|
|
for mapped_row_id, row in df_mapped_selection.iterrows(): |
|
entities.append( |
|
{ |
|
"text": row["entity"], |
|
"UMLS": row.UMLS, |
|
"SNOMED": row.SNOMED, |
|
"entity_type": row.entity_type, |
|
"type": row.type, |
|
"class": row["class"], |
|
"drug": row.drug, |
|
"rating": row.rating, |
|
"body_site": row["body-site"], |
|
"non_persistent": row["not-persistent"], |
|
"persistent": row["persistent"], |
|
"severe": row.severe, |
|
"moderate": row.moderate, |
|
"mild": row.mild, |
|
} |
|
) |
|
except KeyError: |
|
pass |
|
|
|
sentences.append( |
|
{ |
|
"text": sentence.sentences, |
|
"entities": entities, |
|
"label": sentence.label, |
|
"findings": sentence.Findings, |
|
"others": sentence.others, |
|
"rating": sentence.rating, |
|
"category": sentence.category, |
|
} |
|
) |
|
except KeyError: |
|
pass |
|
|
|
example = { |
|
"id": sample_row_id, |
|
"doc_id": sample_row_id, |
|
"disorder": sample.disorder, |
|
"side_effect": sample["side-effect"], |
|
"comment": sample.comment, |
|
"gender": sample.gender, |
|
"age": sample.age, |
|
"dosage_duration": sample.dosage_duration, |
|
"date": str(sample.date), |
|
"category": sample.category, |
|
"sentences": sentences, |
|
} |
|
yield example |
|
|
|
def _convert_xlsx_to_bigbio_kb(self, filepath: Path) -> Dict: |
|
bigbio_kb = self._read_identified_xlsx_to_bigbio_kb(filepath) |
|
|
|
i_doc = 0 |
|
for _, df in bigbio_kb.items(): |
|
for _, row in df.iterrows(): |
|
text = row.sentences |
|
entities = row["bigbio_kb"] |
|
doc_id = f"{row['drug_id']}_{row['sentence_index']}_{i_doc}" |
|
|
|
if len(entities) != 0: |
|
example = parsing.brat_parse_to_bigbio_kb( |
|
{ |
|
"document_id": doc_id, |
|
"text": text, |
|
"text_bound_annotations": entities, |
|
"normalizations": [], |
|
"events": [], |
|
"relations": [], |
|
"equivalences": [], |
|
"attributes": [], |
|
}, |
|
) |
|
example["id"] = i_doc |
|
i_doc += 1 |
|
yield example |
|
|
|
def _convert_xlsx_to_bigbio_text(self, filepath: Path) -> Dict: |
|
df = self._read_sentence_xlsx(filepath) |
|
df["label"] = df.apply(lambda x: self._extract_labels(x), axis=1) |
|
|
|
for idx, row in df.iterrows(): |
|
example = { |
|
"id": idx, |
|
"document_id": f"{row['drug_id']}_{row['sentence_index']}", |
|
"text": row["label"], |
|
"labels": row["category"], |
|
} |
|
yield example |
|
|
|
def _generate_examples(self, filepath) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
if self.config.schema == "source": |
|
examples = self._convert_xlsx_to_source(filepath) |
|
|
|
elif self.config.schema == "bigbio_kb": |
|
examples = self._convert_xlsx_to_bigbio_kb(filepath) |
|
|
|
elif self.config.schema == "bigbio_text": |
|
examples = self._convert_xlsx_to_bigbio_text(filepath) |
|
|
|
for idx, example in enumerate(examples): |
|
yield idx, example |
|
|