Datasets:

Languages:
English
License:
nlmchem / nlmchem.py
gabrielaltay's picture
fix bigbio imports
28490cf
raw
history blame
13.3 kB
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import re
from typing import Dict, Iterator, List, Tuple
import bioc
import datasets
from bioc import biocxml
from .bigbiohub import kb_features
from .bigbiohub import text_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks
from .bigbiohub import get_texts_and_offsets_from_bioc_ann
_LANGUAGES = ['English']
_PUBMED = True
_LOCAL = False
_CITATION = """\
@Article{islamaj2021nlm,
title={NLM-Chem, a new resource for chemical entity recognition in PubMed full text literature},
author={Islamaj, Rezarta and Leaman, Robert and Kim, Sun and Kwon, Dongseop and Wei, Chih-Hsuan and Comeau, Donald C and Peng, Yifan and Cissel, David and Coss, Cathleen and Fisher, Carol and others},
journal={Scientific Data},
volume={8},
number={1},
pages={1--12},
year={2021},
publisher={Nature Publishing Group}
}
"""
_DATASETNAME = "nlmchem"
_DISPLAYNAME = "NLM-Chem"
_DESCRIPTION = """\
NLM-Chem corpus consists of 150 full-text articles from the PubMed Central Open Access dataset,
comprising 67 different chemical journals, aiming to cover a general distribution of usage of chemical
names in the biomedical literature.
Articles were selected so that human annotation was most valuable (meaning that they were rich in bio-entities,
and current state-of-the-art named entity recognition systems disagreed on bio-entity recognition.
"""
_HOMEPAGE = "https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vii/track-2"
_LICENSE = 'Creative Commons Zero v1.0 Universal'
# files found here `https://ftp.ncbi.nlm.nih.gov/pub/lu/BC7-NLM-Chem-track/` have issues at extraction
# _URLs = {"biocreative": "https://ftp.ncbi.nlm.nih.gov/pub/lu/NLMChem" }
_URLs = {
"source": "https://ftp.ncbi.nlm.nih.gov/pub/lu/BC7-NLM-Chem-track/BC7T2-NLMChem-corpus_v2.BioC.xml.gz",
"bigbio_kb": "https://ftp.ncbi.nlm.nih.gov/pub/lu/BC7-NLM-Chem-track/BC7T2-NLMChem-corpus_v2.BioC.xml.gz",
"bigbio_text": "https://ftp.ncbi.nlm.nih.gov/pub/lu/BC7-NLM-Chem-track/BC7T2-NLMChem-corpus_v2.BioC.xml.gz",
}
_SUPPORTED_TASKS = [
Tasks.NAMED_ENTITY_RECOGNITION,
Tasks.NAMED_ENTITY_DISAMBIGUATION,
Tasks.TEXT_CLASSIFICATION,
]
_SOURCE_VERSION = "1.0.0"
_BIGBIO_VERSION = "1.0.0"
class NLMChemDataset(datasets.GeneratorBasedBuilder):
"""NLMChem"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
BUILDER_CONFIGS = [
BigBioConfig(
name="nlmchem_source",
version=SOURCE_VERSION,
description="NLM_Chem source schema",
schema="source",
subset_id="nlmchem",
),
BigBioConfig(
name="nlmchem_bigbio_kb",
version=BIGBIO_VERSION,
description="NLM_Chem BigBio schema (KB)",
schema="bigbio_kb",
subset_id="nlmchem",
),
BigBioConfig(
name="nlmchem_bigbio_text",
version=BIGBIO_VERSION,
description="NLM_Chem BigBio schema (TEXT)",
schema="bigbio_text",
subset_id="nlmchem",
),
]
DEFAULT_CONFIG_NAME = "nlmchem_source" # It's not mandatory to have a default configuration. Just use one if it make sense.
def _info(self):
if self.config.schema == "source":
# this is a variation on the BioC format
features = datasets.Features(
{
"passages": [
{
"document_id": datasets.Value("string"),
"type": datasets.Value("string"),
"text": datasets.Value("string"),
"offset": datasets.Value("int32"),
"entities": [
{
"id": datasets.Value("string"),
"offsets": [[datasets.Value("int32")]],
"text": [datasets.Value("string")],
"type": datasets.Value("string"),
"normalized": [
{
"db_name": datasets.Value("string"),
"db_id": datasets.Value("string"),
}
],
}
],
}
]
}
)
elif self.config.schema == "bigbio_kb":
features = kb_features
elif self.config.schema == "bigbio_text":
features = text_features
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=None,
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=str(_LICENSE),
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
my_urls = _URLs[self.config.schema]
data_dir = dl_manager.download_and_extract(my_urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(
data_dir, "BC7T2-NLMChem-corpus-train.BioC.xml"
),
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(
data_dir, "BC7T2-NLMChem-corpus-test.BioC.xml"
),
"split": "test",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(
data_dir, "BC7T2-NLMChem-corpus-dev.BioC.xml"
),
"split": "dev",
},
),
]
def _get_textcls_example(self, d: bioc.BioCDocument) -> Dict:
example = {"document_id": d.id, "text": [], "labels": []}
for p in d.passages:
example["text"].append(p.text)
for a in p.annotations:
if a.infons.get("type") == "MeSH_Indexing_Chemical":
example["labels"].append(a.infons.get("identifier"))
example["text"] = " ".join(example["text"])
return example
def _get_passages_and_entities(
self, d: bioc.BioCDocument
) -> Tuple[List[Dict], List[List[Dict]]]:
passages: List[Dict] = []
entities: List[List[Dict]] = []
text_total_length = 0
po_start = 0
for _, p in enumerate(d.passages):
eo = p.offset - text_total_length
text_total_length += len(p.text) + 1
po_end = po_start + len(p.text)
# annotation used only for document indexing
if p.text is None:
continue
dp = {
"text": p.text,
"type": p.infons.get("type"),
"offsets": [(po_start, po_end)],
"offset": p.offset, # original offset
}
po_start = po_end + 1
passages.append(dp)
pe = []
for a in p.annotations:
a_type = a.infons.get("type")
# no in-text annotation: only for document indexing
if (
self.config.schema == "bigbio_kb"
and a_type == "MeSH_Indexing_Chemical"
):
continue
offsets, text = get_texts_and_offsets_from_bioc_ann(a)
da = {
"type": a_type,
"offsets": [(start - eo, end - eo) for (start, end) in offsets],
"text": text,
"id": a.id,
"normalized": self._get_normalized(a),
}
pe.append(da)
entities.append(pe)
return passages, entities
def _get_normalized(self, a: bioc.BioCAnnotation) -> List[Dict]:
"""
Get normalization DB and ID from annotation identifiers
"""
identifiers = a.infons.get("identifier")
if identifiers is not None:
identifiers = re.split(r",|;", identifiers)
identifiers = [i for i in identifiers if i != "-"]
normalized = [i.split(":") for i in identifiers]
normalized = [
{"db_name": elems[0], "db_id": elems[1]} for elems in normalized
]
else:
normalized = [{"db_name": "-1", "db_id": "-1"}]
return normalized
def _generate_examples(
self,
filepath: str,
split: str, # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
) -> Iterator[Tuple[int, Dict]]:
"""Yields examples as (key, example) tuples."""
reader = biocxml.BioCXMLDocumentReader(str(filepath))
if self.config.schema == "source":
for uid, doc in enumerate(reader):
passages, passages_entities = self._get_passages_and_entities(doc)
for p, pe in zip(passages, passages_entities):
p.pop("offsets") # BioC has only start for passages offsets
p["document_id"] = doc.id
p["entities"] = pe # BioC has per passage entities
yield uid, {"passages": passages}
elif self.config.schema == "bigbio_text":
uid = 0
for idx, doc in enumerate(reader):
example = self._get_textcls_example(doc)
example["id"] = uid
# global id
uid += 1
yield idx, example
elif self.config.schema == "bigbio_kb":
uid = 0
for idx, doc in enumerate(reader):
# global id
uid += 1
passages, passages_entities = self._get_passages_and_entities(doc)
# unpack per-passage entities
entities = [e for pe in passages_entities for e in pe]
for p in passages:
p.pop("offset") # drop original offset
p["text"] = (p["text"],) # text in passage is Sequence
p["id"] = uid # override BioC default id
uid += 1
for e in entities:
e["id"] = uid # override BioC default id
uid += 1
# if split == "validation" and uid == 6705:
# breakpoint()
yield idx, {
"id": uid,
"document_id": doc.id,
"passages": passages,
"entities": entities,
"events": [],
"coreferences": [],
"relations": [],
}