|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
The NCBI disease corpus is fully annotated at the mention and concept level to serve as a research |
|
resource for the biomedical natural language processing community. |
|
""" |
|
|
|
import os |
|
from typing import Dict, Iterator, List, Tuple |
|
|
|
import datasets |
|
from bioc import pubtator |
|
|
|
from .bigbiohub import kb_features |
|
from .bigbiohub import BigBioConfig |
|
from .bigbiohub import Tasks |
|
|
|
_LANGUAGES = ['English'] |
|
_PUBMED = True |
|
_LOCAL = False |
|
_CITATION = """\ |
|
@article{Dogan2014NCBIDC, |
|
title = {NCBI disease corpus: A resource for disease name recognition and concept normalization}, |
|
author = {Rezarta Islamaj Dogan and Robert Leaman and Zhiyong Lu}, |
|
year = 2014, |
|
journal = {Journal of biomedical informatics}, |
|
volume = 47, |
|
pages = {1--10} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "ncbi_disease" |
|
_DISPLAYNAME = "NCBI Disease" |
|
|
|
_DESCRIPTION = """\ |
|
The NCBI disease corpus is fully annotated at the mention and concept level to serve as a research |
|
resource for the biomedical natural language processing community. |
|
""" |
|
|
|
_HOMEPAGE = "https://www.ncbi.nlm.nih.gov/CBBresearch/Dogan/DISEASE/" |
|
_LICENSE = 'Creative Commons Zero v1.0 Universal' |
|
|
|
_URLS = { |
|
_DATASETNAME: { |
|
datasets.Split.TRAIN: "https://www.ncbi.nlm.nih.gov/CBBresearch/Dogan/DISEASE/NCBItrainset_corpus.zip", |
|
datasets.Split.TEST: "https://www.ncbi.nlm.nih.gov/CBBresearch/Dogan/DISEASE/NCBItestset_corpus.zip", |
|
datasets.Split.VALIDATION: "https://www.ncbi.nlm.nih.gov/CBBresearch/Dogan/DISEASE/NCBIdevelopset_corpus.zip", |
|
} |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.NAMED_ENTITY_DISAMBIGUATION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
_BIGBIO_VERSION = "1.0.0" |
|
|
|
|
|
class NCBIDiseaseDataset(datasets.GeneratorBasedBuilder): |
|
"""NCBI Disease""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
BigBioConfig( |
|
name="ncbi_disease_source", |
|
version=SOURCE_VERSION, |
|
description="NCBI Disease source schema", |
|
schema="source", |
|
subset_id="ncbi_disease", |
|
), |
|
BigBioConfig( |
|
name="ncbi_disease_bigbio_kb", |
|
version=BIGBIO_VERSION, |
|
description="NCBI Disease BigBio schema", |
|
schema="bigbio_kb", |
|
subset_id="ncbi_disease", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "ncbi_disease_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"pmid": datasets.Value("string"), |
|
"title": datasets.Value("string"), |
|
"abstract": datasets.Value("string"), |
|
"mentions": [ |
|
{ |
|
"concept_id": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"offsets": datasets.Sequence(datasets.Value("int32")), |
|
} |
|
], |
|
} |
|
) |
|
|
|
elif self.config.schema == "bigbio_kb": |
|
features = kb_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=str(_LICENSE), |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]: |
|
urls = _URLS[_DATASETNAME] |
|
data_dir = dl_manager.download_and_extract(urls) |
|
|
|
train_filename = "NCBItrainset_corpus.txt" |
|
test_filename = "NCBItestset_corpus.txt" |
|
dev_filename = "NCBIdevelopset_corpus.txt" |
|
|
|
train_filepath = os.path.join(data_dir[datasets.Split.TRAIN], train_filename) |
|
test_filepath = os.path.join(data_dir[datasets.Split.TEST], test_filename) |
|
dev_filepath = os.path.join(data_dir[datasets.Split.VALIDATION], dev_filename) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": train_filepath, |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": test_filepath, |
|
"split": "test", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": dev_filepath, |
|
"split": "dev", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples( |
|
self, filepath: str, split: str |
|
) -> Iterator[Tuple[str, Dict]]: |
|
if self.config.schema == "source": |
|
for i, source_example in enumerate(self._pubtator_to_source(filepath)): |
|
|
|
|
|
yield str(i) + "_" + source_example["pmid"], source_example |
|
|
|
elif self.config.schema == "bigbio_kb": |
|
seen = [] |
|
for kb_example in self._pubtator_to_bigbio_kb(filepath): |
|
|
|
if kb_example["id"] in seen: |
|
continue |
|
yield kb_example["id"], kb_example |
|
seen.append(kb_example["id"]) |
|
|
|
@staticmethod |
|
def _pubtator_to_source(filepath: Dict) -> Iterator[Dict]: |
|
with open(filepath, "r") as f: |
|
for doc in pubtator.iterparse(f): |
|
source_example = { |
|
"pmid": doc.pmid, |
|
"title": doc.title, |
|
"abstract": doc.abstract, |
|
"mentions": [ |
|
{ |
|
"concept_id": mention.id, |
|
"type": mention.type, |
|
"text": mention.text, |
|
"offsets": [mention.start, mention.end], |
|
} |
|
for mention in doc.annotations |
|
], |
|
} |
|
yield source_example |
|
|
|
@staticmethod |
|
def _pubtator_to_bigbio_kb(filepath: Dict) -> Iterator[Dict]: |
|
with open(filepath, "r") as f: |
|
unified_example = {} |
|
for doc in pubtator.iterparse(f): |
|
unified_example["id"] = doc.pmid |
|
unified_example["document_id"] = doc.pmid |
|
|
|
unified_example["passages"] = [ |
|
{ |
|
"id": doc.pmid + "_title", |
|
"type": "title", |
|
"text": [doc.title], |
|
"offsets": [[0, len(doc.title)]], |
|
}, |
|
{ |
|
"id": doc.pmid + "_abstract", |
|
"type": "abstract", |
|
"text": [doc.abstract], |
|
"offsets": [ |
|
[ |
|
|
|
len(doc.title) + 1, |
|
len(doc.title) + 1 + len(doc.abstract), |
|
] |
|
], |
|
}, |
|
] |
|
|
|
unified_entities = [] |
|
for i, entity in enumerate(doc.annotations): |
|
|
|
unified_entity_id = "_".join([doc.pmid, entity.id, str(i)]) |
|
|
|
db_name = "OMIM" if "OMIM" in entity.id else "MESH" |
|
normalized = [] |
|
|
|
for x in entity.id.split("|"): |
|
if x.startswith("OMIM") or x.startswith("omim"): |
|
normalized.append( |
|
{"db_name": "OMIM", "db_id": x.strip().split(":")[-1]} |
|
) |
|
else: |
|
normalized.append({"db_name": "MESH", "db_id": x.strip()}) |
|
|
|
unified_entities.append( |
|
{ |
|
"id": unified_entity_id, |
|
"type": entity.type, |
|
"text": [entity.text], |
|
"offsets": [[entity.start, entity.end]], |
|
"normalized": normalized, |
|
} |
|
) |
|
|
|
unified_example["entities"] = unified_entities |
|
unified_example["relations"] = [] |
|
unified_example["events"] = [] |
|
unified_example["coreferences"] = [] |
|
|
|
yield unified_example |
|
|