|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
import pandas as pd |
|
|
|
from .bigbiohub import kb_features |
|
from .bigbiohub import BigBioConfig |
|
from .bigbiohub import Tasks |
|
|
|
_LANGUAGES = ['English'] |
|
_PUBMED = False |
|
_LOCAL = False |
|
_CITATION = """\ |
|
@dataset{luis_gasco_2022_6458455, |
|
author = {Luis Gasco and Eulàlia Farré and Miranda-Escalada, Antonio and Salvador Lima and Martin Krallinger}, |
|
title = {{DisTEMIST corpus: detection and normalization of disease mentions in spanish clinical cases}}, |
|
month = apr, |
|
year = 2022, |
|
note = {{Funded by the Plan de Impulso de las Tecnologías del Lenguaje (Plan TL).}}, |
|
publisher = {Zenodo}, |
|
version = {2.0.0}, |
|
doi = {10.5281/zenodo.6458455}, |
|
url = {https://doi.org/10.5281/zenodo.6458455} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "distemist" |
|
_DISPLAYNAME = "DisTEMIST" |
|
|
|
_DESCRIPTION = """\ |
|
The DisTEMIST corpus is a collection of 1000 clinical cases with disease annotations linked with Snomed-CT concepts. |
|
All documents are released in the context of the BioASQ DisTEMIST track for CLEF 2022. |
|
""" |
|
|
|
_HOMEPAGE = "https://zenodo.org/record/6458455" |
|
|
|
_LICENSE = 'Creative Commons Attribution 4.0 International' |
|
|
|
_URLS = { |
|
_DATASETNAME: "https://zenodo.org/record/6458455/files/distemist.zip?download=1", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION] |
|
|
|
_SOURCE_VERSION = "2.0.0" |
|
_BIGBIO_VERSION = "1.0.0" |
|
|
|
|
|
class DistemistDataset(datasets.GeneratorBasedBuilder): |
|
""" |
|
The DisTEMIST corpus is a collection of 1000 clinical cases with disease annotations linked with Snomed-CT |
|
concepts. |
|
""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
BigBioConfig( |
|
name="distemist_source", |
|
version=SOURCE_VERSION, |
|
description="DisTEMIST source schema", |
|
schema="source", |
|
subset_id="distemist", |
|
), |
|
BigBioConfig( |
|
name="distemist_bigbio_kb", |
|
version=BIGBIO_VERSION, |
|
description="DisTEMIST BigBio schema", |
|
schema="bigbio_kb", |
|
subset_id="distemist", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "distemist_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"document_id": datasets.Value("string"), |
|
"passages": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"text": datasets.Sequence(datasets.Value("string")), |
|
"offsets": datasets.Sequence([datasets.Value("int32")]), |
|
} |
|
], |
|
"entities": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"text": datasets.Sequence(datasets.Value("string")), |
|
"offsets": datasets.Sequence([datasets.Value("int32")]), |
|
"concept_codes": datasets.Sequence( |
|
datasets.Value("string") |
|
), |
|
"semantic_relations": datasets.Sequence( |
|
datasets.Value("string") |
|
), |
|
} |
|
], |
|
} |
|
) |
|
elif self.config.schema == "bigbio_kb": |
|
features = kb_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=str(_LICENSE), |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
urls = _URLS[_DATASETNAME] |
|
data_dir = dl_manager.download_and_extract(urls) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"entities_mapping_file_path": Path(data_dir) |
|
/ "training/subtrack1_entities/distemist_subtrack1_training_mentions.tsv", |
|
"linking_mapping_file_path": Path(data_dir) |
|
/ "training/subtrack2_linking/distemist_subtrack1_training1_linking.tsv", |
|
"text_files_dir": Path(data_dir) / "training/text_files", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples( |
|
self, |
|
entities_mapping_file_path: Path, |
|
linking_mapping_file_path: Path, |
|
text_files_dir: Path, |
|
) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
entities_mapping = pd.read_csv(entities_mapping_file_path, sep="\t") |
|
linking_mapping = pd.read_csv(linking_mapping_file_path, sep="\t") |
|
|
|
entity_file_names = set(entities_mapping["filename"]) |
|
linking_file_names = set(linking_mapping["filename"]) |
|
|
|
|
|
|
|
for uid, filename in enumerate(entity_file_names): |
|
text_file = text_files_dir / f"{filename}.txt" |
|
|
|
doc_text = text_file.read_text() |
|
|
|
|
|
if filename in linking_file_names: |
|
entities_df: pd.DataFrame = linking_mapping[ |
|
linking_mapping["filename"] == filename |
|
] |
|
else: |
|
entities_df: pd.DataFrame = entities_mapping[ |
|
entities_mapping["filename"] == filename |
|
] |
|
|
|
example = { |
|
"id": f"{uid}", |
|
"document_id": filename, |
|
"passages": [ |
|
{ |
|
"id": f"{uid}_{filename}_passage", |
|
"type": "clinical_case", |
|
"text": [doc_text], |
|
"offsets": [[0, len(doc_text)]], |
|
} |
|
], |
|
} |
|
if self.config.schema == "bigbio_kb": |
|
example["events"] = [] |
|
example["coreferences"] = [] |
|
example["relations"] = [] |
|
|
|
entities = [] |
|
for row in entities_df.itertuples(name="Entity"): |
|
entity = { |
|
"id": f"{uid}_{row.filename}_{row.Index}_entity_id_{row.mark}", |
|
"type": row.label, |
|
"text": [row.span], |
|
"offsets": [[row.off0, row.off1]], |
|
} |
|
if self.config.schema == "source": |
|
entity["concept_codes"] = [] |
|
entity["semantic_relations"] = [] |
|
if filename in linking_file_names: |
|
entity["concept_codes"] = row.code.split("+") |
|
entity["semantic_relations"] = row.semantic_rel.split("+") |
|
|
|
elif self.config.schema == "bigbio_kb": |
|
entity["normalized"] = [] |
|
|
|
entities.append(entity) |
|
|
|
example["entities"] = entities |
|
yield uid, example |
|
|