Dataframes
::: warning
To use the dataframe support you need a fully-featured build with cargo build --features dataframe
. Starting with version 0.72, dataframes are not included with binary releases of Nushell. See the installation instructions for further details.
:::
As we have seen so far, Nushell makes working with data its main priority.
Lists
and Tables
are there to help you cycle through values in order to
perform multiple operations or find data in a breeze. However, there are
certain operations where a row-based data layout is not the most efficient way
to process data, especially when working with extremely large files. Operations
like group-by or join using large datasets can be costly memory-wise, and may
lead to large computation times if they are not done using the appropriate
data format.
For this reason, the DataFrame
structure was introduced to Nushell. A
DataFrame
stores its data in a columnar format using as its base the Apache
Arrow specification, and uses
Polars as the motor for performing
extremely fast columnar operations.
You may be wondering now how fast this combo could be, and how could it make working with data easier and more reliable. For this reason, let's start this page by presenting benchmarks on common operations that are done when processing data.
Benchmark comparisons
For this little benchmark exercise we will be comparing native Nushell
commands, dataframe Nushell commands and Python
Pandas commands. For the time being don't pay too
much attention to the Dataframe
commands. They will be explained in later
sections of this page.
System Details: The benchmarks presented in this section were run using a machine with a processor Intel(R) Core(TM) i7-10710U (CPU @1.10GHz 1.61 GHz) and 16 gb of RAM.
All examples were run on Nushell version 0.33.1. (Command names are updated to Nushell 0.78)
File information
The file that we will be using for the benchmarks is the New Zealand business demography dataset. Feel free to download it if you want to follow these tests.
The dataset has 5 columns and 5,429,252 rows. We can check that by using the
dfr ls
command:
โฏ let df = (dfr open .\Data7602DescendingYearOrder.csv)
โฏ dfr ls
โญโโโโฌโโโโโโโโโฌโโโโโโโโโโฌโโโโโโโโโโฎ
โ # โ name โ columns โ rows โ
โโโโโผโโโโโโโโโผโโโโโโโโโโผโโโโโโโโโโค
โ 0 โ $df โ 5 โ 5429252 โ
โฐโโโโดโโโโโโโโโดโโโโโโโโโโดโโโโโโโโโโฏ
We can have a look at the first lines of the file using first
:
โฏ $df | dfr first
โญโโโโฌโโโโโโโโโโโฌโโโโโโโโโโฌโโโโโโโฌโโโโโโโโโโโโฌโโโโโโโโโโโฎ
โ # โ anzsic06 โ Area โ year โ geo_count โ ec_count โ
โโโโโผโโโโโโโโโโโผโโโโโโโโโโผโโโโโโโผโโโโโโโโโโโโผโโโโโโโโโโโค
โ 0 โ A โ A100100 โ 2000 โ 96 โ 130 โ
โฐโโโโดโโโโโโโโโโโดโโโโโโโโโโดโโโโโโโดโโโโโโโโโโโโดโโโโโโโโโโโฏ
...and finally, we can get an idea of the inferred data types:
โฏ $df | dfr dtypes
โญโโโโฌโโโโโโโโโโโโฌโโโโโโโโฎ
โ # โ column โ dtype โ
โโโโโผโโโโโโโโโโโโผโโโโโโโโค
โ 0 โ anzsic06 โ str โ
โ 1 โ Area โ str โ
โ 2 โ year โ i64 โ
โ 3 โ geo_count โ i64 โ
โ 4 โ ec_count โ i64 โ
โฐโโโโดโโโโโโโโโโโโดโโโโโโโโฏ
Loading the file
Let's start by comparing loading times between the various methods. First, we
will load the data using Nushell's open
command:
โฏ timeit {open .\Data7602DescendingYearOrder.csv}
30sec 479ms 614us 400ns
Loading the file using native Nushell functionality took 30 seconds. Not bad for loading five million records! But we can do a bit better than that.
Let's now use Pandas. We are going to use the next script to load the file:
import pandas as pd
df = pd.read_csv("Data7602DescendingYearOrder.csv")
And the benchmark for it is:
โฏ timeit {python load.py}
2sec 91ms 872us 900ns
That is a great improvement, from 30 seconds to 2 seconds. Nicely done, Pandas!
Probably we can load the data a bit faster. This time we will use Nushell's
dfr open
command:
โฏ timeit {dfr open .\Data7602DescendingYearOrder.csv}
601ms 700us 700ns
This time it took us 0.6 seconds. Not bad at all.
Group-by comparison
Let's do a slightly more complex operation this time. We are going to group the
data by year, and add groups using the column geo_count
.
Again, we are going to start with a Nushell native command.
::: tip If you want to run this example, be aware that the next command will use a large amount of memory. This may affect the performance of your system while this is being executed. :::
โฏ timeit {
open .\Data7602DescendingYearOrder.csv
| group-by year
| transpose header rows
| upsert rows { get rows | math sum }
| flatten
}
6min 30sec 622ms 312us
So, six minutes to perform this aggregated operation.
Let's try the same operation in pandas:
import pandas as pd
df = pd.read_csv("Data7602DescendingYearOrder.csv")
res = df.groupby("year")["geo_count"].sum()
print(res)
And the result from the benchmark is:
โฏ timeit {python .\load.py}
1sec 966ms 954us 800ns
Not bad at all. Again, pandas managed to get it done in a fraction of the time.
To finish the comparison, let's try Nushell dataframes. We are going to put
all the operations in one nu
file, to make sure we are doing similar
operations:
let df = (dfr open Data7602DescendingYearOrder.csv)
let res = ($df | dfr group-by year | dfr agg (dfr col geo_count | dfr sum))
$res
and the benchmark with dataframes is:
โฏ timeit {source load.nu}
557ms 658us 500ns
Luckily Nushell dataframes managed to halve the time again. Isn't that great?
As you can see, Nushell's Dataframe
commands
are as fast as the most common tools that exist today to do data analysis. The commands
that are included in this release have the potential to become your go-to tool for
doing data analysis. By composing complex Nushell pipelines, you can extract information
from data in a reliable way.
Working with Dataframes
After seeing a glimpse of the things that can be done with Dataframe
commands,
now it is time to start testing them. To begin let's create a sample
CSV file that will become our sample dataframe that we will be using along with
the examples. In your favorite file editor paste the next lines to create out
sample csv file.
int_1,int_2,float_1,float_2,first,second,third,word
1,11,0.1,1.0,a,b,c,first
2,12,0.2,1.0,a,b,c,second
3,13,0.3,2.0,a,b,c,third
4,14,0.4,3.0,b,a,c,second
0,15,0.5,4.0,b,a,a,third
6,16,0.6,5.0,b,a,a,second
7,17,0.7,6.0,b,c,a,third
8,18,0.8,7.0,c,c,b,eight
9,19,0.9,8.0,c,c,b,ninth
0,10,0.0,9.0,c,c,b,ninth
Save the file and name it however you want to, for the sake of these examples
the file will be called test_small.csv
.
Now, to read that file as a dataframe use the dfr open
command like
this:
โฏ let df = (dfr open test_small.csv)
This should create the value $df
in memory which holds the data we just
created.
::: tip
The command dfr open
can read either csv or parquet
files.
:::
To see all the dataframes that are stored in memory you can use
โฏ dfr ls
โญโโโโฌโโโโโโโฌโโโโโโโโโโฌโโโโโโโฎ
โ # โ name โ columns โ rows โ
โโโโโผโโโโโโโผโโโโโโโโโโผโโโโโโโค
โ 0 โ $df โ 8 โ 10 โ
โฐโโโโดโโโโโโโดโโโโโโโโโโดโโโโโโโฏ
As you can see, the command shows the created dataframes together with basic information about them.
And if you want to see a preview of the loaded dataframe you can send the dataframe variable to the stream
โฏ $df
โญโโโโฌโโโโโโโโฌโโโโโโโโฌโโโโโโโโโโฌโโโโโโโโโโฌโโโโโโโโฌโโโโโโโโโฌโโโโโโโโฌโโโโโโโโโฎ
โ # โ int_1 โ int_2 โ float_1 โ float_2 โ first โ second โ third โ word โ
โโโโโผโโโโโโโโผโโโโโโโโผโโโโโโโโโโผโโโโโโโโโโผโโโโโโโโผโโโโโโโโโผโโโโโโโโผโโโโโโโโโค
โ 0 โ 1 โ 11 โ 0.10 โ 1.00 โ a โ b โ c โ first โ
โ 1 โ 2 โ 12 โ 0.20 โ 1.00 โ a โ b โ c โ second โ
โ 2 โ 3 โ 13 โ 0.30 โ 2.00 โ a โ b โ c โ third โ
โ 3 โ 4 โ 14 โ 0.40 โ 3.00 โ b โ a โ c โ second โ
โ 4 โ 0 โ 15 โ 0.50 โ 4.00 โ b โ a โ a โ third โ
โ 5 โ 6 โ 16 โ 0.60 โ 5.00 โ b โ a โ a โ second โ
โ 6 โ 7 โ 17 โ 0.70 โ 6.00 โ b โ c โ a โ third โ
โ 7 โ 8 โ 18 โ 0.80 โ 7.00 โ c โ c โ b โ eight โ
โ 8 โ 9 โ 19 โ 0.90 โ 8.00 โ c โ c โ b โ ninth โ
โ 9 โ 0 โ 10 โ 0.00 โ 9.00 โ c โ c โ b โ ninth โ
โฐโโโโดโโโโโโโโดโโโโโโโโดโโโโโโโโโโดโโโโโโโโโโดโโโโโโโโดโโโโโโโโโดโโโโโโโโดโโโโโโโโโฏ
With the dataframe in memory we can start doing column operations with the
DataFrame
::: tip
If you want to see all the dataframe commands that are available you
can use scope commands | where category =~ dataframe
:::
Basic aggregations
Let's start with basic aggregations on the dataframe. Let's sum all the columns
that exist in df
by using the aggregate
command
โฏ $df | dfr sum
โญโโโโฌโโโโโโโโฌโโโโโโโโฌโโโโโโโโโโฌโโโโโโโโโโฌโโโโโโโโฌโโโโโโโโโฌโโโโโโโโฌโโโโโโโฎ
โ # โ int_1 โ int_2 โ float_1 โ float_2 โ first โ second โ third โ word โ
โโโโโผโโโโโโโโผโโโโโโโโผโโโโโโโโโโผโโโโโโโโโโผโโโโโโโโผโโโโโโโโโผโโโโโโโโผโโโโโโโค
โ 0 โ 40 โ 145 โ 4.50 โ 46.00 โ โ โ โ โ
โฐโโโโดโโโโโโโโดโโโโโโโโดโโโโโโโโโโดโโโโโโโโโโดโโโโโโโโดโโโโโโโโโดโโโโโโโโดโโโโโโโฏ
As you can see, the aggregate function computes the sum for those columns where
a sum makes sense. If you want to filter out the text column, you can select
the columns you want by using the dfr select
command
โฏ $df | dfr sum | dfr select int_1 int_2 float_1 float_2
โญโโโโฌโโโโโโโโฌโโโโโโโโฌโโโโโโโโโโฌโโโโโโโโโโฎ
โ # โ int_1 โ int_2 โ float_1 โ float_2 โ
โโโโโผโโโโโโโโผโโโโโโโโผโโโโโโโโโโผโโโโโโโโโโค
โ 0 โ 40 โ 145 โ 4.50 โ 46.00 โ
โฐโโโโดโโโโโโโโดโโโโโโโโดโโโโโโโโโโดโโโโโโโโโโฏ
You can even store the result from this aggregation as you would store any other Nushell variable
โฏ let res = ($df | dfr sum | dfr select int_1 int_2 float_1 float_2)
::: tip
Type let res = ( !! )
and press enter. This will auto complete the previously
executed command. Note the space between ( and !!.
:::
And now we have two dataframes stored in memory
โฏ dfr ls
โญโโโโฌโโโโโโโฌโโโโโโโโโโฌโโโโโโโฎ
โ # โ name โ columns โ rows โ
โโโโโผโโโโโโโผโโโโโโโโโโผโโโโโโโค
โ 0 โ $res โ 4 โ 1 โ
โ 1 โ $df โ 8 โ 10 โ
โฐโโโโดโโโโโโโดโโโโโโโโโโดโโโโโโโฏ
Pretty neat, isn't it?
You can perform several aggregations on the dataframe in order to extract basic information from the dataframe and do basic data analysis on your brand new dataframe.
Joining a DataFrame
It is also possible to join two dataframes using a column as reference. We are
going to join our mini dataframe with another mini dataframe. Copy these lines
in another file and create the corresponding dataframe (for these examples we
are going to call it test_small_a.csv
)
int_1,int_2,float_1,float_2,first
9,14,0.4,3.0,a
8,13,0.3,2.0,a
7,12,0.2,1.0,a
6,11,0.1,0.0,b
We use the dfr open
command to create the new variable
โฏ let df_a = (dfr open test_small_a.csv)
Now, with the second dataframe loaded in memory we can join them using the
column called int_1
from the left dataframe and the column int_1
from the
right dataframe
โฏ $df | dfr join $df_a int_1 int_1
โญโโโโฌโโโโโโโโฌโโโโโโโโฌโโโโโโโโโโฌโโโโโโโโโโฌโโโโโโโโฌโโโโโโโโโฌโโโโโโโโฌโโโโโโโโโฌโโโโโโโโโโฌโโโโโโโโโโโโฌโโโโโโโโโโโโฌโโโโโโโโโโฎ
โ # โ int_1 โ int_2 โ float_1 โ float_2 โ first โ second โ third โ word โ int_2_x โ float_1_x โ float_2_x โ first_x โ
โโโโโผโโโโโโโโผโโโโโโโโผโโโโโโโโโโผโโโโโโโโโโผโโโโโโโโผโโโโโโโโโผโโโโโโโโผโโโโโโโโโผโโโโโโโโโโผโโโโโโโโโโโโผโโโโโโโโโโโโผโโโโโโโโโโค
โ 0 โ 6 โ 16 โ 0.60 โ 5.00 โ b โ a โ a โ second โ 11 โ 0.10 โ 0.00 โ b โ
โ 1 โ 7 โ 17 โ 0.70 โ 6.00 โ b โ c โ a โ third โ 12 โ 0.20 โ 1.00 โ a โ
โ 2 โ 8 โ 18 โ 0.80 โ 7.00 โ c โ c โ b โ eight โ 13 โ 0.30 โ 2.00 โ a โ
โ 3 โ 9 โ 19 โ 0.90 โ 8.00 โ c โ c โ b โ ninth โ 14 โ 0.40 โ 3.00 โ a โ
โฐโโโโดโโโโโโโโดโโโโโโโโดโโโโโโโโโโดโโโโโโโโโโดโโโโโโโโดโโโโโโโโโดโโโโโโโโดโโโโโโโโโดโโโโโโโโโโดโโโโโโโโโโโโดโโโโโโโโโโโโดโโโโโโโโโโฏ
::: tip
In Nu
when a command has multiple arguments that are expecting
multiple values we use brackets []
to enclose those values. In the case of
dfr join
we can join on multiple columns
as long as they have the same type.
:::
For example:
โฏ $df | dfr join $df_a [int_1 first] [int_1 first]
โญโโโโฌโโโโโโโโฌโโโโโโโโฌโโโโโโโโโโฌโโโโโโโโโโฌโโโโโโโโฌโโโโโโโโโฌโโโโโโโโฌโโโโโโโโโฌโโโโโโโโโโฌโโโโโโโโโโโโฌโโโโโโโโโโโโฎ
โ # โ int_1 โ int_2 โ float_1 โ float_2 โ first โ second โ third โ word โ int_2_x โ float_1_x โ float_2_x โ
โโโโโผโโโโโโโโผโโโโโโโโผโโโโโโโโโโผโโโโโโโโโโผโโโโโโโโผโโโโโโโโโผโโโโโโโโผโโโโโโโโโผโโโโโโโโโโผโโโโโโโโโโโโผโโโโโโโโโโโโค
โ 0 โ 6 โ 16 โ 0.60 โ 5.00 โ b โ a โ a โ second โ 11 โ 0.10 โ 0.00 โ
โฐโโโโดโโโโโโโโดโโโโโโโโดโโโโโโโโโโดโโโโโโโโโโดโโโโโโโโดโโโโโโโโโดโโโโโโโโดโโโโโโโโโดโโโโโโโโโโดโโโโโโโโโโโโดโโโโโโโโโโโโฏ
By default, the join command does an inner join, meaning that it will keep the rows where both dataframes share the same value. You can select a left join to keep the missing rows from the left dataframe. You can also save this result in order to use it for further operations.
DataFrame group-by
One of the most powerful operations that can be performed with a DataFrame is
the dfr group-by
. This command will allow you to perform aggregation operations
based on a grouping criteria. In Nushell, a GroupBy
is a type of object that
can be stored and reused for multiple aggregations. This is quite handy, since
the creation of the grouped pairs is the most expensive operation while doing
group-by and there is no need to repeat it if you are planning to do multiple
operations with the same group condition.
To create a GroupBy
object you only need to use the dfr_group-by
command
โฏ let group = ($df | dfr group-by first)
โฏ $group
โญโโโโโโโโโโโโโโฌโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฎ
โ LazyGroupBy โ apply aggregation to complete execution plan โ
โฐโโโโโโโโโโโโโโดโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฏ
When printing the GroupBy
object we can see that it is in the background a
lazy operation waiting to be completed by adding an aggregation. Using the
GroupBy
we can create aggregations on a column
โฏ $group | dfr agg (dfr col int_1 | dfr sum)
โญโโโโฌโโโโโโโโฌโโโโโโโโฎ
โ # โ first โ int_1 โ
โโโโโผโโโโโโโโผโโโโโโโโค
โ 0 โ b โ 17 โ
โ 1 โ a โ 6 โ
โ 2 โ c โ 17 โ
โฐโโโโดโโโโโโโโดโโโโโโโโฏ
or we can define multiple aggregations on the same or different columns
โฏ $group | dfr agg [
โ (dfr col int_1 | dfr n-unique)
โ (dfr col int_2 | dfr min)
โ (dfr col float_1 | dfr sum)
โ (dfr col float_2 | dfr count)
โ ] | dfr sort-by first
โญโโโโฌโโโโโโโโฌโโโโโโโโฌโโโโโโโโฌโโโโโโโโโโฌโโโโโโโโโโฎ
โ # โ first โ int_1 โ int_2 โ float_1 โ float_2 โ
โโโโโผโโโโโโโโผโโโโโโโโผโโโโโโโโผโโโโโโโโโโผโโโโโโโโโโค
โ 0 โ a โ 3 โ 11 โ 0.60 โ 3 โ
โ 1 โ b โ 4 โ 14 โ 2.20 โ 4 โ
โ 2 โ c โ 3 โ 10 โ 1.70 โ 3 โ
โฐโโโโดโโโโโโโโดโโโโโโโโดโโโโโโโโดโโโโโโโโโโดโโโโโโโโโโฏ
As you can see, the GroupBy
object is a very powerful variable and it is
worth keeping in memory while you explore your dataset.
Creating Dataframes
It is also possible to construct dataframes from basic Nushell primitives, such
as integers, decimals, or strings. Let's create a small dataframe using the
command dfr into-df
.
โฏ let a = ([[a b]; [1 2] [3 4] [5 6]] | dfr into-df)
โฏ $a
::: tip For the time being, not all of Nushell primitives can be converted into a dataframe. This will change in the future, as the dataframe feature matures :::
We can append columns to a dataframe in order to create a new variable. As an
example, let's append two columns to our mini dataframe $a
โฏ let a2 = ($a | dfr with-column $a.a --name a2 | dfr with-column $a.a --name a3)
โฏ $a2
โญโโโโฌโโโโฌโโโโฌโโโโโฌโโโโโฎ
โ # โ a โ b โ a2 โ a3 โ
โโโโโผโโโโผโโโโผโโโโโผโโโโโค
โ 0 โ 1 โ 2 โ 1 โ 1 โ
โ 1 โ 3 โ 4 โ 3 โ 3 โ
โ 2 โ 5 โ 6 โ 5 โ 5 โ
โฐโโโโดโโโโดโโโโดโโโโโดโโโโโฏ
Nushell's powerful piping syntax allows us to create new dataframes by taking data from other dataframes and appending it to them. Now, if you list your dataframes you will see in total four dataframes
โฏ dfr ls
โญโโโโฌโโโโโโโโฌโโโโโโโโโโฌโโโโโโโฎ
โ # โ name โ columns โ rows โ
โโโโโผโโโโโโโโผโโโโโโโโโโผโโโโโโโค
โ 0 โ $a2 โ 4 โ 3 โ
โ 1 โ $df_a โ 5 โ 4 โ
โ 2 โ $df โ 8 โ 10 โ
โ 3 โ $a โ 2 โ 3 โ
โ 4 โ $res โ 4 โ 1 โ
โฐโโโโดโโโโโโโโดโโโโโโโโโโดโโโโโโโฏ
One thing that is important to mention is how the memory is being optimized
while working with dataframes, and this is thanks to Apache Arrow and
Polars. In a very simple representation, each column in a DataFrame is an
Arrow Array, which is using several memory specifications in order to maintain
the data as packed as possible (check Arrow columnar
format). The other
optimization trick is the fact that whenever possible, the columns from the
dataframes are shared between dataframes, avoiding memory duplication for the
same data. This means that dataframes $a
and $a2
are sharing the same two
columns we created using the dfr into-df
command. For this reason, it isn't
possible to change the value of a column in a dataframe. However, you can
create new columns based on data from other columns or dataframes.
Working with Series
A Series
is the building block of a DataFrame
. Each Series represents a
column with the same data type, and we can create multiple Series of different
types, such as float, int or string.
Let's start our exploration with Series by creating one using the dfr into-df
command:
โฏ let new = ([9 8 4] | dfr into-df)
โฏ $new
โญโโโโฌโโโโฎ
โ # โ 0 โ
โโโโโผโโโโค
โ 0 โ 9 โ
โ 1 โ 8 โ
โ 2 โ 4 โ
โฐโโโโดโโโโฏ
We have created a new series from a list of integers (we could have done the same using floats or strings)
Series have their own basic operations defined, and they can be used to create other Series. Let's create a new Series by doing some arithmetic on the previously created column.
โฏ let new_2 = ($new * 3 + 10)
โฏ $new_2
โญโโโโฌโโโโโฎ
โ # โ 0 โ
โโโโโผโโโโโค
โ 0 โ 37 โ
โ 1 โ 34 โ
โ 2 โ 22 โ
โฐโโโโดโโโโโฏ
Now we have a new Series that was constructed by doing basic operations on the previous variable.
::: tip
If you want to see how many variables you have stored in memory you can
use scope variables
:::
Let's rename our previous Series so it has a memorable name
โฏ let new_2 = ($new_2 | dfr rename "0" memorable)
โฏ $new_2
โญโโโโฌโโโโโโโโโโโโฎ
โ # โ memorable โ
โโโโโผโโโโโโโโโโโโค
โ 0 โ 37 โ
โ 1 โ 34 โ
โ 2 โ 22 โ
โฐโโโโดโโโโโโโโโโโโฏ
We can also do basic operations with two Series as long as they have the same data type
โฏ $new - $new_2
โญโโโโฌโโโโโโโโโโโโโโโโโโฎ
โ # โ sub_0_memorable โ
โโโโโผโโโโโโโโโโโโโโโโโโค
โ 0 โ -28 โ
โ 1 โ -26 โ
โ 2 โ -18 โ
โฐโโโโดโโโโโโโโโโโโโโโโโโฏ
And we can add them to previously defined dataframes
โฏ let new_df = ($a | dfr with-column $new --name new_col)
โฏ $new_df
โญโโโโฌโโโโฌโโโโฌโโโโโโโโโโฎ
โ # โ a โ b โ new_col โ
โโโโโผโโโโผโโโโผโโโโโโโโโโค
โ 0 โ 1 โ 2 โ 9 โ
โ 1 โ 3 โ 4 โ 8 โ
โ 2 โ 5 โ 6 โ 4 โ
โฐโโโโดโโโโดโโโโดโโโโโโโโโโฏ
The Series stored in a Dataframe can also be used directly, for example,
we can multiply columns a
and b
to create a new Series
โฏ $new_df.a * $new_df.b
โญโโโโฌโโโโโโโโโโฎ
โ # โ mul_a_b โ
โโโโโผโโโโโโโโโโค
โ 0 โ 2 โ
โ 1 โ 12 โ
โ 2 โ 30 โ
โฐโโโโดโโโโโโโโโโฏ
and we can start piping things in order to create new columns and dataframes
โฏ let $new_df = ($new_df | dfr with-column ($new_df.a * $new_df.b / $new_df.new_col) --name my_sum)
โฏ $new_df
โญโโโโฌโโโโฌโโโโฌโโโโโโโโโโฌโโโโโโโโโฎ
โ # โ a โ b โ new_col โ my_sum โ
โโโโโผโโโโผโโโโผโโโโโโโโโโผโโโโโโโโโค
โ 0 โ 1 โ 2 โ 9 โ 0 โ
โ 1 โ 3 โ 4 โ 8 โ 1 โ
โ 2 โ 5 โ 6 โ 4 โ 7 โ
โฐโโโโดโโโโดโโโโดโโโโโโโโโโดโโโโโโโโโฏ
Nushell's piping system can help you create very interesting workflows.
Series and masks
Series have another key use in when working with DataFrames
, and it is the fact
that we can build boolean masks out of them. Let's start by creating a simple
mask using the equality operator
โฏ let mask = ($new == 8)
โฏ $mask
โญโโโโฌโโโโโโโโฎ
โ # โ 0 โ
โโโโโผโโโโโโโโค
โ 0 โ false โ
โ 1 โ true โ
โ 2 โ false โ
โฐโโโโดโโโโโโโโฏ
and with this mask we can now filter a dataframe, like this
โฏ $new_df | dfr filter-with $mask
โญโโโโฌโโโโฌโโโโฌโโโโโโโโโโฌโโโโโโโโโฎ
โ # โ a โ b โ new_col โ my_sum โ
โโโโโผโโโโผโโโโผโโโโโโโโโโผโโโโโโโโโค
โ 0 โ 3 โ 4 โ 8 โ 1 โ
โฐโโโโดโโโโดโโโโดโโโโโโโโโโดโโโโโโโโโฏ
Now we have a new dataframe with only the values where the mask was true.
The masks can also be created from Nushell lists, for example:
โฏ let mask1 = ([true true false] | dfr into-df)
โฏ $new_df | dfr filter-with $mask1
โญโโโโฌโโโโฌโโโโฌโโโโโโโโโโฌโโโโโโโโโฎ
โ # โ a โ b โ new_col โ my_sum โ
โโโโโผโโโโผโโโโผโโโโโโโโโโผโโโโโโโโโค
โ 0 โ 1 โ 2 โ 9 โ 0 โ
โ 1 โ 3 โ 4 โ 8 โ 1 โ
โฐโโโโดโโโโดโโโโดโโโโโโโโโโดโโโโโโโโโฏ
To create complex masks, we have the AND
โฏ $mask and $mask1
โญโโโโฌโโโโโโโโโโฎ
โ # โ and_0_0 โ
โโโโโผโโโโโโโโโโค
โ 0 โ false โ
โ 1 โ true โ
โ 2 โ false โ
โฐโโโโดโโโโโโโโโโฏ
and OR
operations
โฏ $mask or $mask1
โญโโโโฌโโโโโโโโโฎ
โ # โ or_0_0 โ
โโโโโผโโโโโโโโโค
โ 0 โ true โ
โ 1 โ true โ
โ 2 โ false โ
โฐโโโโดโโโโโโโโโฏ
We can also create a mask by checking if some values exist in other Series. Using the first dataframe that we created we can do something like this
โฏ let mask3 = ($df | dfr col first | dfr is-in [b c])
โฏ $mask3
โญโโโโโโโโโโโฌโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฎ
โ โ โญโโโโฌโโโโโโโโโโฌโโโโโโโโโโโโโโโฎ โ
โ input โ โ # โ expr โ value โ โ
โ โ โโโโโผโโโโโโโโโโผโโโโโโโโโโโโโโโค โ
โ โ โ 0 โ column โ first โ โ
โ โ โ 1 โ literal โ Series[list] โ โ
โ โ โฐโโโโดโโโโโโโโโโดโโโโโโโโโโโโโโโฏ โ
โ function โ IsIn โ
โ options โ FunctionOptions { collect_groups: ApplyFlat, input_wildcard_expansion: false, auto_explode: tru โ
โ โ e, fmt_str: "", cast_to_supertypes: true, allow_rename: false, pass_name_to_apply: false } โ
โฐโโโโโโโโโโโดโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฏ
and this new mask can be used to filter the dataframe
โฏ $df | dfr filter-with $mask3
โญโโโโฌโโโโโโโโฌโโโโโโโโฌโโโโโโโโโโฌโโโโโโโโโโฌโโโโโโโโฌโโโโโโโโโฌโโโโโโโโฌโโโโโโโโโฎ
โ # โ int_1 โ int_2 โ float_1 โ float_2 โ first โ second โ third โ word โ
โโโโโผโโโโโโโโผโโโโโโโโผโโโโโโโโโโผโโโโโโโโโโผโโโโโโโโผโโโโโโโโโผโโโโโโโโผโโโโโโโโโค
โ 0 โ 4 โ 14 โ 0.40 โ 3.00 โ b โ a โ c โ second โ
โ 1 โ 0 โ 15 โ 0.50 โ 4.00 โ b โ a โ a โ third โ
โ 2 โ 6 โ 16 โ 0.60 โ 5.00 โ b โ a โ a โ second โ
โ 3 โ 7 โ 17 โ 0.70 โ 6.00 โ b โ c โ a โ third โ
โ 4 โ 8 โ 18 โ 0.80 โ 7.00 โ c โ c โ b โ eight โ
โ 5 โ 9 โ 19 โ 0.90 โ 8.00 โ c โ c โ b โ ninth โ
โ 6 โ 0 โ 10 โ 0.00 โ 9.00 โ c โ c โ b โ ninth โ
โฐโโโโดโโโโโโโโดโโโโโโโโดโโโโโโโโโโดโโโโโโโโโโดโโโโโโโโดโโโโโโโโโดโโโโโโโโดโโโโโโโโโฏ
Another operation that can be done with masks is setting or replacing a value
from a series. For example, we can change the value in the column first
where
the value is equal to a
::: warning This is example is not updated to recent Nushell versions. :::
โฏ $df | dfr get first | dfr set new --mask ($df.first =~ a)
โญโโโโฌโโโโโโโโโฎ
โ # โ string โ
โโโโโผโโโโโโโโโค
โ 0 โ new โ
โ 1 โ new โ
โ 2 โ new โ
โ 3 โ b โ
โ 4 โ b โ
โ 5 โ b โ
โ 6 โ b โ
โ 7 โ c โ
โ 8 โ c โ
โ 9 โ c โ
โฐโโโโดโโโโโโโโโฏ
Series as indices
Series can be also used as a way of filtering a dataframe by using them as a list of indices. For example, let's say that we want to get rows 1, 4, and 6 from our original dataframe. With that in mind, we can use the next command to extract that information
โฏ let indices = ([1 4 6] | dfr into-df)
โฏ $df | dfr take $indices
โญโโโโฌโโโโโโโโฌโโโโโโโโฌโโโโโโโโโโฌโโโโโโโโโโฌโโโโโโโโฌโโโโโโโโโฌโโโโโโโโฌโโโโโโโโโฎ
โ # โ int_1 โ int_2 โ float_1 โ float_2 โ first โ second โ third โ word โ
โโโโโผโโโโโโโโผโโโโโโโโผโโโโโโโโโโผโโโโโโโโโโผโโโโโโโโผโโโโโโโโโผโโโโโโโโผโโโโโโโโโค
โ 0 โ 2 โ 12 โ 0.20 โ 1.00 โ a โ b โ c โ second โ
โ 1 โ 0 โ 15 โ 0.50 โ 4.00 โ b โ a โ a โ third โ
โ 2 โ 7 โ 17 โ 0.70 โ 6.00 โ b โ c โ a โ third โ
โฐโโโโดโโโโโโโโดโโโโโโโโดโโโโโโโโโโดโโโโโโโโโโดโโโโโโโโดโโโโโโโโโดโโโโโโโโดโโโโโโโโโฏ
The command dfr take
is very handy, especially if we mix it with other commands.
Let's say that we want to extract all rows for the first duplicated element for
column first
. In order to do that, we can use the command dfr arg-unique
as
shown in the next example
โฏ let indices = ($df | dfr get first | dfr arg-unique)
โฏ $df | dfr take $indices
โญโโโโฌโโโโโโโโฌโโโโโโโโฌโโโโโโโโโโฌโโโโโโโโโโฌโโโโโโโโฌโโโโโโโโโฌโโโโโโโโฌโโโโโโโโโฎ
โ # โ int_1 โ int_2 โ float_1 โ float_2 โ first โ second โ third โ word โ
โโโโโผโโโโโโโโผโโโโโโโโผโโโโโโโโโโผโโโโโโโโโโผโโโโโโโโผโโโโโโโโโผโโโโโโโโผโโโโโโโโโค
โ 0 โ 1 โ 11 โ 0.10 โ 1.00 โ a โ b โ c โ first โ
โ 1 โ 4 โ 14 โ 0.40 โ 3.00 โ b โ a โ c โ second โ
โ 2 โ 8 โ 18 โ 0.80 โ 7.00 โ c โ c โ b โ eight โ
โฐโโโโดโโโโโโโโดโโโโโโโโดโโโโโโโโโโดโโโโโโโโโโดโโโโโโโโดโโโโโโโโโดโโโโโโโโดโโโโโโโโโฏ
Or what if we want to create a new sorted dataframe using a column in specific.
We can use the arg-sort
to accomplish that. In the next example we
can sort the dataframe by the column word
::: tip
The same result could be accomplished using the command sort
:::
โฏ let indices = ($df | dfr get word | dfr arg-sort)
โฏ $df | dfr take $indices
โญโโโโฌโโโโโโโโฌโโโโโโโโฌโโโโโโโโโโฌโโโโโโโโโโฌโโโโโโโโฌโโโโโโโโโฌโโโโโโโโฌโโโโโโโโโฎ
โ # โ int_1 โ int_2 โ float_1 โ float_2 โ first โ second โ third โ word โ
โโโโโผโโโโโโโโผโโโโโโโโผโโโโโโโโโโผโโโโโโโโโโผโโโโโโโโผโโโโโโโโโผโโโโโโโโผโโโโโโโโโค
โ 0 โ 8 โ 18 โ 0.80 โ 7.00 โ c โ c โ b โ eight โ
โ 1 โ 1 โ 11 โ 0.10 โ 1.00 โ a โ b โ c โ first โ
โ 2 โ 9 โ 19 โ 0.90 โ 8.00 โ c โ c โ b โ ninth โ
โ 3 โ 0 โ 10 โ 0.00 โ 9.00 โ c โ c โ b โ ninth โ
โ 4 โ 2 โ 12 โ 0.20 โ 1.00 โ a โ b โ c โ second โ
โ 5 โ 4 โ 14 โ 0.40 โ 3.00 โ b โ a โ c โ second โ
โ 6 โ 6 โ 16 โ 0.60 โ 5.00 โ b โ a โ a โ second โ
โ 7 โ 3 โ 13 โ 0.30 โ 2.00 โ a โ b โ c โ third โ
โ 8 โ 0 โ 15 โ 0.50 โ 4.00 โ b โ a โ a โ third โ
โ 9 โ 7 โ 17 โ 0.70 โ 6.00 โ b โ c โ a โ third โ
โฐโโโโดโโโโโโโโดโโโโโโโโดโโโโโโโโโโดโโโโโโโโโโดโโโโโโโโดโโโโโโโโโดโโโโโโโโดโโโโโโโโโฏ
And finally, we can create new Series by setting a new value in the marked indices. Have a look at the next command
โฏ let indices = ([0 2] | dfr into-df);
โฏ $df | dfr get int_1 | dfr set-with-idx 123 --indices $indices
โญโโโโฌโโโโโโโโฎ
โ # โ int_1 โ
โโโโโผโโโโโโโโค
โ 0 โ 123 โ
โ 1 โ 2 โ
โ 2 โ 123 โ
โ 3 โ 4 โ
โ 4 โ 0 โ
โ 5 โ 6 โ
โ 6 โ 7 โ
โ 7 โ 8 โ
โ 8 โ 9 โ
โ 9 โ 0 โ
โฐโโโโดโโโโโโโโฏ
Unique values
Another operation that can be done with Series
is to search for unique values
in a list or column. Lets use again the first dataframe we created to test
these operations.
The first and most common operation that we have is value_counts
. This
command calculates a count of the unique values that exist in a Series. For
example, we can use it to count how many occurrences we have in the column
first
โฏ $df | dfr get first | dfr value-counts
โญโโโโฌโโโโโโโโฌโโโโโโโโโฎ
โ # โ first โ counts โ
โโโโโผโโโโโโโโผโโโโโโโโโค
โ 0 โ b โ 4 โ
โ 1 โ a โ 3 โ
โ 2 โ c โ 3 โ
โฐโโโโดโโโโโโโโดโโโโโโโโโฏ
As expected, the command returns a new dataframe that can be used to do more queries.
Continuing with our exploration of Series
, the next thing that we can do is
to only get the unique unique values from a series, like this
โฏ $df | dfr get first | dfr unique
โญโโโโฌโโโโโโโโฎ
โ # โ first โ
โโโโโผโโโโโโโโค
โ 0 โ c โ
โ 1 โ b โ
โ 2 โ a โ
โฐโโโโดโโโโโโโโฏ
Or we can get a mask that we can use to filter out the rows where data is
unique or duplicated. For example, we can select the rows for unique values
in column word
โฏ $df | dfr filter-with ($df | dfr get word | dfr is-unique)
โญโโโโฌโโโโโโโโฌโโโโโโโโฌโโโโโโโโโโฌโโโโโโโโโโฌโโโโโโโโฌโโโโโโโโโฌโโโโโโโโฌโโโโโโโโฎ
โ # โ int_1 โ int_2 โ float_1 โ float_2 โ first โ second โ third โ word โ
โโโโโผโโโโโโโโผโโโโโโโโผโโโโโโโโโโผโโโโโโโโโโผโโโโโโโโผโโโโโโโโโผโโโโโโโโผโโโโโโโโค
โ 0 โ 1 โ 11 โ 0.10 โ 1.00 โ a โ b โ c โ first โ
โ 1 โ 8 โ 18 โ 0.80 โ 7.00 โ c โ c โ b โ eight โ
โฐโโโโดโโโโโโโโดโโโโโโโโดโโโโโโโโโโดโโโโโโโโโโดโโโโโโโโดโโโโโโโโโดโโโโโโโโดโโโโโโโโฏ
Or all the duplicated ones
โฏ $df | dfr filter-with ($df | dfr get word | dfr is-duplicated)
โญโโโโฌโโโโโโโโฌโโโโโโโโฌโโโโโโโโโโฌโโโโโโโโโโฌโโโโโโโโฌโโโโโโโโโฌโโโโโโโโฌโโโโโโโโโฎ
โ # โ int_1 โ int_2 โ float_1 โ float_2 โ first โ second โ third โ word โ
โโโโโผโโโโโโโโผโโโโโโโโผโโโโโโโโโโผโโโโโโโโโโผโโโโโโโโผโโโโโโโโโผโโโโโโโโผโโโโโโโโโค
โ 0 โ 2 โ 12 โ 0.20 โ 1.00 โ a โ b โ c โ second โ
โ 1 โ 3 โ 13 โ 0.30 โ 2.00 โ a โ b โ c โ third โ
โ 2 โ 4 โ 14 โ 0.40 โ 3.00 โ b โ a โ c โ second โ
โ 3 โ 0 โ 15 โ 0.50 โ 4.00 โ b โ a โ a โ third โ
โ 4 โ 6 โ 16 โ 0.60 โ 5.00 โ b โ a โ a โ second โ
โ 5 โ 7 โ 17 โ 0.70 โ 6.00 โ b โ c โ a โ third โ
โ 6 โ 9 โ 19 โ 0.90 โ 8.00 โ c โ c โ b โ ninth โ
โ 7 โ 0 โ 10 โ 0.00 โ 9.00 โ c โ c โ b โ ninth โ
โฐโโโโดโโโโโโโโดโโโโโโโโดโโโโโโโโโโดโโโโโโโโโโดโโโโโโโโดโโโโโโโโโดโโโโโโโโดโโโโโโโโโฏ
Lazy Dataframes
Lazy dataframes are a way to query data by creating a logical plan. The advantage of this approach is that the plan never gets evaluated until you need to extract data. This way you could chain together aggregations, joins and selections and collect the data once you are happy with the selected operations.
Let's create a small example of a lazy dataframe
โฏ let a = ([[a b]; [1 a] [2 b] [3 c] [4 d]] | dfr into-lazy)
โฏ $a
โญโโโโโโโโโโโโโโโโโฌโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฎ
โ plan โ DF ["a", "b"]; PROJECT */2 COLUMNS; SELECTION: "None" โ
โ โ โ
โ optimized_plan โ DF ["a", "b"]; PROJECT */2 COLUMNS; SELECTION: "None" โ
โ โ โ
โฐโโโโโโโโโโโโโโโโโดโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฏ
As you can see, the resulting dataframe is not yet evaluated, it stays as a set of instructions that can be done on the data. If you were to collect that dataframe you would get the next result
โฏ $a | dfr collect
โญโโโโฌโโโโฌโโโโฎ
โ # โ a โ b โ
โโโโโผโโโโผโโโโค
โ 0 โ 1 โ a โ
โ 1 โ 2 โ b โ
โ 2 โ 3 โ c โ
โ 3 โ 4 โ d โ
โฐโโโโดโโโโดโโโโฏ
as you can see, the collect command executes the plan and creates a nushell table for you.
All dataframes operations should work with eager or lazy dataframes. They are converted in the background for compatibility. However, to take advantage of lazy operations if is recommended to only use lazy operations with lazy dataframes.
To find all lazy dataframe operations you can use
$nu.scope.commands | where category =~ lazyframe
With your lazy frame defined we can start chaining operations on it. For example this
โฏ $a |
โ dfr reverse |
โ dfr with-column [
โ ((dfr col a) * 2 | dfr as double_a)
โ ((dfr col a) / 2 | dfr as half_a)
โ ] | dfr collect
โญโโโโฌโโโโฌโโโโฌโโโโโโโโโโโฌโโโโโโโโโฎ
โ # โ a โ b โ double_a โ half_a โ
โโโโโผโโโโผโโโโผโโโโโโโโโโโผโโโโโโโโโค
โ 0 โ 4 โ d โ 8 โ 2 โ
โ 1 โ 3 โ c โ 6 โ 1 โ
โ 2 โ 2 โ b โ 4 โ 1 โ
โ 3 โ 1 โ a โ 2 โ 0 โ
โฐโโโโดโโโโดโโโโดโโโโโโโโโโโดโโโโโโโโโฏ
:::tip
You can use the line buffer editor to format your queries (ctr + o
) easily
:::
This query uses the lazy reverse command to invert the dataframe and the
dfr with-column
command to create new two columns using expressions
.
An expression
is used to define an operation that is executed on the lazy
frame. When put together they create the whole set of instructions used by the
lazy commands to query the data. To list all the commands that generate an
expression you can use
scope commands | where category =~ expression
In our previous example, we use the dfr col
command to indicate that column a
will be multiplied by 2 and then it will be aliased to the name double_a
.
In some cases the use of the dfr col
command can be inferred. For example,
using the dfr select
command we can use only a string
> $a | dfr select a | dfr collect
or the dfr col
command
> $a | dfr select (dfr col a) | dfr collect
Let's try something more complicated and create aggregations from a lazy dataframe
โฏ let a = ( [[name value]; [one 1] [two 2] [one 1] [two 3]] | dfr into-lazy )
โฏ $a |
โ dfr group-by name |
โ dfr agg [
โ (dfr col value | dfr sum | dfr as sum)
โ (dfr col value | dfr mean | dfr as mean)
โ ] | dfr collect
โญโโโโฌโโโโโโโฌโโโโโโฌโโโโโโโฎ
โ # โ name โ sum โ mean โ
โโโโโผโโโโโโโผโโโโโโผโโโโโโโค
โ 0 โ two โ 5 โ 2.50 โ
โ 1 โ one โ 2 โ 1.00 โ
โฐโโโโดโโโโโโโดโโโโโโดโโโโโโโฏ
And we could join on a lazy dataframe that hasn't being collected. Let's join the resulting group by to the original lazy frame
โฏ let a = ( [[name value]; [one 1] [two 2] [one 1] [two 3]] | dfr into-lazy )
โฏ let group = ($a
โ | dfr group-by name
โ | dfr agg [
โ (dfr col value | dfr sum | dfr as sum)
โ (dfr col value | dfr mean | dfr as mean)
โ ])
โฏ $a | dfr join $group name name | dfr collect
โญโโโโฌโโโโโโโฌโโโโโโโโฌโโโโโโฌโโโโโโโฎ
โ # โ name โ value โ sum โ mean โ
โโโโโผโโโโโโโผโโโโโโโโผโโโโโโผโโโโโโโค
โ 0 โ one โ 1 โ 2 โ 1.00 โ
โ 1 โ two โ 2 โ 5 โ 2.50 โ
โ 2 โ one โ 1 โ 2 โ 1.00 โ
โ 3 โ two โ 3 โ 5 โ 2.50 โ
โฐโโโโดโโโโโโโดโโโโโโโโดโโโโโโดโโโโโโโฏ
As you can see lazy frames are a powerful construct that will let you query data using a flexible syntax, resulting in blazing fast results.
Dataframe commands
So far we have seen quite a few operations that can be done using DataFrame
s
commands. However, the commands we have used so far are not all the commands
available to work with data and be assured that there will be more as the
feature becomes more stable.
The next list shows the available dataframe commands with their descriptions, and whenever possible, their analogous Nushell command.
::: warning This list may be outdated. To get the up-to-date command list, see Dataframe Lazyframe and Dataframe Or Lazyframe command categories. :::
Command Name | Applies To | Description | Nushell Equivalent |
---|---|---|---|
aggregate | DataFrame, GroupBy, Series | Performs an aggregation operation on a dataframe, groupby or series object | math |
all-false | Series | Returns true if all values are false | |
all-true | Series | Returns true if all values are true | all |
arg-max | Series | Return index for max value in series | |
arg-min | Series | Return index for min value in series | |
arg-sort | Series | Returns indexes for a sorted series | |
arg-true | Series | Returns indexes where values are true | |
arg-unique | Series | Returns indexes for unique values | |
count-null | Series | Counts null values | |
count-unique | Series | Counts unique value | |
drop | DataFrame | Creates a new dataframe by dropping the selected columns | drop |
drop-duplicates | DataFrame | Drops duplicate values in dataframe | |
drop-nulls | DataFrame, Series | Drops null values in dataframe | |
dtypes | DataFrame | Show dataframe data types | |
filter-with | DataFrame | Filters dataframe using a mask as reference | |
first | DataFrame | Creates new dataframe with first rows | first |
get | DataFrame | Creates dataframe with the selected columns | get |
group-by | DataFrame | Creates a groupby object that can be used for other aggregations | group-by |
is-duplicated | Series | Creates mask indicating duplicated values | |
is-in | Series | Checks if elements from a series are contained in right series | in |
is-not-null | Series | Creates mask where value is not null | |
is-null | Series | Creates mask where value is null | <column_name> == null |
is-unique | Series | Creates mask indicating unique values | |
join | DataFrame | Joins a dataframe using columns as reference | |
last | DataFrame | Creates new dataframe with last rows | last |
ls-df | Lists stored dataframes | ||
melt | DataFrame | Unpivot a DataFrame from wide to long format | |
not | Series Inverts boolean mask | ||
open | Loads dataframe form csv file | open | |
pivot | GroupBy | Performs a pivot operation on a groupby object | pivot |
rename | Dataframe, Series | Renames a series | rename |
sample | DataFrame | Create sample dataframe | |
select | DataFrame | Creates a new dataframe with the selected columns | select |
set | Series | Sets value where given mask is true | |
set-with-idx | Series | Sets value in the given index | |
shift | Series | Shifts the values by a given period | |
show | DataFrame | Converts a section of the dataframe to a Table or List value | |
slice | DataFrame | Creates new dataframe from a slice of rows | |
sort-by | DataFrame, Series | Creates new sorted dataframe or series | sort |
take | DataFrame, Series | Creates new dataframe using the given indices | |
to csv | DataFrame | Saves dataframe to csv file | to csv |
into df | Converts a pipelined Table or List into Dataframe | ||
dummies | DataFrame | Creates a new dataframe with dummy variables | |
to parquet | DataFrame | Saves dataframe to parquet file | |
unique | Series | Returns unique values from a series | uniq |
value-counts | Series | Returns a dataframe with the counts for unique values in series | |
where | DataFrame | Filter dataframe to match the condition | where |
with-column | DataFrame | Adds a series to the dataframe | insert <column_name> <value> | upsert <column_name> { <new_value> } |
Future of Dataframes
We hope that by the end of this page you have a solid grasp of how to use the dataframe commands. As you can see they offer powerful operations that can help you process data faster and natively.
However, the future of these dataframes is still very experimental. New commands and tools that take advantage of these commands will be added as they mature.
Keep visiting this book in order to check the new things happening to dataframes and how they can help you process data faster and efficiently.