set -e | |
cd emergent_communication_at_scale | |
mkdir -p emcom_datasets/ | |
cd emcom_datasets | |
wget https://storage.googleapis.com/dm_emcom_at_scale_dataset/byol_celeb_a2.tar.gz | |
tar xf byol_celeb_a2.tar.gz | |
wget https://storage.googleapis.com/dm_emcom_at_scale_dataset/byol_imagenet2012.tar.gz | |
tar xf byol_imagenet2012.tar.gz | |
cd .. | |
cd .. | |
# Python cannot find the CUDA libraries without manually inserting the conad | |
# environment's /lib path into the LD_LIBRARY_PATH | |
CONDA_LIB_DIR=$(which python | sed s,bin/python,lib,) | |
export LD_LIBRARY_PATH=${LD_LIBRARY_PATH:+$LD_LIBRARY_PATH:}$CONDA_LIB_DIR | |
# If this is unset, the code will OOM on an 11 GiB card, possibly due to jax | |
# and TensorFlow both preallocating. | |
export XLA_PYTHON_CLIENT_PREALLOCATE=false | |
python helper.py | |
for dir in checkpoint/*/; do | |
target=../data/$(basename $dir) | |
mkdir -p $target | |
cp $dir/{corpus.jsonl,metadata.json} $target | |
done | |