Datasets:
Update README.md
Browse files
README.md
CHANGED
@@ -17,16 +17,18 @@ This dataset consists of a `pandas` table and attached `images.zip` file with th
|
|
17 |
|
18 |
* seed (`numpy` seed used to generate random vectors)
|
19 |
* path (path to the generated image obtained after unzipping `images.zip`)
|
20 |
-
* vector (generated "random" vector used to create StyleGAN3 images)
|
21 |
* text (caption of each image, generated using BLIP model: `Salesforce/blip-image-captioning-base`)
|
22 |
|
23 |
-
## Usage
|
24 |
|
25 |
-
|
26 |
|
27 |
```python
|
28 |
images = load_dataset("balgot/stylegan3-annotated", data_files=["*.zip"])
|
29 |
dataset = load_dataset("balgot/stylegan3-annotated", data_files=["*.csv"])
|
|
|
|
|
30 |
```
|
31 |
|
32 |
|
|
|
17 |
|
18 |
* seed (`numpy` seed used to generate random vectors)
|
19 |
* path (path to the generated image obtained after unzipping `images.zip`)
|
20 |
+
* vector (generated numpy "random" vector used to create StyleGAN3 images)
|
21 |
* text (caption of each image, generated using BLIP model: `Salesforce/blip-image-captioning-base`)
|
22 |
|
23 |
+
## Usage
|
24 |
|
25 |
+
In order not to load the images into the memory, we will load the images separately.
|
26 |
|
27 |
```python
|
28 |
images = load_dataset("balgot/stylegan3-annotated", data_files=["*.zip"])
|
29 |
dataset = load_dataset("balgot/stylegan3-annotated", data_files=["*.csv"])
|
30 |
+
|
31 |
+
# TODO: convert "vector" column to numpy/torch
|
32 |
```
|
33 |
|
34 |
|