metadata
dataset_info:
features:
- name: id
dtype: string
- name: label
dtype:
class_label:
names:
'0': social
'1': transport
'2': calendar
'3': play
'4': news
'5': datetime
'6': recommendation
'7': email
'8': iot
'9': general
'10': audio
'11': lists
'12': qa
'13': cooking
'14': takeaway
'15': music
'16': alarm
'17': weather
- name: label_text
dtype: string
- name: text
dtype: string
- name: idx
dtype: int64
- name: query_idx
dtype: int64
- name: positive_idx
dtype: int64
- name: negative_idx
dtype: int64
splits:
- name: train
num_bytes: 1119338
num_examples: 11514
download_size: 644764
dataset_size: 1119338
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
MTEB Amazon Massive Scenario Triplets Dataset
This dataset was used in the paper GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning. Refer to https://arxiv.org/abs/2402.16829 for details.
The code for generating the data is available at https://github.com/avsolatorio/GISTEmbed/blob/main/scripts/create_classification_dataset.py.
Citation
@article{solatorio2024gistembed,
title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
author={Aivin V. Solatorio},
journal={arXiv preprint arXiv:2402.16829},
year={2024},
URL={https://arxiv.org/abs/2402.16829}
eprint={2402.16829},
archivePrefix={arXiv},
primaryClass={cs.LG}
}