Datasets:
ashraf-ali
commited on
Commit
•
d14c2ac
1
Parent(s):
dc85497
Add notebook
Browse files- fine_tune_whisper.ipynb +1363 -0
- fine_tune_whisper_mac.ipynb +0 -0
- imam_short_ayahs.tsv +0 -0
- users_mixed.tsv → metadata.csv +0 -0
fine_tune_whisper.ipynb
ADDED
@@ -0,0 +1,1363 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"id": "75b58048-7d14-4fc6-8085-1fc08c81b4a6",
|
6 |
+
"metadata": {
|
7 |
+
"id": "75b58048-7d14-4fc6-8085-1fc08c81b4a6"
|
8 |
+
},
|
9 |
+
"source": [
|
10 |
+
"# Fine-Tune Whisper For Multilingual ASR with 🤗 Transformers"
|
11 |
+
]
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"cell_type": "markdown",
|
15 |
+
"id": "fbfa8ad5-4cdc-4512-9058-836cbbf65e1a",
|
16 |
+
"metadata": {
|
17 |
+
"id": "fbfa8ad5-4cdc-4512-9058-836cbbf65e1a"
|
18 |
+
},
|
19 |
+
"source": [
|
20 |
+
"In this Colab, we present a step-by-step guide on how to fine-tune Whisper \n",
|
21 |
+
"for any multilingual ASR dataset using Hugging Face 🤗 Transformers. This is a \n",
|
22 |
+
"more \"hands-on\" version of the accompanying [blog post](https://huggingface.co/blog/fine-tune-whisper). \n",
|
23 |
+
"For a more in-depth explanation of Whisper, the Common Voice dataset and the theory behind fine-tuning, the reader is advised to refer to the blog post."
|
24 |
+
]
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"cell_type": "markdown",
|
28 |
+
"id": "afe0d503-ae4e-4aa7-9af4-dbcba52db41e",
|
29 |
+
"metadata": {
|
30 |
+
"id": "afe0d503-ae4e-4aa7-9af4-dbcba52db41e"
|
31 |
+
},
|
32 |
+
"source": [
|
33 |
+
"## Introduction"
|
34 |
+
]
|
35 |
+
},
|
36 |
+
{
|
37 |
+
"cell_type": "markdown",
|
38 |
+
"id": "9ae91ed4-9c3e-4ade-938e-f4c2dcfbfdc0",
|
39 |
+
"metadata": {
|
40 |
+
"id": "9ae91ed4-9c3e-4ade-938e-f4c2dcfbfdc0"
|
41 |
+
},
|
42 |
+
"source": [
|
43 |
+
"Whisper is a pre-trained model for automatic speech recognition (ASR) \n",
|
44 |
+
"published in [September 2022](https://openai.com/blog/whisper/) by the authors \n",
|
45 |
+
"Alec Radford et al. from OpenAI. Unlike many of its predecessors, such as \n",
|
46 |
+
"[Wav2Vec 2.0](https://arxiv.org/abs/2006.11477), which are pre-trained \n",
|
47 |
+
"on un-labelled audio data, Whisper is pre-trained on a vast quantity of \n",
|
48 |
+
"**labelled** audio-transcription data, 680,000 hours to be precise. \n",
|
49 |
+
"This is an order of magnitude more data than the un-labelled audio data used \n",
|
50 |
+
"to train Wav2Vec 2.0 (60,000 hours). What is more, 117,000 hours of this \n",
|
51 |
+
"pre-training data is multilingual ASR data. This results in checkpoints \n",
|
52 |
+
"that can be applied to over 96 languages, many of which are considered \n",
|
53 |
+
"_low-resource_.\n",
|
54 |
+
"\n",
|
55 |
+
"When scaled to 680,000 hours of labelled pre-training data, Whisper models \n",
|
56 |
+
"demonstrate a strong ability to generalise to many datasets and domains.\n",
|
57 |
+
"The pre-trained checkpoints achieve competitive results to state-of-the-art \n",
|
58 |
+
"ASR systems, with near 3% word error rate (WER) on the test-clean subset of \n",
|
59 |
+
"LibriSpeech ASR and a new state-of-the-art on TED-LIUM with 4.7% WER (_c.f._ \n",
|
60 |
+
"Table 8 of the [Whisper paper](https://cdn.openai.com/papers/whisper.pdf)).\n",
|
61 |
+
"The extensive multilingual ASR knowledge acquired by Whisper during pre-training \n",
|
62 |
+
"can be leveraged for other low-resource languages; through fine-tuning, the \n",
|
63 |
+
"pre-trained checkpoints can be adapted for specific datasets and languages \n",
|
64 |
+
"to further improve upon these results. We'll show just how Whisper can be fine-tuned \n",
|
65 |
+
"for low-resource languages in this Colab."
|
66 |
+
]
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"cell_type": "markdown",
|
70 |
+
"id": "e59b91d6-be24-4b5e-bb38-4977ea143a72",
|
71 |
+
"metadata": {
|
72 |
+
"id": "e59b91d6-be24-4b5e-bb38-4977ea143a72"
|
73 |
+
},
|
74 |
+
"source": [
|
75 |
+
"<figure>\n",
|
76 |
+
"<img src=\"https://raw.githubusercontent.com/sanchit-gandhi/notebooks/main/whisper_architecture.svg\" alt=\"Trulli\" style=\"width:100%\">\n",
|
77 |
+
"<figcaption align = \"center\"><b>Figure 1:</b> Whisper model. The architecture \n",
|
78 |
+
"follows the standard Transformer-based encoder-decoder model. A \n",
|
79 |
+
"log-Mel spectrogram is input to the encoder. The last encoder \n",
|
80 |
+
"hidden states are input to the decoder via cross-attention mechanisms. The \n",
|
81 |
+
"decoder autoregressively predicts text tokens, jointly conditional on the \n",
|
82 |
+
"encoder hidden states and previously predicted tokens. Figure source: \n",
|
83 |
+
"<a href=\"https://openai.com/blog/whisper/\">OpenAI Whisper Blog</a>.</figcaption>\n",
|
84 |
+
"</figure>"
|
85 |
+
]
|
86 |
+
},
|
87 |
+
{
|
88 |
+
"cell_type": "markdown",
|
89 |
+
"id": "21b6316e-8a55-4549-a154-66d3da2ab74a",
|
90 |
+
"metadata": {
|
91 |
+
"id": "21b6316e-8a55-4549-a154-66d3da2ab74a"
|
92 |
+
},
|
93 |
+
"source": [
|
94 |
+
"The Whisper checkpoints come in five configurations of varying model sizes.\n",
|
95 |
+
"The smallest four are trained on either English-only or multilingual data.\n",
|
96 |
+
"The largest checkpoint is multilingual only. All nine of the pre-trained checkpoints \n",
|
97 |
+
"are available on the [Hugging Face Hub](https://huggingface.co/models?search=openai/whisper). The \n",
|
98 |
+
"checkpoints are summarised in the following table with links to the models on the Hub:\n",
|
99 |
+
"\n",
|
100 |
+
"| Size | Layers | Width | Heads | Parameters | English-only | Multilingual |\n",
|
101 |
+
"|--------|--------|-------|-------|------------|------------------------------------------------------|---------------------------------------------------|\n",
|
102 |
+
"| tiny | 4 | 384 | 6 | 39 M | [✓](https://huggingface.co/openai/whisper-tiny.en) | [✓](https://huggingface.co/openai/whisper-tiny.) |\n",
|
103 |
+
"| base | 6 | 512 | 8 | 74 M | [✓](https://huggingface.co/openai/whisper-base.en) | [✓](https://huggingface.co/openai/whisper-base) |\n",
|
104 |
+
"| small | 12 | 768 | 12 | 244 M | [✓](https://huggingface.co/openai/whisper-small.en) | [✓](https://huggingface.co/openai/whisper-small) |\n",
|
105 |
+
"| medium | 24 | 1024 | 16 | 769 M | [✓](https://huggingface.co/openai/whisper-medium.en) | [✓](https://huggingface.co/openai/whisper-medium) |\n",
|
106 |
+
"| large | 32 | 1280 | 20 | 1550 M | x | [✓](https://huggingface.co/openai/whisper-large) |\n",
|
107 |
+
"\n",
|
108 |
+
"For demonstration purposes, we'll fine-tune the multilingual version of the \n",
|
109 |
+
"[`\"small\"`](https://huggingface.co/openai/whisper-small) checkpoint with 244M params (~= 1GB). \n",
|
110 |
+
"As for our data, we'll train and evaluate our system on a low-resource language \n",
|
111 |
+
"taken from the [Common Voice](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0)\n",
|
112 |
+
"dataset. We'll show that with as little as 8 hours of fine-tuning data, we can achieve \n",
|
113 |
+
"strong performance in this language."
|
114 |
+
]
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"cell_type": "markdown",
|
118 |
+
"id": "3a680dfc-cbba-4f6c-8a1f-e1a5ff3f123a",
|
119 |
+
"metadata": {
|
120 |
+
"id": "3a680dfc-cbba-4f6c-8a1f-e1a5ff3f123a"
|
121 |
+
},
|
122 |
+
"source": [
|
123 |
+
"------------------------------------------------------------------------\n",
|
124 |
+
"\n",
|
125 |
+
"\\\\({}^1\\\\) The name Whisper follows from the acronym “WSPSR”, which stands for “Web-scale Supervised Pre-training for Speech Recognition”."
|
126 |
+
]
|
127 |
+
},
|
128 |
+
{
|
129 |
+
"cell_type": "markdown",
|
130 |
+
"id": "55fb8d21-df06-472a-99dd-b59567be6dad",
|
131 |
+
"metadata": {
|
132 |
+
"id": "55fb8d21-df06-472a-99dd-b59567be6dad"
|
133 |
+
},
|
134 |
+
"source": [
|
135 |
+
"## Prepare Environment"
|
136 |
+
]
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"cell_type": "markdown",
|
140 |
+
"id": "844a4861-929c-4762-b29b-80b1e95aba4b",
|
141 |
+
"metadata": {
|
142 |
+
"id": "844a4861-929c-4762-b29b-80b1e95aba4b"
|
143 |
+
},
|
144 |
+
"source": [
|
145 |
+
"First of all, let's try to secure a decent GPU for our Colab! Unfortunately, it's becoming much harder to get access to a good GPU with the free version of Google Colab. However, with Google Colab Pro one should have no issues in being allocated a V100 or P100 GPU.\n",
|
146 |
+
"\n",
|
147 |
+
"To get a GPU, click _Runtime_ -> _Change runtime type_, then change _Hardware accelerator_ from _None_ to _GPU_."
|
148 |
+
]
|
149 |
+
},
|
150 |
+
{
|
151 |
+
"cell_type": "markdown",
|
152 |
+
"id": "9abea5d7-9d54-434b-a6bd-399d1b3c6c1a",
|
153 |
+
"metadata": {
|
154 |
+
"id": "9abea5d7-9d54-434b-a6bd-399d1b3c6c1a"
|
155 |
+
},
|
156 |
+
"source": [
|
157 |
+
"We can verify that we've been assigned a GPU and view its specifications:"
|
158 |
+
]
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"cell_type": "code",
|
162 |
+
"execution_count": 1,
|
163 |
+
"id": "95048026-a3b7-43f0-a274-1bad65e407b4",
|
164 |
+
"metadata": {
|
165 |
+
"id": "95048026-a3b7-43f0-a274-1bad65e407b4"
|
166 |
+
},
|
167 |
+
"outputs": [
|
168 |
+
{
|
169 |
+
"name": "stdout",
|
170 |
+
"output_type": "stream",
|
171 |
+
"text": [
|
172 |
+
"zsh:1: command not found: nvidia-smi\n"
|
173 |
+
]
|
174 |
+
}
|
175 |
+
],
|
176 |
+
"source": [
|
177 |
+
"gpu_info = !nvidia-smi\n",
|
178 |
+
"gpu_info = '\\n'.join(gpu_info)\n",
|
179 |
+
"if gpu_info.find('failed') >= 0:\n",
|
180 |
+
" print('Not connected to a GPU')\n",
|
181 |
+
"else:\n",
|
182 |
+
" print(gpu_info)"
|
183 |
+
]
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"cell_type": "markdown",
|
187 |
+
"id": "9cd52dc1-ade1-44bb-a2d7-2ed98f110fed",
|
188 |
+
"metadata": {
|
189 |
+
"id": "9cd52dc1-ade1-44bb-a2d7-2ed98f110fed"
|
190 |
+
},
|
191 |
+
"source": [
|
192 |
+
"Next, we need to update the Unix package `ffmpeg` to version 4:"
|
193 |
+
]
|
194 |
+
},
|
195 |
+
{
|
196 |
+
"cell_type": "code",
|
197 |
+
"execution_count": null,
|
198 |
+
"id": "69ee227d-60c5-44bf-b04d-c2092f997454",
|
199 |
+
"metadata": {
|
200 |
+
"id": "69ee227d-60c5-44bf-b04d-c2092f997454"
|
201 |
+
},
|
202 |
+
"outputs": [],
|
203 |
+
"source": [
|
204 |
+
"!add-apt-repository -y ppa:jonathonf/ffmpeg-4\n",
|
205 |
+
"!apt update\n",
|
206 |
+
"!apt install -y ffmpeg"
|
207 |
+
]
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"cell_type": "markdown",
|
211 |
+
"id": "1d85d613-1c7e-46ac-9134-660bbe7ebc9d",
|
212 |
+
"metadata": {
|
213 |
+
"id": "1d85d613-1c7e-46ac-9134-660bbe7ebc9d"
|
214 |
+
},
|
215 |
+
"source": [
|
216 |
+
"We'll employ several popular Python packages to fine-tune the Whisper model.\n",
|
217 |
+
"We'll use `datasets` to download and prepare our training data and \n",
|
218 |
+
"`transformers` to load and train our Whisper model. We'll also require\n",
|
219 |
+
"the `soundfile` package to pre-process audio files, `evaluate` and `jiwer` to\n",
|
220 |
+
"assess the performance of our model. Finally, we'll\n",
|
221 |
+
"use `gradio` to build a flashy demo of our fine-tuned model."
|
222 |
+
]
|
223 |
+
},
|
224 |
+
{
|
225 |
+
"cell_type": "code",
|
226 |
+
"execution_count": null,
|
227 |
+
"id": "e68ea9f8-9b61-414e-8885-3033b67c2850",
|
228 |
+
"metadata": {
|
229 |
+
"id": "e68ea9f8-9b61-414e-8885-3033b67c2850"
|
230 |
+
},
|
231 |
+
"outputs": [],
|
232 |
+
"source": [
|
233 |
+
"!pip install datasets>=2.6.1\n",
|
234 |
+
"!pip install git+https://github.com/huggingface/transformers\n",
|
235 |
+
"!pip install librosa\n",
|
236 |
+
"!pip install evaluate>=0.30\n",
|
237 |
+
"!pip install jiwer\n",
|
238 |
+
"!pip install gradio"
|
239 |
+
]
|
240 |
+
},
|
241 |
+
{
|
242 |
+
"cell_type": "markdown",
|
243 |
+
"id": "1f60d173-8de1-4ed7-bc9a-d281cf237203",
|
244 |
+
"metadata": {
|
245 |
+
"id": "1f60d173-8de1-4ed7-bc9a-d281cf237203"
|
246 |
+
},
|
247 |
+
"source": [
|
248 |
+
"We strongly advise you to upload model checkpoints directly the [Hugging Face Hub](https://huggingface.co/) \n",
|
249 |
+
"whilst training. The Hub provides:\n",
|
250 |
+
"- Integrated version control: you can be sure that no model checkpoint is lost during training.\n",
|
251 |
+
"- Tensorboard logs: track important metrics over the course of training.\n",
|
252 |
+
"- Model cards: document what a model does and its intended use cases.\n",
|
253 |
+
"- Community: an easy way to share and collaborate with the community!\n",
|
254 |
+
"\n",
|
255 |
+
"Linking the notebook to the Hub is straightforward - it simply requires entering your \n",
|
256 |
+
"Hub authentication token when prompted. Find your Hub authentication token [here](https://huggingface.co/settings/tokens):"
|
257 |
+
]
|
258 |
+
},
|
259 |
+
{
|
260 |
+
"cell_type": "code",
|
261 |
+
"execution_count": null,
|
262 |
+
"id": "b045a39e-2a3e-4153-bdb5-281500bcd348",
|
263 |
+
"metadata": {
|
264 |
+
"id": "b045a39e-2a3e-4153-bdb5-281500bcd348"
|
265 |
+
},
|
266 |
+
"outputs": [],
|
267 |
+
"source": [
|
268 |
+
"from huggingface_hub import notebook_login\n",
|
269 |
+
"\n",
|
270 |
+
"notebook_login()"
|
271 |
+
]
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"cell_type": "markdown",
|
275 |
+
"id": "b219c9dd-39b6-4a95-b2a1-3f547a1e7bc0",
|
276 |
+
"metadata": {
|
277 |
+
"id": "b219c9dd-39b6-4a95-b2a1-3f547a1e7bc0"
|
278 |
+
},
|
279 |
+
"source": [
|
280 |
+
"## Load Dataset"
|
281 |
+
]
|
282 |
+
},
|
283 |
+
{
|
284 |
+
"cell_type": "markdown",
|
285 |
+
"id": "674429c5-0ab4-4adf-975b-621bb69eca38",
|
286 |
+
"metadata": {
|
287 |
+
"id": "674429c5-0ab4-4adf-975b-621bb69eca38"
|
288 |
+
},
|
289 |
+
"source": [
|
290 |
+
"Using 🤗 Datasets, downloading and preparing data is extremely simple. \n",
|
291 |
+
"We can download and prepare the Common Voice splits in just one line of code. \n",
|
292 |
+
"\n",
|
293 |
+
"First, ensure you have accepted the terms of use on the Hugging Face Hub: [mozilla-foundation/common_voice_11_0](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0). Once you have accepted the terms, you will have full access to the dataset and be able to download the data locally.\n",
|
294 |
+
"\n",
|
295 |
+
"Since Hindi is very low-resource, we'll combine the `train` and `validation` \n",
|
296 |
+
"splits to give approximately 8 hours of training data. We'll use the 4 hours \n",
|
297 |
+
"of `test` data as our held-out test set:"
|
298 |
+
]
|
299 |
+
},
|
300 |
+
{
|
301 |
+
"cell_type": "code",
|
302 |
+
"execution_count": null,
|
303 |
+
"id": "a2787582-554f-44ce-9f38-4180a5ed6b44",
|
304 |
+
"metadata": {
|
305 |
+
"id": "a2787582-554f-44ce-9f38-4180a5ed6b44"
|
306 |
+
},
|
307 |
+
"outputs": [],
|
308 |
+
"source": [
|
309 |
+
"from datasets import load_dataset, DatasetDict\n",
|
310 |
+
"\n",
|
311 |
+
"common_voice = DatasetDict()\n",
|
312 |
+
"\n",
|
313 |
+
"common_voice[\"train\"] = load_dataset(\"mozilla-foundation/common_voice_11_0\", \"hi\", split=\"train+validation\", use_auth_token=True)\n",
|
314 |
+
"common_voice[\"test\"] = load_dataset(\"mozilla-foundation/common_voice_11_0\", \"hi\", split=\"test\", use_auth_token=True)\n",
|
315 |
+
"\n",
|
316 |
+
"print(common_voice)"
|
317 |
+
]
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"cell_type": "markdown",
|
321 |
+
"id": "d5c7c3d6-7197-41e7-a088-49b753c1681f",
|
322 |
+
"metadata": {
|
323 |
+
"id": "d5c7c3d6-7197-41e7-a088-49b753c1681f"
|
324 |
+
},
|
325 |
+
"source": [
|
326 |
+
"Most ASR datasets only provide input audio samples (`audio`) and the \n",
|
327 |
+
"corresponding transcribed text (`sentence`). Common Voice contains additional \n",
|
328 |
+
"metadata information, such as `accent` and `locale`, which we can disregard for ASR.\n",
|
329 |
+
"Keeping the notebook as general as possible, we only consider the input audio and\n",
|
330 |
+
"transcribed text for fine-tuning, discarding the additional metadata information:"
|
331 |
+
]
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"cell_type": "code",
|
335 |
+
"execution_count": null,
|
336 |
+
"id": "20ba635d-518c-47ac-97ee-3cad25f1e0ce",
|
337 |
+
"metadata": {
|
338 |
+
"id": "20ba635d-518c-47ac-97ee-3cad25f1e0ce"
|
339 |
+
},
|
340 |
+
"outputs": [],
|
341 |
+
"source": [
|
342 |
+
"common_voice = common_voice.remove_columns([\"accent\", \"age\", \"client_id\", \"down_votes\", \"gender\", \"locale\", \"path\", \"segment\", \"up_votes\"])\n",
|
343 |
+
"\n",
|
344 |
+
"print(common_voice)"
|
345 |
+
]
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"cell_type": "markdown",
|
349 |
+
"id": "2d63b2d2-f68a-4d74-b7f1-5127f6d16605",
|
350 |
+
"metadata": {
|
351 |
+
"id": "2d63b2d2-f68a-4d74-b7f1-5127f6d16605"
|
352 |
+
},
|
353 |
+
"source": [
|
354 |
+
"## Prepare Feature Extractor, Tokenizer and Data"
|
355 |
+
]
|
356 |
+
},
|
357 |
+
{
|
358 |
+
"cell_type": "markdown",
|
359 |
+
"id": "601c3099-1026-439e-93e2-5635b3ba5a73",
|
360 |
+
"metadata": {
|
361 |
+
"id": "601c3099-1026-439e-93e2-5635b3ba5a73"
|
362 |
+
},
|
363 |
+
"source": [
|
364 |
+
"The ASR pipeline can be de-composed into three stages: \n",
|
365 |
+
"1) A feature extractor which pre-processes the raw audio-inputs\n",
|
366 |
+
"2) The model which performs the sequence-to-sequence mapping \n",
|
367 |
+
"3) A tokenizer which post-processes the model outputs to text format\n",
|
368 |
+
"\n",
|
369 |
+
"In 🤗 Transformers, the Whisper model has an associated feature extractor and tokenizer, \n",
|
370 |
+
"called [WhisperFeatureExtractor](https://huggingface.co/docs/transformers/main/model_doc/whisper#transformers.WhisperFeatureExtractor)\n",
|
371 |
+
"and [WhisperTokenizer](https://huggingface.co/docs/transformers/main/model_doc/whisper#transformers.WhisperTokenizer) \n",
|
372 |
+
"respectively.\n",
|
373 |
+
"\n",
|
374 |
+
"We'll go through details for setting-up the feature extractor and tokenizer one-by-one!"
|
375 |
+
]
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"cell_type": "markdown",
|
379 |
+
"id": "560332eb-3558-41a1-b500-e83a9f695f84",
|
380 |
+
"metadata": {
|
381 |
+
"id": "560332eb-3558-41a1-b500-e83a9f695f84"
|
382 |
+
},
|
383 |
+
"source": [
|
384 |
+
"### Load WhisperFeatureExtractor"
|
385 |
+
]
|
386 |
+
},
|
387 |
+
{
|
388 |
+
"cell_type": "markdown",
|
389 |
+
"id": "32ec8068-0bd7-412d-b662-0edb9d1e7365",
|
390 |
+
"metadata": {
|
391 |
+
"id": "32ec8068-0bd7-412d-b662-0edb9d1e7365"
|
392 |
+
},
|
393 |
+
"source": [
|
394 |
+
"The Whisper feature extractor performs two operations:\n",
|
395 |
+
"1. Pads / truncates the audio inputs to 30s: any audio inputs shorter than 30s are padded to 30s with silence (zeros), and those longer that 30s are truncated to 30s\n",
|
396 |
+
"2. Converts the audio inputs to _log-Mel spectrogram_ input features, a visual representation of the audio and the form of the input expected by the Whisper model"
|
397 |
+
]
|
398 |
+
},
|
399 |
+
{
|
400 |
+
"cell_type": "markdown",
|
401 |
+
"id": "589d9ec1-d12b-4b64-93f7-04c63997da19",
|
402 |
+
"metadata": {
|
403 |
+
"id": "589d9ec1-d12b-4b64-93f7-04c63997da19"
|
404 |
+
},
|
405 |
+
"source": [
|
406 |
+
"<figure>\n",
|
407 |
+
"<img src=\"https://raw.githubusercontent.com/sanchit-gandhi/notebooks/main/spectrogram.jpg\" alt=\"Trulli\" style=\"width:100%\">\n",
|
408 |
+
"<figcaption align = \"center\"><b>Figure 2:</b> Conversion of sampled audio array to log-Mel spectrogram.\n",
|
409 |
+
"Left: sampled 1-dimensional audio signal. Right: corresponding log-Mel spectrogram. Figure source:\n",
|
410 |
+
"<a href=\"https://ai.googleblog.com/2019/04/specaugment-new-data-augmentation.html\">Google SpecAugment Blog</a>.\n",
|
411 |
+
"</figcaption>"
|
412 |
+
]
|
413 |
+
},
|
414 |
+
{
|
415 |
+
"cell_type": "markdown",
|
416 |
+
"id": "b2ef54d5-b946-4c1d-9fdc-adc5d01b46aa",
|
417 |
+
"metadata": {
|
418 |
+
"id": "b2ef54d5-b946-4c1d-9fdc-adc5d01b46aa"
|
419 |
+
},
|
420 |
+
"source": [
|
421 |
+
"We'll load the feature extractor from the pre-trained checkpoint with the default values:"
|
422 |
+
]
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"cell_type": "code",
|
426 |
+
"execution_count": null,
|
427 |
+
"id": "bc77d7bb-f9e2-47f5-b663-30f7a4321ce5",
|
428 |
+
"metadata": {
|
429 |
+
"id": "bc77d7bb-f9e2-47f5-b663-30f7a4321ce5"
|
430 |
+
},
|
431 |
+
"outputs": [],
|
432 |
+
"source": [
|
433 |
+
"from transformers import WhisperFeatureExtractor\n",
|
434 |
+
"\n",
|
435 |
+
"feature_extractor = WhisperFeatureExtractor.from_pretrained(\"openai/whisper-small\")"
|
436 |
+
]
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"cell_type": "markdown",
|
440 |
+
"id": "93748af7-b917-4ecf-a0c8-7d89077ff9cb",
|
441 |
+
"metadata": {
|
442 |
+
"id": "93748af7-b917-4ecf-a0c8-7d89077ff9cb"
|
443 |
+
},
|
444 |
+
"source": [
|
445 |
+
"### Load WhisperTokenizer"
|
446 |
+
]
|
447 |
+
},
|
448 |
+
{
|
449 |
+
"cell_type": "markdown",
|
450 |
+
"id": "2bc82609-a9fb-447a-a2af-99597c864029",
|
451 |
+
"metadata": {
|
452 |
+
"id": "2bc82609-a9fb-447a-a2af-99597c864029"
|
453 |
+
},
|
454 |
+
"source": [
|
455 |
+
"The Whisper model outputs a sequence of _token ids_. The tokenizer maps each of these token ids to their corresponding text string. For Hindi, we can load the pre-trained tokenizer and use it for fine-tuning without any further modifications. We simply have to \n",
|
456 |
+
"specify the target language and the task. These arguments inform the \n",
|
457 |
+
"tokenizer to prefix the language and task tokens to the start of encoded \n",
|
458 |
+
"label sequences:"
|
459 |
+
]
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"cell_type": "code",
|
463 |
+
"execution_count": null,
|
464 |
+
"id": "c7b07f9b-ae0e-4f89-98f0-0c50d432eab6",
|
465 |
+
"metadata": {
|
466 |
+
"id": "c7b07f9b-ae0e-4f89-98f0-0c50d432eab6",
|
467 |
+
"outputId": "5c004b44-86e7-4e00-88be-39e0af5eed69"
|
468 |
+
},
|
469 |
+
"outputs": [
|
470 |
+
{
|
471 |
+
"data": {
|
472 |
+
"application/vnd.jupyter.widget-view+json": {
|
473 |
+
"model_id": "90d056e20b3e4f14ae0199a1a4ab1bb0",
|
474 |
+
"version_major": 2,
|
475 |
+
"version_minor": 0
|
476 |
+
},
|
477 |
+
"text/plain": [
|
478 |
+
"Downloading: 0%| | 0.00/829 [00:00<?, ?B/s]"
|
479 |
+
]
|
480 |
+
},
|
481 |
+
"metadata": {},
|
482 |
+
"output_type": "display_data"
|
483 |
+
},
|
484 |
+
{
|
485 |
+
"data": {
|
486 |
+
"application/vnd.jupyter.widget-view+json": {
|
487 |
+
"model_id": "d82a88daec0e4f14add691b7b903064c",
|
488 |
+
"version_major": 2,
|
489 |
+
"version_minor": 0
|
490 |
+
},
|
491 |
+
"text/plain": [
|
492 |
+
"Downloading: 0%| | 0.00/1.04M [00:00<?, ?B/s]"
|
493 |
+
]
|
494 |
+
},
|
495 |
+
"metadata": {},
|
496 |
+
"output_type": "display_data"
|
497 |
+
},
|
498 |
+
{
|
499 |
+
"data": {
|
500 |
+
"application/vnd.jupyter.widget-view+json": {
|
501 |
+
"model_id": "350acdb0f40e454099fa901e66de55f0",
|
502 |
+
"version_major": 2,
|
503 |
+
"version_minor": 0
|
504 |
+
},
|
505 |
+
"text/plain": [
|
506 |
+
"Downloading: 0%| | 0.00/494k [00:00<?, ?B/s]"
|
507 |
+
]
|
508 |
+
},
|
509 |
+
"metadata": {},
|
510 |
+
"output_type": "display_data"
|
511 |
+
},
|
512 |
+
{
|
513 |
+
"data": {
|
514 |
+
"application/vnd.jupyter.widget-view+json": {
|
515 |
+
"model_id": "2e6a82a462cc411d90fa1bea4ee60790",
|
516 |
+
"version_major": 2,
|
517 |
+
"version_minor": 0
|
518 |
+
},
|
519 |
+
"text/plain": [
|
520 |
+
"Downloading: 0%| | 0.00/52.7k [00:00<?, ?B/s]"
|
521 |
+
]
|
522 |
+
},
|
523 |
+
"metadata": {},
|
524 |
+
"output_type": "display_data"
|
525 |
+
},
|
526 |
+
{
|
527 |
+
"data": {
|
528 |
+
"application/vnd.jupyter.widget-view+json": {
|
529 |
+
"model_id": "c74bfee0198b4817832ea86e8e88d96c",
|
530 |
+
"version_major": 2,
|
531 |
+
"version_minor": 0
|
532 |
+
},
|
533 |
+
"text/plain": [
|
534 |
+
"Downloading: 0%| | 0.00/2.11k [00:00<?, ?B/s]"
|
535 |
+
]
|
536 |
+
},
|
537 |
+
"metadata": {},
|
538 |
+
"output_type": "display_data"
|
539 |
+
},
|
540 |
+
{
|
541 |
+
"data": {
|
542 |
+
"application/vnd.jupyter.widget-view+json": {
|
543 |
+
"model_id": "04fb2d81eff646068e10475a08ae42f4",
|
544 |
+
"version_major": 2,
|
545 |
+
"version_minor": 0
|
546 |
+
},
|
547 |
+
"text/plain": [
|
548 |
+
"Downloading: 0%| | 0.00/2.06k [00:00<?, ?B/s]"
|
549 |
+
]
|
550 |
+
},
|
551 |
+
"metadata": {},
|
552 |
+
"output_type": "display_data"
|
553 |
+
}
|
554 |
+
],
|
555 |
+
"source": [
|
556 |
+
"from transformers import WhisperTokenizer\n",
|
557 |
+
"\n",
|
558 |
+
"tokenizer = WhisperTokenizer.from_pretrained(\"openai/whisper-small\", language=\"Hindi\", task=\"transcribe\")"
|
559 |
+
]
|
560 |
+
},
|
561 |
+
{
|
562 |
+
"cell_type": "markdown",
|
563 |
+
"id": "d2ef23f3-f4a8-483a-a2dc-080a7496cb1b",
|
564 |
+
"metadata": {
|
565 |
+
"id": "d2ef23f3-f4a8-483a-a2dc-080a7496cb1b"
|
566 |
+
},
|
567 |
+
"source": [
|
568 |
+
"### Combine To Create A WhisperProcessor"
|
569 |
+
]
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"cell_type": "markdown",
|
573 |
+
"id": "5ff67654-5a29-4bb8-a69d-0228946c6f8d",
|
574 |
+
"metadata": {
|
575 |
+
"id": "5ff67654-5a29-4bb8-a69d-0228946c6f8d"
|
576 |
+
},
|
577 |
+
"source": [
|
578 |
+
"To simplify using the feature extractor and tokenizer, we can _wrap_ \n",
|
579 |
+
"both into a single `WhisperProcessor` class. This processor object \n",
|
580 |
+
"inherits from the `WhisperFeatureExtractor` and `WhisperProcessor`, \n",
|
581 |
+
"and can be used on the audio inputs and model predictions as required. \n",
|
582 |
+
"In doing so, we only need to keep track of two objects during training: \n",
|
583 |
+
"the `processor` and the `model`:"
|
584 |
+
]
|
585 |
+
},
|
586 |
+
{
|
587 |
+
"cell_type": "code",
|
588 |
+
"execution_count": null,
|
589 |
+
"id": "77d9f0c5-8607-4642-a8ac-c3ab2e223ea6",
|
590 |
+
"metadata": {
|
591 |
+
"id": "77d9f0c5-8607-4642-a8ac-c3ab2e223ea6"
|
592 |
+
},
|
593 |
+
"outputs": [],
|
594 |
+
"source": [
|
595 |
+
"from transformers import WhisperProcessor\n",
|
596 |
+
"\n",
|
597 |
+
"processor = WhisperProcessor.from_pretrained(\"openai/whisper-small\", language=\"Hindi\", task=\"transcribe\")"
|
598 |
+
]
|
599 |
+
},
|
600 |
+
{
|
601 |
+
"cell_type": "markdown",
|
602 |
+
"id": "381acd09-0b0f-4d04-9eb3-f028ac0e5f2c",
|
603 |
+
"metadata": {
|
604 |
+
"id": "381acd09-0b0f-4d04-9eb3-f028ac0e5f2c"
|
605 |
+
},
|
606 |
+
"source": [
|
607 |
+
"### Prepare Data"
|
608 |
+
]
|
609 |
+
},
|
610 |
+
{
|
611 |
+
"cell_type": "markdown",
|
612 |
+
"id": "9649bf01-2e8a-45e5-8fca-441c13637b8f",
|
613 |
+
"metadata": {
|
614 |
+
"id": "9649bf01-2e8a-45e5-8fca-441c13637b8f"
|
615 |
+
},
|
616 |
+
"source": [
|
617 |
+
"Let's print the first example of the Common Voice dataset to see \n",
|
618 |
+
"what form the data is in:"
|
619 |
+
]
|
620 |
+
},
|
621 |
+
{
|
622 |
+
"cell_type": "code",
|
623 |
+
"execution_count": null,
|
624 |
+
"id": "6e6b0ec5-0c94-4e2c-ae24-c791be1b2255",
|
625 |
+
"metadata": {
|
626 |
+
"id": "6e6b0ec5-0c94-4e2c-ae24-c791be1b2255"
|
627 |
+
},
|
628 |
+
"outputs": [],
|
629 |
+
"source": [
|
630 |
+
"print(common_voice[\"train\"][0])"
|
631 |
+
]
|
632 |
+
},
|
633 |
+
{
|
634 |
+
"cell_type": "markdown",
|
635 |
+
"id": "5a679f05-063d-41b3-9b58-4fc9c6ccf4fd",
|
636 |
+
"metadata": {
|
637 |
+
"id": "5a679f05-063d-41b3-9b58-4fc9c6ccf4fd"
|
638 |
+
},
|
639 |
+
"source": [
|
640 |
+
"Since \n",
|
641 |
+
"our input audio is sampled at 48kHz, we need to _downsample_ it to \n",
|
642 |
+
"16kHz prior to passing it to the Whisper feature extractor, 16kHz being the sampling rate expected by the Whisper model. \n",
|
643 |
+
"\n",
|
644 |
+
"We'll set the audio inputs to the correct sampling rate using dataset's \n",
|
645 |
+
"[`cast_column`](https://huggingface.co/docs/datasets/package_reference/main_classes.html?highlight=cast_column#datasets.DatasetDict.cast_column)\n",
|
646 |
+
"method. This operation does not change the audio in-place, \n",
|
647 |
+
"but rather signals to `datasets` to resample audio samples _on the fly_ the \n",
|
648 |
+
"first time that they are loaded:"
|
649 |
+
]
|
650 |
+
},
|
651 |
+
{
|
652 |
+
"cell_type": "code",
|
653 |
+
"execution_count": null,
|
654 |
+
"id": "f12e2e57-156f-417b-8cfb-69221cc198e8",
|
655 |
+
"metadata": {
|
656 |
+
"id": "f12e2e57-156f-417b-8cfb-69221cc198e8"
|
657 |
+
},
|
658 |
+
"outputs": [],
|
659 |
+
"source": [
|
660 |
+
"from datasets import Audio\n",
|
661 |
+
"\n",
|
662 |
+
"common_voice = common_voice.cast_column(\"audio\", Audio(sampling_rate=16000))"
|
663 |
+
]
|
664 |
+
},
|
665 |
+
{
|
666 |
+
"cell_type": "markdown",
|
667 |
+
"id": "00382a3e-abec-4cdd-a54c-d1aaa3ea4707",
|
668 |
+
"metadata": {
|
669 |
+
"id": "00382a3e-abec-4cdd-a54c-d1aaa3ea4707"
|
670 |
+
},
|
671 |
+
"source": [
|
672 |
+
"Re-loading the first audio sample in the Common Voice dataset will resample \n",
|
673 |
+
"it to the desired sampling rate:"
|
674 |
+
]
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"cell_type": "code",
|
678 |
+
"execution_count": null,
|
679 |
+
"id": "87122d71-289a-466a-afcf-fa354b18946b",
|
680 |
+
"metadata": {
|
681 |
+
"id": "87122d71-289a-466a-afcf-fa354b18946b"
|
682 |
+
},
|
683 |
+
"outputs": [],
|
684 |
+
"source": [
|
685 |
+
"print(common_voice[\"train\"][0])"
|
686 |
+
]
|
687 |
+
},
|
688 |
+
{
|
689 |
+
"cell_type": "markdown",
|
690 |
+
"id": "91edc72d-08f8-4f01-899d-74e65ce441fc",
|
691 |
+
"metadata": {
|
692 |
+
"id": "91edc72d-08f8-4f01-899d-74e65ce441fc"
|
693 |
+
},
|
694 |
+
"source": [
|
695 |
+
"Now we can write a function to prepare our data ready for the model:\n",
|
696 |
+
"1. We load and resample the audio data by calling `batch[\"audio\"]`. As explained above, 🤗 Datasets performs any necessary resampling operations on the fly.\n",
|
697 |
+
"2. We use the feature extractor to compute the log-Mel spectrogram input features from our 1-dimensional audio array.\n",
|
698 |
+
"3. We encode the transcriptions to label ids through the use of the tokenizer."
|
699 |
+
]
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"cell_type": "code",
|
703 |
+
"execution_count": null,
|
704 |
+
"id": "6525c478-8962-4394-a1c4-103c54cce170",
|
705 |
+
"metadata": {
|
706 |
+
"id": "6525c478-8962-4394-a1c4-103c54cce170"
|
707 |
+
},
|
708 |
+
"outputs": [],
|
709 |
+
"source": [
|
710 |
+
"def prepare_dataset(batch):\n",
|
711 |
+
" # load and resample audio data from 48 to 16kHz\n",
|
712 |
+
" audio = batch[\"audio\"]\n",
|
713 |
+
"\n",
|
714 |
+
" # compute log-Mel input features from input audio array \n",
|
715 |
+
" batch[\"input_features\"] = feature_extractor(audio[\"array\"], sampling_rate=audio[\"sampling_rate\"]).input_features[0]\n",
|
716 |
+
"\n",
|
717 |
+
" # encode target text to label ids \n",
|
718 |
+
" batch[\"labels\"] = tokenizer(batch[\"sentence\"]).input_ids\n",
|
719 |
+
" return batch"
|
720 |
+
]
|
721 |
+
},
|
722 |
+
{
|
723 |
+
"cell_type": "markdown",
|
724 |
+
"id": "70b319fb-2439-4ef6-a70d-a47bf41c4a13",
|
725 |
+
"metadata": {
|
726 |
+
"id": "70b319fb-2439-4ef6-a70d-a47bf41c4a13"
|
727 |
+
},
|
728 |
+
"source": [
|
729 |
+
"We can apply the data preparation function to all of our training examples using dataset's `.map` method. The argument `num_proc` specifies how many CPU cores to use. Setting `num_proc` > 1 will enable multiprocessing. If the `.map` method hangs with multiprocessing, set `num_proc=1` and process the dataset sequentially."
|
730 |
+
]
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"cell_type": "code",
|
734 |
+
"execution_count": null,
|
735 |
+
"id": "7b73ab39-ffaf-4b9e-86e5-782963c6134b",
|
736 |
+
"metadata": {
|
737 |
+
"id": "7b73ab39-ffaf-4b9e-86e5-782963c6134b"
|
738 |
+
},
|
739 |
+
"outputs": [],
|
740 |
+
"source": [
|
741 |
+
"common_voice = common_voice.map(prepare_dataset, remove_columns=common_voice.column_names[\"train\"], num_proc=2)"
|
742 |
+
]
|
743 |
+
},
|
744 |
+
{
|
745 |
+
"cell_type": "markdown",
|
746 |
+
"id": "263a5a58-0239-4a25-b0df-c625fc9c5810",
|
747 |
+
"metadata": {
|
748 |
+
"id": "263a5a58-0239-4a25-b0df-c625fc9c5810"
|
749 |
+
},
|
750 |
+
"source": [
|
751 |
+
"## Training and Evaluation"
|
752 |
+
]
|
753 |
+
},
|
754 |
+
{
|
755 |
+
"cell_type": "markdown",
|
756 |
+
"id": "a693e768-c5a6-453f-89a1-b601dcf7daf7",
|
757 |
+
"metadata": {
|
758 |
+
"id": "a693e768-c5a6-453f-89a1-b601dcf7daf7"
|
759 |
+
},
|
760 |
+
"source": [
|
761 |
+
"Now that we've prepared our data, we're ready to dive into the training pipeline. \n",
|
762 |
+
"The [🤗 Trainer](https://huggingface.co/transformers/master/main_classes/trainer.html?highlight=trainer)\n",
|
763 |
+
"will do much of the heavy lifting for us. All we have to do is:\n",
|
764 |
+
"\n",
|
765 |
+
"- Define a data collator: the data collator takes our pre-processed data and prepares PyTorch tensors ready for the model.\n",
|
766 |
+
"\n",
|
767 |
+
"- Evaluation metrics: during evaluation, we want to evaluate the model using the [word error rate (WER)](https://huggingface.co/metrics/wer) metric. We need to define a `compute_metrics` function that handles this computation.\n",
|
768 |
+
"\n",
|
769 |
+
"- Load a pre-trained checkpoint: we need to load a pre-trained checkpoint and configure it correctly for training.\n",
|
770 |
+
"\n",
|
771 |
+
"- Define the training configuration: this will be used by the 🤗 Trainer to define the training schedule.\n",
|
772 |
+
"\n",
|
773 |
+
"Once we've fine-tuned the model, we will evaluate it on the test data to verify that we have correctly trained it \n",
|
774 |
+
"to transcribe speech in Hindi."
|
775 |
+
]
|
776 |
+
},
|
777 |
+
{
|
778 |
+
"cell_type": "markdown",
|
779 |
+
"id": "8d230e6d-624c-400a-bbf5-fa660881df25",
|
780 |
+
"metadata": {
|
781 |
+
"id": "8d230e6d-624c-400a-bbf5-fa660881df25"
|
782 |
+
},
|
783 |
+
"source": [
|
784 |
+
"### Define a Data Collator"
|
785 |
+
]
|
786 |
+
},
|
787 |
+
{
|
788 |
+
"cell_type": "markdown",
|
789 |
+
"id": "04def221-0637-4a69-b242-d3f0c1d0ee78",
|
790 |
+
"metadata": {
|
791 |
+
"id": "04def221-0637-4a69-b242-d3f0c1d0ee78"
|
792 |
+
},
|
793 |
+
"source": [
|
794 |
+
"The data collator for a sequence-to-sequence speech model is unique in the sense that it \n",
|
795 |
+
"treats the `input_features` and `labels` independently: the `input_features` must be \n",
|
796 |
+
"handled by the feature extractor and the `labels` by the tokenizer.\n",
|
797 |
+
"\n",
|
798 |
+
"The `input_features` are already padded to 30s and converted to a log-Mel spectrogram \n",
|
799 |
+
"of fixed dimension by action of the feature extractor, so all we have to do is convert the `input_features`\n",
|
800 |
+
"to batched PyTorch tensors. We do this using the feature extractor's `.pad` method with `return_tensors=pt`.\n",
|
801 |
+
"\n",
|
802 |
+
"The `labels` on the other hand are un-padded. We first pad the sequences\n",
|
803 |
+
"to the maximum length in the batch using the tokenizer's `.pad` method. The padding tokens \n",
|
804 |
+
"are then replaced by `-100` so that these tokens are **not** taken into account when \n",
|
805 |
+
"computing the loss. We then cut the BOS token from the start of the label sequence as we \n",
|
806 |
+
"append it later during training.\n",
|
807 |
+
"\n",
|
808 |
+
"We can leverage the `WhisperProcessor` we defined earlier to perform both the \n",
|
809 |
+
"feature extractor and the tokenizer operations:"
|
810 |
+
]
|
811 |
+
},
|
812 |
+
{
|
813 |
+
"cell_type": "code",
|
814 |
+
"execution_count": null,
|
815 |
+
"id": "8326221e-ec13-4731-bb4e-51e5fc1486c5",
|
816 |
+
"metadata": {
|
817 |
+
"id": "8326221e-ec13-4731-bb4e-51e5fc1486c5"
|
818 |
+
},
|
819 |
+
"outputs": [],
|
820 |
+
"source": [
|
821 |
+
"import torch\n",
|
822 |
+
"\n",
|
823 |
+
"from dataclasses import dataclass\n",
|
824 |
+
"from typing import Any, Dict, List, Union\n",
|
825 |
+
"\n",
|
826 |
+
"@dataclass\n",
|
827 |
+
"class DataCollatorSpeechSeq2SeqWithPadding:\n",
|
828 |
+
" processor: Any\n",
|
829 |
+
"\n",
|
830 |
+
" def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:\n",
|
831 |
+
" # split inputs and labels since they have to be of different lengths and need different padding methods\n",
|
832 |
+
" # first treat the audio inputs by simply returning torch tensors\n",
|
833 |
+
" input_features = [{\"input_features\": feature[\"input_features\"]} for feature in features]\n",
|
834 |
+
" batch = self.processor.feature_extractor.pad(input_features, return_tensors=\"pt\")\n",
|
835 |
+
"\n",
|
836 |
+
" # get the tokenized label sequences\n",
|
837 |
+
" label_features = [{\"input_ids\": feature[\"labels\"]} for feature in features]\n",
|
838 |
+
" # pad the labels to max length\n",
|
839 |
+
" labels_batch = self.processor.tokenizer.pad(label_features, return_tensors=\"pt\")\n",
|
840 |
+
"\n",
|
841 |
+
" # replace padding with -100 to ignore loss correctly\n",
|
842 |
+
" labels = labels_batch[\"input_ids\"].masked_fill(labels_batch.attention_mask.ne(1), -100)\n",
|
843 |
+
"\n",
|
844 |
+
" # if bos token is appended in previous tokenization step,\n",
|
845 |
+
" # cut bos token here as it's append later anyways\n",
|
846 |
+
" if (labels[:, 0] == self.processor.tokenizer.bos_token_id).all().cpu().item():\n",
|
847 |
+
" labels = labels[:, 1:]\n",
|
848 |
+
"\n",
|
849 |
+
" batch[\"labels\"] = labels\n",
|
850 |
+
"\n",
|
851 |
+
" return batch"
|
852 |
+
]
|
853 |
+
},
|
854 |
+
{
|
855 |
+
"cell_type": "markdown",
|
856 |
+
"id": "3cae7dbf-8a50-456e-a3a8-7fd005390f86",
|
857 |
+
"metadata": {
|
858 |
+
"id": "3cae7dbf-8a50-456e-a3a8-7fd005390f86"
|
859 |
+
},
|
860 |
+
"source": [
|
861 |
+
"Let's initialise the data collator we've just defined:"
|
862 |
+
]
|
863 |
+
},
|
864 |
+
{
|
865 |
+
"cell_type": "code",
|
866 |
+
"execution_count": null,
|
867 |
+
"id": "fc834702-c0d3-4a96-b101-7b87be32bf42",
|
868 |
+
"metadata": {
|
869 |
+
"id": "fc834702-c0d3-4a96-b101-7b87be32bf42"
|
870 |
+
},
|
871 |
+
"outputs": [],
|
872 |
+
"source": [
|
873 |
+
"data_collator = DataCollatorSpeechSeq2SeqWithPadding(processor=processor)"
|
874 |
+
]
|
875 |
+
},
|
876 |
+
{
|
877 |
+
"cell_type": "markdown",
|
878 |
+
"id": "d62bb2ab-750a-45e7-82e9-61d6f4805698",
|
879 |
+
"metadata": {
|
880 |
+
"id": "d62bb2ab-750a-45e7-82e9-61d6f4805698"
|
881 |
+
},
|
882 |
+
"source": [
|
883 |
+
"### Evaluation Metrics"
|
884 |
+
]
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"cell_type": "markdown",
|
888 |
+
"id": "66fee1a7-a44c-461e-b047-c3917221572e",
|
889 |
+
"metadata": {
|
890 |
+
"id": "66fee1a7-a44c-461e-b047-c3917221572e"
|
891 |
+
},
|
892 |
+
"source": [
|
893 |
+
"We'll use the word error rate (WER) metric, the 'de-facto' metric for assessing \n",
|
894 |
+
"ASR systems. For more information, refer to the WER [docs](https://huggingface.co/metrics/wer). We'll load the WER metric from 🤗 Evaluate:"
|
895 |
+
]
|
896 |
+
},
|
897 |
+
{
|
898 |
+
"cell_type": "code",
|
899 |
+
"execution_count": null,
|
900 |
+
"id": "b22b4011-f31f-4b57-b684-c52332f92890",
|
901 |
+
"metadata": {
|
902 |
+
"id": "b22b4011-f31f-4b57-b684-c52332f92890"
|
903 |
+
},
|
904 |
+
"outputs": [],
|
905 |
+
"source": [
|
906 |
+
"import evaluate\n",
|
907 |
+
"\n",
|
908 |
+
"metric = evaluate.load(\"wer\")"
|
909 |
+
]
|
910 |
+
},
|
911 |
+
{
|
912 |
+
"cell_type": "markdown",
|
913 |
+
"id": "4f32cab6-31f0-4cb9-af4c-40ba0f5fc508",
|
914 |
+
"metadata": {
|
915 |
+
"id": "4f32cab6-31f0-4cb9-af4c-40ba0f5fc508"
|
916 |
+
},
|
917 |
+
"source": [
|
918 |
+
"We then simply have to define a function that takes our model \n",
|
919 |
+
"predictions and returns the WER metric. This function, called\n",
|
920 |
+
"`compute_metrics`, first replaces `-100` with the `pad_token_id`\n",
|
921 |
+
"in the `label_ids` (undoing the step we applied in the \n",
|
922 |
+
"data collator to ignore padded tokens correctly in the loss).\n",
|
923 |
+
"It then decodes the predicted and label ids to strings. Finally,\n",
|
924 |
+
"it computes the WER between the predictions and reference labels:"
|
925 |
+
]
|
926 |
+
},
|
927 |
+
{
|
928 |
+
"cell_type": "code",
|
929 |
+
"execution_count": null,
|
930 |
+
"id": "23959a70-22d0-4ffe-9fa1-72b61e75bb52",
|
931 |
+
"metadata": {
|
932 |
+
"id": "23959a70-22d0-4ffe-9fa1-72b61e75bb52"
|
933 |
+
},
|
934 |
+
"outputs": [],
|
935 |
+
"source": [
|
936 |
+
"def compute_metrics(pred):\n",
|
937 |
+
" pred_ids = pred.predictions\n",
|
938 |
+
" label_ids = pred.label_ids\n",
|
939 |
+
"\n",
|
940 |
+
" # replace -100 with the pad_token_id\n",
|
941 |
+
" label_ids[label_ids == -100] = tokenizer.pad_token_id\n",
|
942 |
+
"\n",
|
943 |
+
" # we do not want to group tokens when computing the metrics\n",
|
944 |
+
" pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True)\n",
|
945 |
+
" label_str = tokenizer.batch_decode(label_ids, skip_special_tokens=True)\n",
|
946 |
+
"\n",
|
947 |
+
" wer = 100 * metric.compute(predictions=pred_str, references=label_str)\n",
|
948 |
+
"\n",
|
949 |
+
" return {\"wer\": wer}"
|
950 |
+
]
|
951 |
+
},
|
952 |
+
{
|
953 |
+
"cell_type": "markdown",
|
954 |
+
"id": "daf2a825-6d9f-4a23-b145-c37c0039075b",
|
955 |
+
"metadata": {
|
956 |
+
"id": "daf2a825-6d9f-4a23-b145-c37c0039075b"
|
957 |
+
},
|
958 |
+
"source": [
|
959 |
+
"### Load a Pre-Trained Checkpoint"
|
960 |
+
]
|
961 |
+
},
|
962 |
+
{
|
963 |
+
"cell_type": "markdown",
|
964 |
+
"id": "437a97fa-4864-476b-8abc-f28b8166cfa5",
|
965 |
+
"metadata": {
|
966 |
+
"id": "437a97fa-4864-476b-8abc-f28b8166cfa5"
|
967 |
+
},
|
968 |
+
"source": [
|
969 |
+
"Now let's load the pre-trained Whisper `small` checkpoint. Again, this \n",
|
970 |
+
"is trivial through use of 🤗 Transformers!"
|
971 |
+
]
|
972 |
+
},
|
973 |
+
{
|
974 |
+
"cell_type": "code",
|
975 |
+
"execution_count": null,
|
976 |
+
"id": "5a10cc4b-07ec-4ebd-ac1d-7c601023594f",
|
977 |
+
"metadata": {
|
978 |
+
"id": "5a10cc4b-07ec-4ebd-ac1d-7c601023594f"
|
979 |
+
},
|
980 |
+
"outputs": [],
|
981 |
+
"source": [
|
982 |
+
"from transformers import WhisperForConditionalGeneration\n",
|
983 |
+
"\n",
|
984 |
+
"model = WhisperForConditionalGeneration.from_pretrained(\"openai/whisper-small\")"
|
985 |
+
]
|
986 |
+
},
|
987 |
+
{
|
988 |
+
"cell_type": "markdown",
|
989 |
+
"id": "a15ead5f-2277-4a39-937b-585c2497b2df",
|
990 |
+
"metadata": {
|
991 |
+
"id": "a15ead5f-2277-4a39-937b-585c2497b2df"
|
992 |
+
},
|
993 |
+
"source": [
|
994 |
+
"Override generation arguments - no tokens are forced as decoder outputs (see [`forced_decoder_ids`](https://huggingface.co/docs/transformers/main_classes/text_generation#transformers.generation_utils.GenerationMixin.generate.forced_decoder_ids)), no tokens are suppressed during generation (see [`suppress_tokens`](https://huggingface.co/docs/transformers/main_classes/text_generation#transformers.generation_utils.GenerationMixin.generate.suppress_tokens)):"
|
995 |
+
]
|
996 |
+
},
|
997 |
+
{
|
998 |
+
"cell_type": "code",
|
999 |
+
"execution_count": null,
|
1000 |
+
"id": "62038ba3-88ed-4fce-84db-338f50dcd04f",
|
1001 |
+
"metadata": {
|
1002 |
+
"id": "62038ba3-88ed-4fce-84db-338f50dcd04f"
|
1003 |
+
},
|
1004 |
+
"outputs": [],
|
1005 |
+
"source": [
|
1006 |
+
"model.config.forced_decoder_ids = None\n",
|
1007 |
+
"model.config.suppress_tokens = []"
|
1008 |
+
]
|
1009 |
+
},
|
1010 |
+
{
|
1011 |
+
"cell_type": "markdown",
|
1012 |
+
"id": "2178dea4-80ca-47b6-b6ea-ba1915c90c06",
|
1013 |
+
"metadata": {
|
1014 |
+
"id": "2178dea4-80ca-47b6-b6ea-ba1915c90c06"
|
1015 |
+
},
|
1016 |
+
"source": [
|
1017 |
+
"### Define the Training Configuration"
|
1018 |
+
]
|
1019 |
+
},
|
1020 |
+
{
|
1021 |
+
"cell_type": "markdown",
|
1022 |
+
"id": "c21af1e9-0188-4134-ac82-defc7bdcc436",
|
1023 |
+
"metadata": {
|
1024 |
+
"id": "c21af1e9-0188-4134-ac82-defc7bdcc436"
|
1025 |
+
},
|
1026 |
+
"source": [
|
1027 |
+
"In the final step, we define all the parameters related to training. For more detail on the training arguments, refer to the Seq2SeqTrainingArguments [docs](https://huggingface.co/docs/transformers/main_classes/trainer#transformers.Seq2SeqTrainingArguments)."
|
1028 |
+
]
|
1029 |
+
},
|
1030 |
+
{
|
1031 |
+
"cell_type": "code",
|
1032 |
+
"execution_count": null,
|
1033 |
+
"id": "0ae3e9af-97b7-4aa0-ae85-20b23b5bcb3a",
|
1034 |
+
"metadata": {
|
1035 |
+
"id": "0ae3e9af-97b7-4aa0-ae85-20b23b5bcb3a"
|
1036 |
+
},
|
1037 |
+
"outputs": [],
|
1038 |
+
"source": [
|
1039 |
+
"from transformers import Seq2SeqTrainingArguments\n",
|
1040 |
+
"\n",
|
1041 |
+
"training_args = Seq2SeqTrainingArguments(\n",
|
1042 |
+
" output_dir=\"./whisper-small-hi\", # change to a repo name of your choice\n",
|
1043 |
+
" per_device_train_batch_size=16,\n",
|
1044 |
+
" gradient_accumulation_steps=1, # increase by 2x for every 2x decrease in batch size\n",
|
1045 |
+
" learning_rate=1e-5,\n",
|
1046 |
+
" warmup_steps=500,\n",
|
1047 |
+
" max_steps=4000,\n",
|
1048 |
+
" gradient_checkpointing=True,\n",
|
1049 |
+
" fp16=True,\n",
|
1050 |
+
" evaluation_strategy=\"steps\",\n",
|
1051 |
+
" per_device_eval_batch_size=8,\n",
|
1052 |
+
" predict_with_generate=True,\n",
|
1053 |
+
" generation_max_length=225,\n",
|
1054 |
+
" save_steps=1000,\n",
|
1055 |
+
" eval_steps=1000,\n",
|
1056 |
+
" logging_steps=25,\n",
|
1057 |
+
" report_to=[\"tensorboard\"],\n",
|
1058 |
+
" load_best_model_at_end=True,\n",
|
1059 |
+
" metric_for_best_model=\"wer\",\n",
|
1060 |
+
" greater_is_better=False,\n",
|
1061 |
+
" push_to_hub=True,\n",
|
1062 |
+
")"
|
1063 |
+
]
|
1064 |
+
},
|
1065 |
+
{
|
1066 |
+
"cell_type": "markdown",
|
1067 |
+
"id": "b3a944d8-3112-4552-82a0-be25988b3857",
|
1068 |
+
"metadata": {
|
1069 |
+
"id": "b3a944d8-3112-4552-82a0-be25988b3857"
|
1070 |
+
},
|
1071 |
+
"source": [
|
1072 |
+
"**Note**: if one does not want to upload the model checkpoints to the Hub, \n",
|
1073 |
+
"set `push_to_hub=False`."
|
1074 |
+
]
|
1075 |
+
},
|
1076 |
+
{
|
1077 |
+
"cell_type": "markdown",
|
1078 |
+
"id": "bac29114-d226-4f54-97cf-8718c9f94e1e",
|
1079 |
+
"metadata": {
|
1080 |
+
"id": "bac29114-d226-4f54-97cf-8718c9f94e1e"
|
1081 |
+
},
|
1082 |
+
"source": [
|
1083 |
+
"We can forward the training arguments to the 🤗 Trainer along with our model,\n",
|
1084 |
+
"dataset, data collator and `compute_metrics` function:"
|
1085 |
+
]
|
1086 |
+
},
|
1087 |
+
{
|
1088 |
+
"cell_type": "code",
|
1089 |
+
"execution_count": null,
|
1090 |
+
"id": "d546d7fe-0543-479a-b708-2ebabec19493",
|
1091 |
+
"metadata": {
|
1092 |
+
"id": "d546d7fe-0543-479a-b708-2ebabec19493"
|
1093 |
+
},
|
1094 |
+
"outputs": [],
|
1095 |
+
"source": [
|
1096 |
+
"from transformers import Seq2SeqTrainer\n",
|
1097 |
+
"\n",
|
1098 |
+
"trainer = Seq2SeqTrainer(\n",
|
1099 |
+
" args=training_args,\n",
|
1100 |
+
" model=model,\n",
|
1101 |
+
" train_dataset=common_voice[\"train\"],\n",
|
1102 |
+
" eval_dataset=common_voice[\"test\"],\n",
|
1103 |
+
" data_collator=data_collator,\n",
|
1104 |
+
" compute_metrics=compute_metrics,\n",
|
1105 |
+
" tokenizer=processor.feature_extractor,\n",
|
1106 |
+
")"
|
1107 |
+
]
|
1108 |
+
},
|
1109 |
+
{
|
1110 |
+
"cell_type": "markdown",
|
1111 |
+
"id": "uOrRhDGtN5S4",
|
1112 |
+
"metadata": {
|
1113 |
+
"id": "uOrRhDGtN5S4"
|
1114 |
+
},
|
1115 |
+
"source": [
|
1116 |
+
"We'll save the processor object once before starting training. Since the processor is not trainable, it won't change over the course of training:"
|
1117 |
+
]
|
1118 |
+
},
|
1119 |
+
{
|
1120 |
+
"cell_type": "code",
|
1121 |
+
"execution_count": null,
|
1122 |
+
"id": "-2zQwMfEOBJq",
|
1123 |
+
"metadata": {
|
1124 |
+
"id": "-2zQwMfEOBJq"
|
1125 |
+
},
|
1126 |
+
"outputs": [],
|
1127 |
+
"source": [
|
1128 |
+
"processor.save_pretrained(training_args.output_dir)"
|
1129 |
+
]
|
1130 |
+
},
|
1131 |
+
{
|
1132 |
+
"cell_type": "markdown",
|
1133 |
+
"id": "7f404cf9-4345-468c-8196-4bd101d9bd51",
|
1134 |
+
"metadata": {
|
1135 |
+
"id": "7f404cf9-4345-468c-8196-4bd101d9bd51"
|
1136 |
+
},
|
1137 |
+
"source": [
|
1138 |
+
"### Training"
|
1139 |
+
]
|
1140 |
+
},
|
1141 |
+
{
|
1142 |
+
"cell_type": "markdown",
|
1143 |
+
"id": "5e8b8d56-5a70-4f68-bd2e-f0752d0bd112",
|
1144 |
+
"metadata": {
|
1145 |
+
"id": "5e8b8d56-5a70-4f68-bd2e-f0752d0bd112"
|
1146 |
+
},
|
1147 |
+
"source": [
|
1148 |
+
"Training will take approximately 5-10 hours depending on your GPU or the one \n",
|
1149 |
+
"allocated to this Google Colab. If using this Google Colab directly to \n",
|
1150 |
+
"fine-tune a Whisper model, you should make sure that training isn't \n",
|
1151 |
+
"interrupted due to inactivity. A simple workaround to prevent this is \n",
|
1152 |
+
"to paste the following code into the console of this tab (_right mouse click_ \n",
|
1153 |
+
"-> _inspect_ -> _Console tab_ -> _insert code_)."
|
1154 |
+
]
|
1155 |
+
},
|
1156 |
+
{
|
1157 |
+
"cell_type": "markdown",
|
1158 |
+
"id": "890a63ed-e87b-4e53-a35a-6ec1eca560af",
|
1159 |
+
"metadata": {
|
1160 |
+
"id": "890a63ed-e87b-4e53-a35a-6ec1eca560af"
|
1161 |
+
},
|
1162 |
+
"source": [
|
1163 |
+
"```javascript\n",
|
1164 |
+
"function ConnectButton(){\n",
|
1165 |
+
" console.log(\"Connect pushed\"); \n",
|
1166 |
+
" document.querySelector(\"#top-toolbar > colab-connect-button\").shadowRoot.querySelector(\"#connect\").click() \n",
|
1167 |
+
"}\n",
|
1168 |
+
"setInterval(ConnectButton, 60000);\n",
|
1169 |
+
"```"
|
1170 |
+
]
|
1171 |
+
},
|
1172 |
+
{
|
1173 |
+
"cell_type": "markdown",
|
1174 |
+
"id": "5a55168b-2f46-4678-afa0-ff22257ec06d",
|
1175 |
+
"metadata": {
|
1176 |
+
"id": "5a55168b-2f46-4678-afa0-ff22257ec06d"
|
1177 |
+
},
|
1178 |
+
"source": [
|
1179 |
+
"The peak GPU memory for the given training configuration is approximately 15.8GB. \n",
|
1180 |
+
"Depending on the GPU allocated to the Google Colab, it is possible that you will encounter a CUDA `\"out-of-memory\"` error when you launch training. \n",
|
1181 |
+
"In this case, you can reduce the `per_device_train_batch_size` incrementally by factors of 2 \n",
|
1182 |
+
"and employ [`gradient_accumulation_steps`](https://huggingface.co/docs/transformers/main_classes/trainer#transformers.Seq2SeqTrainingArguments.gradient_accumulation_steps)\n",
|
1183 |
+
"to compensate.\n",
|
1184 |
+
"\n",
|
1185 |
+
"To launch training, simply execute:"
|
1186 |
+
]
|
1187 |
+
},
|
1188 |
+
{
|
1189 |
+
"cell_type": "code",
|
1190 |
+
"execution_count": null,
|
1191 |
+
"id": "ee8b7b8e-1c9a-4d77-9137-1778a629e6de",
|
1192 |
+
"metadata": {
|
1193 |
+
"id": "ee8b7b8e-1c9a-4d77-9137-1778a629e6de"
|
1194 |
+
},
|
1195 |
+
"outputs": [],
|
1196 |
+
"source": [
|
1197 |
+
"trainer.train()"
|
1198 |
+
]
|
1199 |
+
},
|
1200 |
+
{
|
1201 |
+
"cell_type": "markdown",
|
1202 |
+
"id": "810ced54-7187-4a06-b2fe-ba6dcca94dc3",
|
1203 |
+
"metadata": {
|
1204 |
+
"id": "810ced54-7187-4a06-b2fe-ba6dcca94dc3"
|
1205 |
+
},
|
1206 |
+
"source": [
|
1207 |
+
"Our best WER is 32.0% - not bad for 8h of training data! We can submit our checkpoint to the [`hf-speech-bench`](https://huggingface.co/spaces/huggingface/hf-speech-bench) on push by setting the appropriate key-word arguments (kwargs):"
|
1208 |
+
]
|
1209 |
+
},
|
1210 |
+
{
|
1211 |
+
"cell_type": "code",
|
1212 |
+
"execution_count": null,
|
1213 |
+
"id": "c704f91e-241b-48c9-b8e0-f0da396a9663",
|
1214 |
+
"metadata": {
|
1215 |
+
"id": "c704f91e-241b-48c9-b8e0-f0da396a9663"
|
1216 |
+
},
|
1217 |
+
"outputs": [],
|
1218 |
+
"source": [
|
1219 |
+
"kwargs = {\n",
|
1220 |
+
" \"dataset_tags\": \"mozilla-foundation/common_voice_11_0\",\n",
|
1221 |
+
" \"dataset\": \"Common Voice 11.0\", # a 'pretty' name for the training dataset\n",
|
1222 |
+
" \"dataset_args\": \"config: hi, split: test\",\n",
|
1223 |
+
" \"language\": \"hi\",\n",
|
1224 |
+
" \"model_name\": \"Whisper Small Hi - Sanchit Gandhi\", # a 'pretty' name for our model\n",
|
1225 |
+
" \"finetuned_from\": \"openai/whisper-small\",\n",
|
1226 |
+
" \"tasks\": \"automatic-speech-recognition\",\n",
|
1227 |
+
" \"tags\": \"hf-asr-leaderboard\",\n",
|
1228 |
+
"}"
|
1229 |
+
]
|
1230 |
+
},
|
1231 |
+
{
|
1232 |
+
"cell_type": "markdown",
|
1233 |
+
"id": "090d676a-f944-4297-a938-a40eda0b2b68",
|
1234 |
+
"metadata": {
|
1235 |
+
"id": "090d676a-f944-4297-a938-a40eda0b2b68"
|
1236 |
+
},
|
1237 |
+
"source": [
|
1238 |
+
"The training results can now be uploaded to the Hub. To do so, execute the `push_to_hub` command and save the preprocessor object we created:"
|
1239 |
+
]
|
1240 |
+
},
|
1241 |
+
{
|
1242 |
+
"cell_type": "code",
|
1243 |
+
"execution_count": null,
|
1244 |
+
"id": "d7030622-caf7-4039-939b-6195cdaa2585",
|
1245 |
+
"metadata": {
|
1246 |
+
"id": "d7030622-caf7-4039-939b-6195cdaa2585"
|
1247 |
+
},
|
1248 |
+
"outputs": [],
|
1249 |
+
"source": [
|
1250 |
+
"trainer.push_to_hub(**kwargs)"
|
1251 |
+
]
|
1252 |
+
},
|
1253 |
+
{
|
1254 |
+
"cell_type": "markdown",
|
1255 |
+
"id": "34d4360d-5721-426e-b6ac-178f833fedeb",
|
1256 |
+
"metadata": {
|
1257 |
+
"id": "34d4360d-5721-426e-b6ac-178f833fedeb"
|
1258 |
+
},
|
1259 |
+
"source": [
|
1260 |
+
"## Building a Demo"
|
1261 |
+
]
|
1262 |
+
},
|
1263 |
+
{
|
1264 |
+
"cell_type": "markdown",
|
1265 |
+
"id": "e65489b7-18d1-447c-ba69-cd28dd80dad9",
|
1266 |
+
"metadata": {
|
1267 |
+
"id": "e65489b7-18d1-447c-ba69-cd28dd80dad9"
|
1268 |
+
},
|
1269 |
+
"source": [
|
1270 |
+
"Now that we've fine-tuned our model we can build a demo to show \n",
|
1271 |
+
"off its ASR capabilities! We'll make use of 🤗 Transformers \n",
|
1272 |
+
"`pipeline`, which will take care of the entire ASR pipeline, \n",
|
1273 |
+
"right from pre-processing the audio inputs to decoding the \n",
|
1274 |
+
"model predictions.\n",
|
1275 |
+
"\n",
|
1276 |
+
"Running the example below will generate a Gradio demo where we \n",
|
1277 |
+
"can record speech through the microphone of our computer and input it to \n",
|
1278 |
+
"our fine-tuned Whisper model to transcribe the corresponding text:"
|
1279 |
+
]
|
1280 |
+
},
|
1281 |
+
{
|
1282 |
+
"cell_type": "code",
|
1283 |
+
"execution_count": null,
|
1284 |
+
"id": "e0ace3aa-1ef3-45cb-933f-6ddca037c5aa",
|
1285 |
+
"metadata": {
|
1286 |
+
"id": "e0ace3aa-1ef3-45cb-933f-6ddca037c5aa"
|
1287 |
+
},
|
1288 |
+
"outputs": [],
|
1289 |
+
"source": [
|
1290 |
+
"from transformers import pipeline\n",
|
1291 |
+
"import gradio as gr\n",
|
1292 |
+
"\n",
|
1293 |
+
"pipe = pipeline(model=\"sanchit-gandhi/whisper-small-hi\") # change to \"your-username/the-name-you-picked\"\n",
|
1294 |
+
"\n",
|
1295 |
+
"def transcribe(audio):\n",
|
1296 |
+
" text = pipe(audio)[\"text\"]\n",
|
1297 |
+
" return text\n",
|
1298 |
+
"\n",
|
1299 |
+
"iface = gr.Interface(\n",
|
1300 |
+
" fn=transcribe, \n",
|
1301 |
+
" inputs=gr.Audio(source=\"microphone\", type=\"filepath\"), \n",
|
1302 |
+
" outputs=\"text\",\n",
|
1303 |
+
" title=\"Whisper Small Hindi\",\n",
|
1304 |
+
" description=\"Realtime demo for Hindi speech recognition using a fine-tuned Whisper small model.\",\n",
|
1305 |
+
")\n",
|
1306 |
+
"\n",
|
1307 |
+
"iface.launch()"
|
1308 |
+
]
|
1309 |
+
},
|
1310 |
+
{
|
1311 |
+
"cell_type": "markdown",
|
1312 |
+
"id": "ca743fbd-602c-48d4-ba8d-a2fe60af64ba",
|
1313 |
+
"metadata": {
|
1314 |
+
"id": "ca743fbd-602c-48d4-ba8d-a2fe60af64ba"
|
1315 |
+
},
|
1316 |
+
"source": [
|
1317 |
+
"## Closing Remarks"
|
1318 |
+
]
|
1319 |
+
},
|
1320 |
+
{
|
1321 |
+
"cell_type": "markdown",
|
1322 |
+
"id": "7f737783-2870-4e35-aa11-86a42d7d997a",
|
1323 |
+
"metadata": {
|
1324 |
+
"id": "7f737783-2870-4e35-aa11-86a42d7d997a"
|
1325 |
+
},
|
1326 |
+
"source": [
|
1327 |
+
"In this blog, we covered a step-by-step guide on fine-tuning Whisper for multilingual ASR \n",
|
1328 |
+
"using 🤗 Datasets, Transformers and the Hugging Face Hub. For more details on the Whisper model, the Common Voice dataset and the theory behind fine-tuning, refere to the accompanying [blog post](https://huggingface.co/blog/fine-tune-whisper). If you're interested in fine-tuning other \n",
|
1329 |
+
"Transformers models, both for English and multilingual ASR, be sure to check out the \n",
|
1330 |
+
"examples scripts at [examples/pytorch/speech-recognition](https://github.com/huggingface/transformers/tree/main/examples/pytorch/speech-recognition)."
|
1331 |
+
]
|
1332 |
+
}
|
1333 |
+
],
|
1334 |
+
"metadata": {
|
1335 |
+
"colab": {
|
1336 |
+
"provenance": []
|
1337 |
+
},
|
1338 |
+
"kernelspec": {
|
1339 |
+
"display_name": "Python 3.9.13",
|
1340 |
+
"language": "python",
|
1341 |
+
"name": "python3"
|
1342 |
+
},
|
1343 |
+
"language_info": {
|
1344 |
+
"codemirror_mode": {
|
1345 |
+
"name": "ipython",
|
1346 |
+
"version": 3
|
1347 |
+
},
|
1348 |
+
"file_extension": ".py",
|
1349 |
+
"mimetype": "text/x-python",
|
1350 |
+
"name": "python",
|
1351 |
+
"nbconvert_exporter": "python",
|
1352 |
+
"pygments_lexer": "ipython3",
|
1353 |
+
"version": "3.9.13"
|
1354 |
+
},
|
1355 |
+
"vscode": {
|
1356 |
+
"interpreter": {
|
1357 |
+
"hash": "38cca0c38332a56087b24af0bc80247f4fced29cb4f7f437d91dc159adec9c4e"
|
1358 |
+
}
|
1359 |
+
}
|
1360 |
+
},
|
1361 |
+
"nbformat": 4,
|
1362 |
+
"nbformat_minor": 5
|
1363 |
+
}
|
fine_tune_whisper_mac.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
imam_short_ayahs.tsv
DELETED
The diff for this file is too large to render.
See raw diff
|
|
users_mixed.tsv → metadata.csv
RENAMED
The diff for this file is too large to render.
See raw diff
|
|