init
Browse files- experiment_cache/.DS_Store +0 -0
- experiment_speaker_verification.py +21 -18
- model_hubert.py +8 -1
experiment_cache/.DS_Store
CHANGED
Binary files a/experiment_cache/.DS_Store and b/experiment_cache/.DS_Store differ
|
|
experiment_speaker_verification.py
CHANGED
@@ -19,8 +19,7 @@ from model_pyannote_embedding import PyannoteEmbedding
|
|
19 |
from model_w2v_bert import W2VBERTEmbedding
|
20 |
from model_clap import CLAPEmbedding, CLAPGeneralEmbedding
|
21 |
from model_xls import XLSREmbedding
|
22 |
-
from model_hubert import
|
23 |
-
|
24 |
|
25 |
|
26 |
def get_embedding(model_class, model_name: str, dataset_name: str, data_split: str):
|
@@ -68,7 +67,6 @@ def cluster_embedding(model_name, dataset_name, label_name: str):
|
|
68 |
]
|
69 |
cluster_df = pd.DataFrame(cluster_info)
|
70 |
cluster_df.to_csv(file_path_cluster, index=False)
|
71 |
-
# cluster_df = pd.read_csv(file_path_cluster)
|
72 |
|
73 |
file_path_tsne = p_join("experiment_cache", "tsne", f"{model_name}.{os.path.basename(dataset_name)}.{label_name}.npy")
|
74 |
if not os.path.exists(file_path_tsne):
|
@@ -123,45 +121,50 @@ if __name__ == '__main__':
|
|
123 |
# get_embedding(W2VBERTEmbedding, "w2v_bert_se", "asahi417/voxceleb1-test-split", "test")
|
124 |
# get_embedding(CLAPEmbedding, "clap_se", "asahi417/voxceleb1-test-split", "test")
|
125 |
# get_embedding(CLAPGeneralEmbedding, "clap_general_se", "asahi417/voxceleb1-test-split", "test")
|
126 |
-
get_embedding(XLSREmbedding, "xlsr_se", "asahi417/voxceleb1-test-split", "test")
|
127 |
-
get_embedding(
|
128 |
-
get_embedding(
|
|
|
129 |
|
130 |
# get_embedding(MetaVoiceEmbedding, "meta_voice_se", "ylacombe/expresso", "train")
|
131 |
# get_embedding(PyannoteEmbedding, "pyannote_se", "ylacombe/expresso", "train")
|
132 |
# get_embedding(W2VBERTEmbedding, "w2v_bert_se", "ylacombe/expresso", "train")
|
133 |
# get_embedding(CLAPEmbedding, "clap_se", "ylacombe/expresso", "train")
|
134 |
# get_embedding(CLAPGeneralEmbedding, "clap_general_se", "ylacombe/expresso", "train")
|
135 |
-
get_embedding(XLSREmbedding, "xlsr_se", "ylacombe/expresso", "train")
|
136 |
-
get_embedding(
|
137 |
-
get_embedding(
|
|
|
138 |
|
139 |
# cluster_embedding("meta_voice_se", "asahi417/voxceleb1-test-split", "speaker_id")
|
140 |
# cluster_embedding("pyannote_se", "asahi417/voxceleb1-test-split", "speaker_id")
|
141 |
# cluster_embedding("w2v_bert_se", "asahi417/voxceleb1-test-split", "speaker_id")
|
142 |
# cluster_embedding("clap_se", "asahi417/voxceleb1-test-split", "speaker_id")
|
143 |
# cluster_embedding("clap_general_se", "asahi417/voxceleb1-test-split", "speaker_id")
|
144 |
-
cluster_embedding("xlsr_se", "asahi417/voxceleb1-test-split", "speaker_id")
|
145 |
-
cluster_embedding("
|
146 |
-
cluster_embedding("
|
|
|
147 |
|
148 |
# cluster_embedding("meta_voice_se", "ylacombe/expresso", "speaker_id")
|
149 |
# cluster_embedding("pyannote_se", "ylacombe/expresso", "speaker_id")
|
150 |
# cluster_embedding("w2v_bert_se", "ylacombe/expresso", "speaker_id")
|
151 |
# cluster_embedding("clap_se", "ylacombe/expresso", "speaker_id")
|
152 |
# cluster_embedding("clap_general_se", "ylacombe/expresso", "speaker_id")
|
153 |
-
cluster_embedding("xlsr_se", "ylacombe/expresso", "speaker_id")
|
154 |
-
cluster_embedding("
|
155 |
-
cluster_embedding("
|
|
|
156 |
|
157 |
# cluster_embedding("meta_voice_se", "ylacombe/expresso", "style")
|
158 |
# cluster_embedding("pyannote_se", "ylacombe/expresso", "style")
|
159 |
# cluster_embedding("w2v_bert_se", "ylacombe/expresso", "style")
|
160 |
# cluster_embedding("clap_se", "ylacombe/expresso", "style")
|
161 |
# cluster_embedding("clap_general_se", "ylacombe/expresso", "style")
|
162 |
-
cluster_embedding("xlsr_se", "ylacombe/expresso", "style")
|
163 |
-
cluster_embedding("
|
164 |
-
cluster_embedding("
|
|
|
165 |
|
166 |
|
167 |
|
|
|
19 |
from model_w2v_bert import W2VBERTEmbedding
|
20 |
from model_clap import CLAPEmbedding, CLAPGeneralEmbedding
|
21 |
from model_xls import XLSREmbedding
|
22 |
+
from model_hubert import HuBERTBaseEmbedding, HuBERTLargeEmbedding, HuBERTXLEmbedding
|
|
|
23 |
|
24 |
|
25 |
def get_embedding(model_class, model_name: str, dataset_name: str, data_split: str):
|
|
|
67 |
]
|
68 |
cluster_df = pd.DataFrame(cluster_info)
|
69 |
cluster_df.to_csv(file_path_cluster, index=False)
|
|
|
70 |
|
71 |
file_path_tsne = p_join("experiment_cache", "tsne", f"{model_name}.{os.path.basename(dataset_name)}.{label_name}.npy")
|
72 |
if not os.path.exists(file_path_tsne):
|
|
|
121 |
# get_embedding(W2VBERTEmbedding, "w2v_bert_se", "asahi417/voxceleb1-test-split", "test")
|
122 |
# get_embedding(CLAPEmbedding, "clap_se", "asahi417/voxceleb1-test-split", "test")
|
123 |
# get_embedding(CLAPGeneralEmbedding, "clap_general_se", "asahi417/voxceleb1-test-split", "test")
|
124 |
+
# get_embedding(XLSREmbedding, "xlsr_se", "asahi417/voxceleb1-test-split", "test")
|
125 |
+
get_embedding(HuBERTBaseEmbedding, "hubert_base_se", "asahi417/voxceleb1-test-split", "test")
|
126 |
+
# get_embedding(HuBERTLargeEmbedding, "hubert_large_se", "asahi417/voxceleb1-test-split", "test")
|
127 |
+
# get_embedding(HuBERTXLEmbedding, "hubert_xl_se", "asahi417/voxceleb1-test-split", "test")
|
128 |
|
129 |
# get_embedding(MetaVoiceEmbedding, "meta_voice_se", "ylacombe/expresso", "train")
|
130 |
# get_embedding(PyannoteEmbedding, "pyannote_se", "ylacombe/expresso", "train")
|
131 |
# get_embedding(W2VBERTEmbedding, "w2v_bert_se", "ylacombe/expresso", "train")
|
132 |
# get_embedding(CLAPEmbedding, "clap_se", "ylacombe/expresso", "train")
|
133 |
# get_embedding(CLAPGeneralEmbedding, "clap_general_se", "ylacombe/expresso", "train")
|
134 |
+
# get_embedding(XLSREmbedding, "xlsr_se", "ylacombe/expresso", "train")
|
135 |
+
get_embedding(HuBERTBaseEmbedding, "hubert_base_se", "ylacombe/expresso", "train")
|
136 |
+
# get_embedding(HuBERTLargeEmbedding, "hubert_large_se", "ylacombe/expresso", "train")
|
137 |
+
# get_embedding(HuBERTXLEmbedding, "hubert_xl_se", "ylacombe/expresso", "train")
|
138 |
|
139 |
# cluster_embedding("meta_voice_se", "asahi417/voxceleb1-test-split", "speaker_id")
|
140 |
# cluster_embedding("pyannote_se", "asahi417/voxceleb1-test-split", "speaker_id")
|
141 |
# cluster_embedding("w2v_bert_se", "asahi417/voxceleb1-test-split", "speaker_id")
|
142 |
# cluster_embedding("clap_se", "asahi417/voxceleb1-test-split", "speaker_id")
|
143 |
# cluster_embedding("clap_general_se", "asahi417/voxceleb1-test-split", "speaker_id")
|
144 |
+
# cluster_embedding("xlsr_se", "asahi417/voxceleb1-test-split", "speaker_id")
|
145 |
+
cluster_embedding("hubert_base_se", "asahi417/voxceleb1-test-split", "speaker_id")
|
146 |
+
# cluster_embedding("hubert_large_se", "asahi417/voxceleb1-test-split", "speaker_id")
|
147 |
+
# cluster_embedding("hubert_xl_se", "asahi417/voxceleb1-test-split", "speaker_id")
|
148 |
|
149 |
# cluster_embedding("meta_voice_se", "ylacombe/expresso", "speaker_id")
|
150 |
# cluster_embedding("pyannote_se", "ylacombe/expresso", "speaker_id")
|
151 |
# cluster_embedding("w2v_bert_se", "ylacombe/expresso", "speaker_id")
|
152 |
# cluster_embedding("clap_se", "ylacombe/expresso", "speaker_id")
|
153 |
# cluster_embedding("clap_general_se", "ylacombe/expresso", "speaker_id")
|
154 |
+
# cluster_embedding("xlsr_se", "ylacombe/expresso", "speaker_id")
|
155 |
+
cluster_embedding("hubert_base_se", "ylacombe/expresso", "speaker_id")
|
156 |
+
# cluster_embedding("hubert_large_se", "ylacombe/expresso", "speaker_id")
|
157 |
+
# cluster_embedding("hubert_xl_se", "ylacombe/expresso", "speaker_id")
|
158 |
|
159 |
# cluster_embedding("meta_voice_se", "ylacombe/expresso", "style")
|
160 |
# cluster_embedding("pyannote_se", "ylacombe/expresso", "style")
|
161 |
# cluster_embedding("w2v_bert_se", "ylacombe/expresso", "style")
|
162 |
# cluster_embedding("clap_se", "ylacombe/expresso", "style")
|
163 |
# cluster_embedding("clap_general_se", "ylacombe/expresso", "style")
|
164 |
+
# cluster_embedding("xlsr_se", "ylacombe/expresso", "style")
|
165 |
+
cluster_embedding("hubert_base_se", "ylacombe/expresso", "style")
|
166 |
+
# cluster_embedding("hubert_large_se", "ylacombe/expresso", "style")
|
167 |
+
# cluster_embedding("hubert_xl_se", "ylacombe/expresso", "style")
|
168 |
|
169 |
|
170 |
|
model_hubert.py
CHANGED
@@ -26,9 +26,16 @@ class HuBERTXLEmbedding:
|
|
26 |
inputs = self.processor(wav, sampling_rate=self.processor.sampling_rate, return_tensors="pt")
|
27 |
with torch.no_grad():
|
28 |
outputs = self.model(**{k: v.to(self.device) for k, v in inputs.items()})
|
29 |
-
return outputs
|
|
|
30 |
|
31 |
|
32 |
class HuBERTLargeEmbedding(HuBERTXLEmbedding):
|
33 |
def __init__(self):
|
34 |
super().__init__("facebook/hubert-large-ll60k")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
inputs = self.processor(wav, sampling_rate=self.processor.sampling_rate, return_tensors="pt")
|
27 |
with torch.no_grad():
|
28 |
outputs = self.model(**{k: v.to(self.device) for k, v in inputs.items()})
|
29 |
+
return outputs
|
30 |
+
# return outputs.last_hidden_state.mean(1).cpu().numpy()[0]
|
31 |
|
32 |
|
33 |
class HuBERTLargeEmbedding(HuBERTXLEmbedding):
|
34 |
def __init__(self):
|
35 |
super().__init__("facebook/hubert-large-ll60k")
|
36 |
+
|
37 |
+
|
38 |
+
class HuBERTBaseEmbedding(HuBERTXLEmbedding):
|
39 |
+
def __init__(self):
|
40 |
+
super().__init__("facebook/hubert-base-ls960")
|
41 |
+
|