|
import json |
|
import os |
|
from os.path import join as p_join |
|
from tqdm import tqdm |
|
from time import time |
|
from datasets import load_dataset |
|
|
|
from model_meta_voice import MetaVoiceSE |
|
from model_pyannote_embedding import PyannoteSE |
|
from model_w2v_bert import W2VBertSE |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_embedding(model_class, model_name: str, dataset_name: str): |
|
dataset = load_dataset(dataset_name, split="test") |
|
file_path = p_join("experiment_cache", "embeddings", f"{model_name}.{os.path.basename(dataset_name)}.json") |
|
os.makedirs(os.path.dirname(file_path), exist_ok=True) |
|
if os.path.exists(file_path): |
|
return |
|
model = model_class() |
|
embeddings = [] |
|
for i in tqdm(dataset, total=len(dataset)): |
|
start = time() |
|
v = model.get_speaker_embedding(i["audio"]["array"], i["audio"]["sampling_rate"]) |
|
tmp = { |
|
"model": model_name, |
|
"embedding": v.tolist(), |
|
"sampling_rate": i["audio"]["sampling_rate"], |
|
"process_time": time() - start, |
|
"dataset_name": os.path.basename(dataset_name) |
|
} |
|
tmp.update({k: v for k, v in i.items() if k != "audio"}) |
|
embeddings.append(tmp) |
|
with open(file_path, "w") as f: |
|
f.write("\n".join([json.dumps(i) for i in embeddings])) |
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
get_embedding(MetaVoiceSE, "meta_voice_se", "asahi417/voxceleb1-test-split") |
|
|
|
get_embedding(W2VBertSE, "w2v_bert_se", "asahi417/voxceleb1-test-split") |
|
get_embedding(MetaVoiceSE, "meta_voice_se", "ylacombe/expresso") |
|
|
|
get_embedding(W2VBertSE, "w2v_bert_se", "ylacombe/expresso") |
|
|
|
|
|
|
|
|