|
import json |
|
import os |
|
import tarfile |
|
import zipfile |
|
import gzip |
|
import subprocess |
|
from os.path import join as p_join |
|
from math import ceil, floor |
|
from tqdm import tqdm |
|
from multiprocessing import Pool |
|
from typing import Optional, Dict |
|
from glob import glob |
|
|
|
|
|
import pandas as pd |
|
import soundfile as sf |
|
from datasets import Dataset, Audio, DatasetDict |
|
|
|
audio_loader = Audio() |
|
|
|
url_metadata_dict = { |
|
"enA-jaA": "https://dl.fbaipublicfiles.com/seamless/data/seamless_align_nov2023_extension/seamless.dataset.metadata.public.enA-jaA.tsv.gz", |
|
"enA-zhA": "https://dl.fbaipublicfiles.com/seamless/data/seamless_align_nov2023_extension/seamless.dataset.metadata.public.enA-zhA.tsv.gz", |
|
"enA-viA": "https://dl.fbaipublicfiles.com/seamless/data/seamless_align_nov2023_extension/seamless.dataset.metadata.public.enA-viA.tsv.gz", |
|
} |
|
direction = os.getenv("DIRECTION", "enA-jaA") |
|
if direction not in url_metadata_dict: |
|
a, b = direction.split("-") |
|
url_metadata_dict[direction] = f"https://dl.fbaipublicfiles.com/seamless/data/seamless_align_nov2023_extension/seamless.dataset.metadata.public.{a}-{b}.tsv.gz" |
|
sides = set(direction.split("-")) |
|
cache_dir_audio = p_join("download", "audio", direction) |
|
cache_dir_feature = p_join("download", "feature", direction) |
|
os.makedirs(cache_dir_feature, exist_ok=True) |
|
for s in sides: |
|
os.makedirs(p_join(cache_dir_audio, s), exist_ok=True) |
|
|
|
n_pool = int(os.getenv("N_POOL", 1)) |
|
wget_max_retry = os.getenv("MAX_RETRY", "2") |
|
wget_timeout = os.getenv("TIMEOUT", "20") |
|
line_no_start = int(os.getenv("LINE_NO_START", 0)) |
|
line_no_end = int(os.getenv("LINE_NO_END", 10000)) |
|
dataset_id = os.getenv("DATASET_ID", 0) |
|
hf_org = os.getenv("HF_ORG", "asahi417") |
|
hf_dataset = os.getenv("HF_DATASET", f"seamless-align-{direction}") |
|
skip_download = bool(int(os.getenv("SKIP_DOWNLOAD", 0))) |
|
sampling_rate = 16000 |
|
|
|
|
|
def wget(url: str, output_file: Optional[str] = None): |
|
os.makedirs(os.path.dirname(output_file), exist_ok=True) |
|
subprocess.run(["wget", url, "-O", output_file, "--tries", wget_max_retry, "--timeout", wget_timeout]) |
|
if not os.path.exists(output_file): |
|
return False |
|
if output_file.endswith('.tar.gz') or output_file.endswith('.tgz') or output_file.endswith('.tar'): |
|
if output_file.endswith('.tar'): |
|
tar = tarfile.open(output_file) |
|
else: |
|
tar = tarfile.open(output_file, "r:gz") |
|
tar.extractall(os.path.dirname(output_file)) |
|
tar.close() |
|
os.remove(output_file) |
|
elif output_file.endswith('.gz'): |
|
with gzip.open(output_file, 'rb') as f: |
|
with open(output_file.replace('.gz', ''), 'wb') as f_write: |
|
f_write.write(f.read()) |
|
os.remove(output_file) |
|
elif output_file.endswith('.zip'): |
|
with zipfile.ZipFile(output_file, 'r') as zip_ref: |
|
zip_ref.extractall() |
|
os.remove(output_file) |
|
return True |
|
|
|
|
|
def get_metadata(): |
|
url_metadata = url_metadata_dict[direction] |
|
meta_data_filename = os.path.basename(url_metadata) |
|
meta_data_path = p_join("download", "meta", meta_data_filename) |
|
if not os.path.exists(meta_data_path.replace(".gz", "")): |
|
assert wget(url_metadata, output_file=meta_data_path) |
|
df = pd.read_csv(meta_data_path.replace(".gz", ""), sep=r'[\t\s]', header=None) |
|
df = df[[0, 2, 3, 4, 9, 10, 11, 12]] |
|
df.columns = ["id", "url", "duration_start", "duration_end", "laser_score", "direction", "side", "line_no"] |
|
if direction == "enA-jpn": |
|
df = df[df["side"] == "enA"] |
|
assert len(df["direction"].unique()) == 1 |
|
df.pop("direction") |
|
return df.sort_values(by=["line_no", "side"]) |
|
|
|
|
|
def to_json_serializable(val): |
|
if "float" in str(type(val)): |
|
return float(val) |
|
if "int" in str(type(val)): |
|
return int(val) |
|
return str(val) |
|
|
|
|
|
def cleanup(features, feature_file): |
|
if os.path.exists(feature_file): |
|
os.remove(feature_file) |
|
for _side in sides: |
|
for _unrelated_audio_file in glob(p_join(cache_dir_audio, _side, f"{features['line_no']}.*")): |
|
os.remove(_unrelated_audio_file) |
|
|
|
with open(feature_file, "w") as f: |
|
json.dump({"dummy": "dummy"}, f) |
|
|
|
|
|
def get_audio(dataframe: pd.DataFrame): |
|
features = {"line_no": int(dataframe.pop('line_no').values[0])} |
|
feature_file = p_join(cache_dir_feature, f'{features["line_no"]}.json') |
|
for side, df in dataframe.groupby("side"): |
|
df.pop("side") |
|
features.update({f"{side}.{k}": to_json_serializable(v) for k, v in df.iloc[0].to_dict().items()}) |
|
identifier = os.path.basename(features[f"{side}.url"]).split(".")[-1] |
|
features[f"{side}.path"] = str(p_join(cache_dir_audio, side, f"{features['line_no']}.{identifier}")) |
|
start, end = features[f"{side}.duration_start"], features[f"{side}.duration_end"] |
|
if not os.path.exists(features[f"{side}.path"]): |
|
print(f"WGET {features[f'{side}.url']}") |
|
flag = wget(features[f"{side}.url"], output_file=features[f"{side}.path"]) |
|
if not flag: |
|
print("\n#### ERROR: wget failure ####\n") |
|
cleanup(features, feature_file) |
|
return None |
|
else: |
|
try: |
|
print(f"LOAD AUDIO FROM {features[f'{side}.path']}") |
|
wav, sr = sf.read(features[f"{side}.path"]) |
|
print(f"wav shape:{wav.shape}") |
|
if wav.ndim > 1: |
|
wav = wav[:, 0] |
|
wav = wav[floor(start / sampling_rate * sr):ceil(end / sampling_rate * sr)] |
|
print(f"wav shape (after truncate):{wav.shape}") |
|
wav = wav[:int(end/sampling_rate * sr) + sr] |
|
print(f"SAVING: {features[f'{side}.path']}") |
|
sf.write(features[f"{side}.path"], wav, sr) |
|
|
|
|
|
|
|
|
|
|
|
except Exception as e: |
|
print(f"\n#### ERROR ####\n {e}") |
|
cleanup(features, feature_file) |
|
return None |
|
print(f"\n### SUCCESS! ###\n:{features['line_no']}") |
|
with open(feature_file, "w") as f: |
|
json.dump(features, f) |
|
return features["line_no"] |
|
|
|
|
|
def loader(feature: str) -> Dict: |
|
with open(feature) as f_reader: |
|
return json.load(f_reader) |
|
|
|
|
|
if __name__ == '__main__': |
|
if not skip_download: |
|
df_metadata = get_metadata() |
|
print(f"metadata: {len(df_metadata)}, {line_no_start} --> {line_no_end}") |
|
inputs = [ |
|
g for line_no, g in df_metadata.groupby("line_no") |
|
if line_no_start <= line_no < line_no_end and not os.path.exists( |
|
p_join(cache_dir_feature, f'{int(line_no)}.json') |
|
) |
|
] |
|
print(f"filtered unique lines: {len(inputs)}") |
|
inputs = [g for g in inputs if len(g["side"].unique()) == 2 and set(g["side"].unique()) == sides] |
|
print(f"removed side != 2: {len(inputs)}") |
|
|
|
if n_pool == 1: |
|
for g in tqdm(inputs, total=len(inputs)): |
|
line_no = get_audio(g) |
|
else: |
|
with Pool(n_pool) as pool: |
|
for line_no in pool.imap_unordered(get_audio, inputs): |
|
if line_no: |
|
print(line_no) |
|
|
|
print("UPLOADING TO HF!!!") |
|
features = [p_join(cache_dir_feature, f'{i}.json') for i in range(line_no_start, line_no_end)] |
|
print(f"- raw feature: {len(features)}") |
|
features = [i for i in features if os.path.exists(i)] |
|
print(f"- path exists: {len(features)}") |
|
features = [loader(i) for i in features] |
|
features = [i for i in features if "dummy" not in i] |
|
print(f"- dummy removed: {len(features)}") |
|
print(f"push {len(features)} records to hub") |
|
data_dict = {} |
|
for side in sides: |
|
data_dict.update({f"{side}.audio": [i.pop(f"{side}.path") for i in features]}) |
|
data_dict.update({k: [i[k] for i in features] for k in features[0].keys()}) |
|
audio_dataset = Dataset.from_dict(data_dict) |
|
for side in sides: |
|
audio_dataset = audio_dataset.cast_column(f"{side}.audio", Audio()) |
|
DatasetDict({"train": audio_dataset}).push_to_hub( |
|
f"{hf_org}/{hf_dataset}", |
|
config_name=f"subset_{dataset_id}" |
|
) |
|
print("clear the workspace") |
|
for i in tqdm(range(line_no_start, line_no_end), total=line_no_end - line_no_start): |
|
for audio_file in glob(p_join(cache_dir_audio, "*", f"{i}.*")): |
|
os.remove(audio_file) |
|
if os.path.exists(p_join(cache_dir_feature, f"{i}.json")): |
|
os.remove(p_join(cache_dir_feature, f"{i}.json")) |
|
|