frascuchon HF staff commited on
Commit
15c59c6
·
1 Parent(s): 865eafb

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +80 -262
README.md CHANGED
@@ -4,140 +4,8 @@ tags:
4
  - rlfh
5
  - argilla
6
  - human-feedback
7
- dataset_info:
8
- features:
9
- - name: title
10
- dtype: string
11
- id: field
12
- - name: question
13
- dtype: string
14
- id: field
15
- - name: answer
16
- dtype: string
17
- id: field
18
- - name: title_question_fit
19
- list:
20
- - name: user_id
21
- dtype: string
22
- id: question
23
- - name: value
24
- dtype: string
25
- id: suggestion
26
- - name: status
27
- dtype: string
28
- id: question
29
- - name: title_question_fit-suggestion
30
- dtype: string
31
- id: suggestion
32
- - name: title_question_fit-suggestion-metadata
33
- struct:
34
- - name: type
35
- dtype: string
36
- id: suggestion-metadata
37
- - name: score
38
- dtype: float32
39
- id: suggestion-metadata
40
- - name: agent
41
- dtype: string
42
- id: suggestion-metadata
43
- - name: tags
44
- list:
45
- - name: user_id
46
- dtype: string
47
- id: question
48
- - name: value
49
- sequence: string
50
- id: suggestion
51
- - name: status
52
- dtype: string
53
- id: question
54
- - name: tags-suggestion
55
- sequence: string
56
- id: suggestion
57
- - name: tags-suggestion-metadata
58
- struct:
59
- - name: type
60
- dtype: string
61
- id: suggestion-metadata
62
- - name: score
63
- dtype: float32
64
- id: suggestion-metadata
65
- - name: agent
66
- dtype: string
67
- id: suggestion-metadata
68
- - name: answer_quality
69
- list:
70
- - name: user_id
71
- dtype: string
72
- id: question
73
- - name: value
74
- dtype: int32
75
- id: suggestion
76
- - name: status
77
- dtype: string
78
- id: question
79
- - name: answer_quality-suggestion
80
- dtype: int32
81
- id: suggestion
82
- - name: answer_quality-suggestion-metadata
83
- struct:
84
- - name: type
85
- dtype: string
86
- id: suggestion-metadata
87
- - name: score
88
- dtype: float32
89
- id: suggestion-metadata
90
- - name: agent
91
- dtype: string
92
- id: suggestion-metadata
93
- - name: new_answer
94
- list:
95
- - name: user_id
96
- dtype: string
97
- id: question
98
- - name: value
99
- dtype: string
100
- id: suggestion
101
- - name: status
102
- dtype: string
103
- id: question
104
- - name: new_answer-suggestion
105
- dtype: string
106
- id: suggestion
107
- - name: new_answer-suggestion-metadata
108
- struct:
109
- - name: type
110
- dtype: string
111
- id: suggestion-metadata
112
- - name: score
113
- dtype: float32
114
- id: suggestion-metadata
115
- - name: agent
116
- dtype: string
117
- id: suggestion-metadata
118
- - name: external_id
119
- dtype: string
120
- id: external_id
121
- - name: metadata
122
- dtype: string
123
- id: metadata
124
- splits:
125
- - name: train
126
- num_bytes: 351704
127
- num_examples: 200
128
- download_size: 208405
129
- dataset_size: 351704
130
- configs:
131
- - config_name: default
132
- data_files:
133
- - split: train
134
- path: data/train-*
135
  ---
136
 
137
- # FAKE RESPONSES NOTIFICATION
138
-
139
- This dataset contains fake responses and is used for demo purposes only.
140
-
141
  # Dataset Card for stackoverflow_feedback_demo
142
 
143
  This dataset has been created with [Argilla](https://docs.argilla.io).
@@ -156,7 +24,7 @@ As shown in the sections below, this dataset can be loaded into Argilla as expla
156
 
157
  This dataset contains:
158
 
159
- * A dataset configuration file conforming to the Argilla dataset format named `argilla.cfg`. This configuration file will be used to configure the dataset when using the `FeedbackDataset.from_huggingface` method in Argilla.
160
 
161
  * Dataset records in a format compatible with HuggingFace `datasets`. These records will be loaded automatically when using `FeedbackDataset.from_huggingface` and can be loaded independently using the `datasets` library via `load_dataset`.
162
 
@@ -184,7 +52,7 @@ ds = load_dataset("argilla/stackoverflow_feedback_demo")
184
 
185
  ### Supported Tasks and Leaderboards
186
 
187
- This dataset can contain [multiple fields, questions and responses](https://docs.argilla.io/en/latest/guides/llms/conceptual_guides/data_model.html) so it can be used for different NLP tasks, depending on the configuration. The dataset structure is described in the [Dataset Structure section](#dataset-structure).
188
 
189
  There are no leaderboards associated with this dataset.
190
 
@@ -196,27 +64,29 @@ There are no leaderboards associated with this dataset.
196
 
197
  ### Data in Argilla
198
 
199
- The dataset is created in Argilla with: **fields**, **questions**, and **guidelines**.
200
 
201
  The **fields** are the dataset records themselves, for the moment just text fields are suppported. These are the ones that will be used to provide responses to the questions.
202
 
203
  | Field Name | Title | Type | Required | Markdown |
204
  | ---------- | ----- | ---- | -------- | -------- |
205
- | title | Title | TextField | True | False |
206
- | question | Question | TextField | True | True |
207
- | answer | Answer | TextField | True | True |
208
 
209
 
210
- The **questions** are the questions that will be asked to the annotators. They can be of different types, such as rating, text, single choice, or multiple choice.
211
 
212
  | Question Name | Title | Type | Required | Description | Values/Labels |
213
  | ------------- | ----- | ---- | -------- | ----------- | ------------- |
214
- | title_question_fit | Does the title match the question? | LabelQuestion | True | N/A | N/A |
215
- | tags | What are the topics mentioned in this question? | MultiLabelQuestion | True | Select all that apply. | N/A |
216
- | answer_quality | Rate the quality of the answer: | RatingQuestion | True | N/A | [1, 2, 3, 4, 5] |
217
- | new_answer | If needed, correct the answer | TextQuestion | True | If the rating is below 4, please provide a corrected answer | N/A |
218
 
219
 
 
 
220
  Finally, the **guidelines** are just a plain string that can be used to provide instructions to the annotators. Find those in the [annotation guidelines](#annotation-guidelines) section.
221
 
222
  ### Data Instances
@@ -231,48 +101,8 @@ An example of a dataset instance in Argilla looks as follows:
231
  "question": "\u003cp\u003eI am using the Photoshop\u0027s javascript API to find the fonts in a given PSD.\u003c/p\u003e\n\n\u003cp\u003eGiven a font name returned by the API, I want to find the actual physical font file that that font name corresponds to on the disc.\u003c/p\u003e\n\n\u003cp\u003eThis is all happening in a python program running on OSX so I guess I\u0027m looking for one of:\u003c/p\u003e\n\n\u003cul\u003e\n\u003cli\u003eSome Photoshop javascript\u003c/li\u003e\n\u003cli\u003eA Python function\u003c/li\u003e\n\u003cli\u003eAn OSX API that I can call from python\u003c/li\u003e\n\u003c/ul\u003e\n",
232
  "title": "How can I find the full path to a font from its display name on a Mac?"
233
  },
234
- "metadata": null,
235
  "responses": [
236
- {
237
- "status": "submitted",
238
- "user_id": null,
239
- "values": {
240
- "answer_quality": {
241
- "value": 1
242
- },
243
- "new_answer": {
244
- "value": "Sample answer"
245
- },
246
- "tags": {
247
- "value": [
248
- "arrays"
249
- ]
250
- },
251
- "title_question_fit": {
252
- "value": "yes"
253
- }
254
- }
255
- },
256
- {
257
- "status": "submitted",
258
- "user_id": null,
259
- "values": {
260
- "answer_quality": {
261
- "value": 5
262
- },
263
- "new_answer": {
264
- "value": "Sample answer"
265
- },
266
- "tags": {
267
- "value": [
268
- "linux"
269
- ]
270
- },
271
- "title_question_fit": {
272
- "value": "no"
273
- }
274
- }
275
- },
276
  {
277
  "status": "submitted",
278
  "user_id": null,
@@ -293,7 +123,8 @@ An example of a dataset instance in Argilla looks as follows:
293
  }
294
  }
295
  }
296
- ]
 
297
  }
298
  ```
299
 
@@ -302,83 +133,63 @@ While the same record in HuggingFace `datasets` looks as follows:
302
  ```json
303
  {
304
  "answer": "\u003cp\u003eUnfortunately the only API that isn\u0027t deprecated is located in the ApplicationServices framework, which doesn\u0027t have a bridge support file, and thus isn\u0027t available in the bridge. If you\u0027re wanting to use ctypes, you can use ATSFontGetFileReference after looking up the ATSFontRef.\u003c/p\u003e\r\n\r\n\u003cp\u003eCocoa doesn\u0027t have any native support, at least as of 10.5, for getting the location of a font.\u003c/p\u003e",
305
- "answer_quality": {
306
- "status": [
307
- "submitted",
308
- "submitted",
309
- "submitted"
310
- ],
311
- "user_id": [
312
- null,
313
- null,
314
- null
315
- ],
316
- "value": [
317
- 1,
318
- 5,
319
- 1
320
- ]
321
  },
322
  "external_id": null,
323
- "metadata": null,
324
- "new_answer": {
325
- "status": [
326
- "submitted",
327
- "submitted",
328
- "submitted"
329
- ],
330
- "user_id": [
331
- null,
332
- null,
333
- null
334
- ],
335
- "value": [
336
- "Sample answer",
337
- "Sample answer",
338
- "Sample answer"
339
- ]
340
  },
341
  "question": "\u003cp\u003eI am using the Photoshop\u0027s javascript API to find the fonts in a given PSD.\u003c/p\u003e\n\n\u003cp\u003eGiven a font name returned by the API, I want to find the actual physical font file that that font name corresponds to on the disc.\u003c/p\u003e\n\n\u003cp\u003eThis is all happening in a python program running on OSX so I guess I\u0027m looking for one of:\u003c/p\u003e\n\n\u003cul\u003e\n\u003cli\u003eSome Photoshop javascript\u003c/li\u003e\n\u003cli\u003eA Python function\u003c/li\u003e\n\u003cli\u003eAn OSX API that I can call from python\u003c/li\u003e\n\u003c/ul\u003e\n",
342
- "tags": {
343
- "status": [
344
- "submitted",
345
- "submitted",
346
- "submitted"
347
- ],
348
- "user_id": [
349
- null,
350
- null,
351
- null
352
- ],
353
- "value": [
354
- [
355
- "arrays"
356
- ],
357
- [
358
- "linux"
359
- ],
360
- [
361
  "tkinter"
362
  ]
363
- ]
 
 
 
 
 
 
364
  },
365
  "title": "How can I find the full path to a font from its display name on a Mac?",
366
- "title_question_fit": {
367
- "status": [
368
- "submitted",
369
- "submitted",
370
- "submitted"
371
- ],
372
- "user_id": [
373
- null,
374
- null,
375
- null
376
- ],
377
- "value": [
378
- "yes",
379
- "no",
380
- "yes"
381
- ]
382
  }
383
  }
384
  ```
@@ -389,16 +200,23 @@ Among the dataset fields, we differentiate between the following:
389
 
390
  * **Fields:** These are the dataset records themselves, for the moment just text fields are suppported. These are the ones that will be used to provide responses to the questions.
391
 
392
- * **title** is of type `TextField`.
393
- * **question** is of type `TextField`.
394
- * **answer** is of type `TextField`.
 
 
 
 
 
 
 
395
 
396
- * **Questions:** These are the questions that will be asked to the annotators. They can be of different types, such as rating, text, single choice, or multiple choice.
397
 
398
- * **title_question_fit** is of type `LabelQuestion`.
399
- * **tags** is of type `MultiLabelQuestion`, and description "Select all that apply.".
400
- * **answer_quality** is of type `RatingQuestion` with the following allowed values [1, 2, 3, 4, 5].
401
- * (optional) **new_answer** is of type `TextQuestion`, and description "If the rating is below 4, please provide a corrected answer".
402
 
403
  Additionally, we also have one more field which is optional and is the following:
404
 
 
4
  - rlfh
5
  - argilla
6
  - human-feedback
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  ---
8
 
 
 
 
 
9
  # Dataset Card for stackoverflow_feedback_demo
10
 
11
  This dataset has been created with [Argilla](https://docs.argilla.io).
 
24
 
25
  This dataset contains:
26
 
27
+ * A dataset configuration file conforming to the Argilla dataset format named `argilla.yaml`. This configuration file will be used to configure the dataset when using the `FeedbackDataset.from_huggingface` method in Argilla.
28
 
29
  * Dataset records in a format compatible with HuggingFace `datasets`. These records will be loaded automatically when using `FeedbackDataset.from_huggingface` and can be loaded independently using the `datasets` library via `load_dataset`.
30
 
 
52
 
53
  ### Supported Tasks and Leaderboards
54
 
55
+ This dataset can contain [multiple fields, questions and responses](https://docs.argilla.io/en/latest/conceptual_guides/data_model.html#feedback-dataset) so it can be used for different NLP tasks, depending on the configuration. The dataset structure is described in the [Dataset Structure section](#dataset-structure).
56
 
57
  There are no leaderboards associated with this dataset.
58
 
 
64
 
65
  ### Data in Argilla
66
 
67
+ The dataset is created in Argilla with: **fields**, **questions**, **suggestions**, and **guidelines**.
68
 
69
  The **fields** are the dataset records themselves, for the moment just text fields are suppported. These are the ones that will be used to provide responses to the questions.
70
 
71
  | Field Name | Title | Type | Required | Markdown |
72
  | ---------- | ----- | ---- | -------- | -------- |
73
+ | title | Title | FieldTypes.text | True | False |
74
+ | question | Question | FieldTypes.text | True | True |
75
+ | answer | Answer | FieldTypes.text | True | True |
76
 
77
 
78
+ The **questions** are the questions that will be asked to the annotators. They can be of different types, such as rating, text, label_selection, multi_label_selection, or ranking.
79
 
80
  | Question Name | Title | Type | Required | Description | Values/Labels |
81
  | ------------- | ----- | ---- | -------- | ----------- | ------------- |
82
+ | title_question_fit | Does the title match the question? | QuestionTypes.label_selection | True | N/A | ['yes', 'no'] |
83
+ | tags | What are the topics mentioned in this question? | QuestionTypes.multi_label_selection | True | Select all that apply. | ['python', 'django', 'python-2.7', 'list', 'python-3.x', 'numpy', 'pandas', 'regex', 'dictionary', 'string', 'matplotlib', 'arrays', 'google-app-engine', 'csv', 'tkinter', 'flask', 'json', 'linux', 'mysql', 'html', 'function', 'file', 'class', 'algorithm', 'windows', 'scipy', 'loops', 'multithreading', 'beautifulsoup', 'django-models', 'for-loop', 'javascript', 'xml', 'sqlalchemy', 'parsing', 'performance', 'datetime', 'osx', 'sorting', 'unicode', 'c++', 'dataframe', 'selenium', 'subprocess', 'pygame', 'java', 'pyqt', 'pip', 'tuples', 'scrapy'] |
84
+ | answer_quality | Rate the quality of the answer: | QuestionTypes.rating | True | N/A | [1, 2, 3, 4, 5] |
85
+ | new_answer | If needed, correct the answer | QuestionTypes.text | False | If the rating is below 4, please provide a corrected answer | N/A |
86
 
87
 
88
+ **✨ NEW** Additionally, we also have **suggestions**, which are linked to the existing questions, and so on, named appending "-suggestion" and "-suggestion-metadata" to those, containing the value/s of the suggestion and its metadata, respectively. So on, the possible values are the same as in the table above.
89
+
90
  Finally, the **guidelines** are just a plain string that can be used to provide instructions to the annotators. Find those in the [annotation guidelines](#annotation-guidelines) section.
91
 
92
  ### Data Instances
 
101
  "question": "\u003cp\u003eI am using the Photoshop\u0027s javascript API to find the fonts in a given PSD.\u003c/p\u003e\n\n\u003cp\u003eGiven a font name returned by the API, I want to find the actual physical font file that that font name corresponds to on the disc.\u003c/p\u003e\n\n\u003cp\u003eThis is all happening in a python program running on OSX so I guess I\u0027m looking for one of:\u003c/p\u003e\n\n\u003cul\u003e\n\u003cli\u003eSome Photoshop javascript\u003c/li\u003e\n\u003cli\u003eA Python function\u003c/li\u003e\n\u003cli\u003eAn OSX API that I can call from python\u003c/li\u003e\n\u003c/ul\u003e\n",
102
  "title": "How can I find the full path to a font from its display name on a Mac?"
103
  },
104
+ "metadata": {},
105
  "responses": [
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
106
  {
107
  "status": "submitted",
108
  "user_id": null,
 
123
  }
124
  }
125
  }
126
+ ],
127
+ "suggestions": []
128
  }
129
  ```
130
 
 
133
  ```json
134
  {
135
  "answer": "\u003cp\u003eUnfortunately the only API that isn\u0027t deprecated is located in the ApplicationServices framework, which doesn\u0027t have a bridge support file, and thus isn\u0027t available in the bridge. If you\u0027re wanting to use ctypes, you can use ATSFontGetFileReference after looking up the ATSFontRef.\u003c/p\u003e\r\n\r\n\u003cp\u003eCocoa doesn\u0027t have any native support, at least as of 10.5, for getting the location of a font.\u003c/p\u003e",
136
+ "answer_quality": [
137
+ {
138
+ "status": "submitted",
139
+ "user_id": null,
140
+ "value": 1
141
+ }
142
+ ],
143
+ "answer_quality-suggestion": null,
144
+ "answer_quality-suggestion-metadata": {
145
+ "agent": null,
146
+ "score": null,
147
+ "type": null
 
 
 
 
148
  },
149
  "external_id": null,
150
+ "metadata": "{}",
151
+ "new_answer": [
152
+ {
153
+ "status": "submitted",
154
+ "user_id": null,
155
+ "value": "Sample answer"
156
+ }
157
+ ],
158
+ "new_answer-suggestion": null,
159
+ "new_answer-suggestion-metadata": {
160
+ "agent": null,
161
+ "score": null,
162
+ "type": null
 
 
 
 
163
  },
164
  "question": "\u003cp\u003eI am using the Photoshop\u0027s javascript API to find the fonts in a given PSD.\u003c/p\u003e\n\n\u003cp\u003eGiven a font name returned by the API, I want to find the actual physical font file that that font name corresponds to on the disc.\u003c/p\u003e\n\n\u003cp\u003eThis is all happening in a python program running on OSX so I guess I\u0027m looking for one of:\u003c/p\u003e\n\n\u003cul\u003e\n\u003cli\u003eSome Photoshop javascript\u003c/li\u003e\n\u003cli\u003eA Python function\u003c/li\u003e\n\u003cli\u003eAn OSX API that I can call from python\u003c/li\u003e\n\u003c/ul\u003e\n",
165
+ "tags": [
166
+ {
167
+ "status": "submitted",
168
+ "user_id": null,
169
+ "value": [
 
 
 
 
 
 
 
 
 
 
 
 
 
 
170
  "tkinter"
171
  ]
172
+ }
173
+ ],
174
+ "tags-suggestion": null,
175
+ "tags-suggestion-metadata": {
176
+ "agent": null,
177
+ "score": null,
178
+ "type": null
179
  },
180
  "title": "How can I find the full path to a font from its display name on a Mac?",
181
+ "title_question_fit": [
182
+ {
183
+ "status": "submitted",
184
+ "user_id": null,
185
+ "value": "yes"
186
+ }
187
+ ],
188
+ "title_question_fit-suggestion": null,
189
+ "title_question_fit-suggestion-metadata": {
190
+ "agent": null,
191
+ "score": null,
192
+ "type": null
 
 
 
 
193
  }
194
  }
195
  ```
 
200
 
201
  * **Fields:** These are the dataset records themselves, for the moment just text fields are suppported. These are the ones that will be used to provide responses to the questions.
202
 
203
+ * **title** is of type `FieldTypes.text`.
204
+ * **question** is of type `FieldTypes.text`.
205
+ * **answer** is of type `FieldTypes.text`.
206
+
207
+ * **Questions:** These are the questions that will be asked to the annotators. They can be of different types, such as `RatingQuestion`, `TextQuestion`, `LabelQuestion`, `MultiLabelQuestion`, and `RankingQuestion`.
208
+
209
+ * **title_question_fit** is of type `QuestionTypes.label_selection` with the following allowed values ['yes', 'no'].
210
+ * **tags** is of type `QuestionTypes.multi_label_selection` with the following allowed values ['python', 'django', 'python-2.7', 'list', 'python-3.x', 'numpy', 'pandas', 'regex', 'dictionary', 'string', 'matplotlib', 'arrays', 'google-app-engine', 'csv', 'tkinter', 'flask', 'json', 'linux', 'mysql', 'html', 'function', 'file', 'class', 'algorithm', 'windows', 'scipy', 'loops', 'multithreading', 'beautifulsoup', 'django-models', 'for-loop', 'javascript', 'xml', 'sqlalchemy', 'parsing', 'performance', 'datetime', 'osx', 'sorting', 'unicode', 'c++', 'dataframe', 'selenium', 'subprocess', 'pygame', 'java', 'pyqt', 'pip', 'tuples', 'scrapy'], and description "Select all that apply.".
211
+ * **answer_quality** is of type `QuestionTypes.rating` with the following allowed values [1, 2, 3, 4, 5].
212
+ * (optional) **new_answer** is of type `QuestionTypes.text`, and description "If the rating is below 4, please provide a corrected answer".
213
 
214
+ * **✨ NEW** **Suggestions:** As of Argilla 1.13.0, the suggestions have been included to provide the annotators with suggestions to ease or assist during the annotation process. Suggestions are linked to the existing questions, are always optional, and contain not just the suggestion itself, but also the metadata linked to it, if applicable.
215
 
216
+ * (optional) **title_question_fit-suggestion** is of type `QuestionTypes.label_selection` with the following allowed values ['yes', 'no'].
217
+ * (optional) **tags-suggestion** is of type `QuestionTypes.multi_label_selection` with the following allowed values ['python', 'django', 'python-2.7', 'list', 'python-3.x', 'numpy', 'pandas', 'regex', 'dictionary', 'string', 'matplotlib', 'arrays', 'google-app-engine', 'csv', 'tkinter', 'flask', 'json', 'linux', 'mysql', 'html', 'function', 'file', 'class', 'algorithm', 'windows', 'scipy', 'loops', 'multithreading', 'beautifulsoup', 'django-models', 'for-loop', 'javascript', 'xml', 'sqlalchemy', 'parsing', 'performance', 'datetime', 'osx', 'sorting', 'unicode', 'c++', 'dataframe', 'selenium', 'subprocess', 'pygame', 'java', 'pyqt', 'pip', 'tuples', 'scrapy'].
218
+ * (optional) **answer_quality-suggestion** is of type `QuestionTypes.rating` with the following allowed values [1, 2, 3, 4, 5].
219
+ * (optional) **new_answer-suggestion** is of type `QuestionTypes.text`.
220
 
221
  Additionally, we also have one more field which is optional and is the following:
222