|
import os |
|
import os.path as path |
|
import unittest |
|
import pandas as pd |
|
|
|
from tokenizers import Regex, NormalizedString |
|
from tokenizers.normalizers import Sequence, NFKC, Replace, BertNormalizer, Strip |
|
|
|
from datasets import Dataset |
|
|
|
class CustomNormalizer: |
|
def __init__(self): |
|
self.normalization = Sequence([ |
|
NFKC(), |
|
Replace("[", ""), |
|
Replace("(", ""), |
|
Replace("]", ""), |
|
Replace(")", ""), |
|
Replace("\r\n", ""), |
|
Replace(Regex(r"\s{2,}"), " "), |
|
BertNormalizer(clean_text=True, handle_chinese_chars=True, strip_accents=True, lowercase=True), |
|
Strip() |
|
]) |
|
|
|
def normalize(self, text: NormalizedString): |
|
return self.normalization.normalize(text) |
|
|
|
def normalize_str(self, sequence: str): |
|
return self.normalization.normalize_str(sequence) |
|
|
|
|
|
class TestNormalizer(unittest.TestCase): |
|
def test_it_normalizes_in_place(self): |
|
norm = CustomNormalizer() |
|
actual = NormalizedString("coucou[[[xavier") |
|
norm.normalize(actual) |
|
expected = "coucouxavier" |
|
self.assertEqual(actual.normalized, expected) |
|
|
|
def test_it_removes_opening_bracket(self): |
|
norm = CustomNormalizer() |
|
actual = norm.normalize_str("coucou[[[xavier") |
|
expected = "coucouxavier" |
|
self.assertEqual(actual, expected) |
|
|
|
def test_it_removes_closing_bracket(self): |
|
norm = CustomNormalizer() |
|
actual = norm.normalize_str("coucou]]]xavier") |
|
expected = "coucouxavier" |
|
self.assertEqual(actual, expected) |
|
|
|
def test_it_removes_both_brackets(self): |
|
norm = CustomNormalizer() |
|
actual = norm.normalize_str("coucou[[[-]]]xavier") |
|
expected = "coucou-xavier" |
|
self.assertEqual(actual, expected) |
|
|
|
def test_it_lowertcases_text(self): |
|
norm = CustomNormalizer() |
|
actual = norm.normalize_str("CouCou Xavier") |
|
expected = "coucou xavier" |
|
self.assertEqual(actual, expected) |
|
|
|
def test_it_replaces_long_sequences_of_whitespaces(self): |
|
norm = CustomNormalizer() |
|
actual = norm.normalize_str("coucou xavier") |
|
expected = "coucou xavier" |
|
self.assertEqual(actual, expected) |
|
|
|
actual = norm.normalize_str("coucou xavier") |
|
expected = "coucou xavier" |
|
self.assertEqual(actual, expected) |
|
|
|
actual = norm.normalize_str("coucou \txavier") |
|
expected = "coucou xavier" |
|
self.assertEqual(actual, expected) |
|
|
|
def test_it_normalizes_funky_chars(self): |
|
norm = CustomNormalizer() |
|
actual = norm.normalize_str("coucou xavier") |
|
expected = "coucou xavier" |
|
self.assertEqual(actual, expected) |
|
|
|
actual = norm.normalize_str("coucou xavier") |
|
expected = "coucou xavier" |
|
self.assertEqual(actual, expected) |
|
|
|
actual = norm.normalize_str("coucou \txavier") |
|
expected = "coucou xavier" |
|
self.assertEqual(actual, expected) |
|
|
|
|
|
def file_to_pandas(project, fname): |
|
norm = CustomNormalizer() |
|
file_id = path.basename(fname) |
|
page_id = 0 |
|
line_id = 0 |
|
df_dict = { |
|
"project": [], |
|
"file_id": [], |
|
"page_id": [], |
|
"line_id": [], |
|
"text" : [] |
|
} |
|
|
|
with open(fname, encoding="utf8") as f: |
|
for line in f.readlines(): |
|
line = NormalizedString(line) |
|
norm.normalize(line) |
|
line = line.normalized |
|
|
|
if not line: |
|
pass |
|
elif line == "###": |
|
page_id += 1 |
|
else: |
|
line_id += 1 |
|
df_dict["project"].append(project) |
|
df_dict["file_id"].append(file_id) |
|
df_dict["page_id"].append(page_id) |
|
df_dict["line_id"].append(line_id) |
|
df_dict["text"] .append(line) |
|
|
|
return pd.DataFrame.from_dict(df_dict) |
|
|
|
def text(df): |
|
return "\n".join(df["text"].to_list()) |
|
|
|
def documents_text(df: pd.DataFrame): |
|
''' |
|
This function returns a dataframe equivalent to the original 'df'. However, the returned dataframe |
|
loses the page and line information so as to retrieve the complete text of each documents pertaining |
|
to the dataset |
|
|
|
# Params |
|
- df is a pandas dataframe |
|
''' |
|
groups = df.groupby(["project", "file_id"]) |
|
data = [(project, file_id, text(groups.get_group((project, file_id)).sort_values(["page_id", "line_id"]))) for (project, file_id),_v in groups ] |
|
return pd.DataFrame.from_records(data, columns=["project", "file_id", "text"]) |
|
|
|
def pages_text(df: pd.DataFrame): |
|
''' |
|
This function returns a dataframe equivalent to the original 'df'. However, the returned dataframe |
|
loses the line information so as to retrieve the complete text of each page of processed data.s |
|
|
|
# Params |
|
- df is a pandas dataframe |
|
''' |
|
groups = df.groupby(["project", "file_id", "page_id"]) |
|
data = [(project, file_id, page_id, text(groups.get_group((project, file_id, page_id)).sort_values("line_id"))) for (project, file_id, page_id),_v in groups ] |
|
return pd.DataFrame.from_records(data, columns=["project", "file_id","page_id", "text"]) |
|
|
|
def prepare(df: pd.DataFrame, config_name: str): |
|
ds = Dataset.from_pandas(df) |
|
splits = ds.train_test_split(train_size=0.8, shuffle=True) |
|
train = splits["train"] |
|
test = splits["test"] |
|
splits = train.train_test_split(train_size=0.8) |
|
train = splits["train"] |
|
valid = splits["test"] |
|
train.to_csv("data/{config}/train.csv".format(config=config_name)) |
|
test .to_csv("data/{config}/test.csv".format(config=config_name)) |
|
valid.to_csv("data/{config}/valid.csv".format(config=config_name)) |
|
|
|
if __name__ == '__main__': |
|
pth= r'C:\Users\xavier.gillard\Documents\ARKEY\data' |
|
prj= "pardons" |
|
df1 = pd.concat([file_to_pandas(prj, path.join(pth, f)) for f in os.listdir(path=pth)], axis=0, ignore_index=True) |
|
|
|
pth = r'C:\Users\xavier.gillard\Documents\REPO\vonnis' |
|
prj = "sentences" |
|
df2 = pd.concat([file_to_pandas(prj, path.join(pth, f)) for f in os.listdir(path=pth)], axis=0, ignore_index=True) |
|
|
|
df = pd.concat([df1, df2], axis=0, ignore_index=True) |
|
df.to_csv("data/full_corpus.csv", index=False) |
|
|
|
|
|
lines = df[["project","file_id","page_id","line_id","text"]] |
|
pages = pages_text(df)[["project","file_id","page_id","text"]] |
|
docs = documents_text(df)[["project","file_id","text"]] |
|
|
|
prepare(lines, "line_by_line") |
|
prepare(pages, "page_by_page") |
|
prepare(docs, "doc_by_doc") |