parquet-converter commited on
Commit
45f053d
1 Parent(s): 0125945

Update parquet files

Browse files
.gitattributes DELETED
@@ -1,37 +0,0 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bin.* filter=lfs diff=lfs merge=lfs -text
5
- *.bz2 filter=lfs diff=lfs merge=lfs -text
6
- *.ftz filter=lfs diff=lfs merge=lfs -text
7
- *.gz filter=lfs diff=lfs merge=lfs -text
8
- *.h5 filter=lfs diff=lfs merge=lfs -text
9
- *.joblib filter=lfs diff=lfs merge=lfs -text
10
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.model filter=lfs diff=lfs merge=lfs -text
12
- *.msgpack filter=lfs diff=lfs merge=lfs -text
13
- *.onnx filter=lfs diff=lfs merge=lfs -text
14
- *.ot filter=lfs diff=lfs merge=lfs -text
15
- *.parquet filter=lfs diff=lfs merge=lfs -text
16
- *.pb filter=lfs diff=lfs merge=lfs -text
17
- *.pt filter=lfs diff=lfs merge=lfs -text
18
- *.pth filter=lfs diff=lfs merge=lfs -text
19
- *.rar filter=lfs diff=lfs merge=lfs -text
20
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
- *.tar.* filter=lfs diff=lfs merge=lfs -text
22
- *.tflite filter=lfs diff=lfs merge=lfs -text
23
- *.tgz filter=lfs diff=lfs merge=lfs -text
24
- *.xz filter=lfs diff=lfs merge=lfs -text
25
- *.zip filter=lfs diff=lfs merge=lfs -text
26
- *.zstandard filter=lfs diff=lfs merge=lfs -text
27
- *tfevents* filter=lfs diff=lfs merge=lfs -text
28
- # Audio files - uncompressed
29
- *.pcm filter=lfs diff=lfs merge=lfs -text
30
- *.sam filter=lfs diff=lfs merge=lfs -text
31
- *.raw filter=lfs diff=lfs merge=lfs -text
32
- # Audio files - compressed
33
- *.aac filter=lfs diff=lfs merge=lfs -text
34
- *.flac filter=lfs diff=lfs merge=lfs -text
35
- *.mp3 filter=lfs diff=lfs merge=lfs -text
36
- *.ogg filter=lfs diff=lfs merge=lfs -text
37
- *.wav filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
data/train-00000-of-00001.parquet → anuragshas--ha_cc100_processed/parquet-train.parquet RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:43725ab6f1438e1ed1a66f7aadda3e401a2d8eccf1a150ea5246fa76d5455dd4
3
- size 174315350
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:599e9958adced14d70bbe07a66fbfb7d89ec2954ddc18bb1db3643666055aa39
3
+ size 180292662
dataset_infos.json DELETED
@@ -1 +0,0 @@
1
- {"anuragshas--ha_cc100_processed": {"description": "This corpus is an attempt to recreate the dataset used for training XLM-R. This corpus comprises of monolingual data for 100+ languages and also includes data for romanized languages (indicated by *_rom). This was constructed using the urls and paragraph indices provided by the CC-Net repository by processing January-December 2018 Commoncrawl snapshots. Each file comprises of documents separated by double-newlines and paragraphs within the same document separated by a newline. The data is generated using the open source CC-Net repository. No claims of intellectual property are made on the work of preparation of the corpus.\n", "citation": "@inproceedings{conneau-etal-2020-unsupervised,\n title = \"Unsupervised Cross-lingual Representation Learning at Scale\",\n author = \"Conneau, Alexis and\n Khandelwal, Kartikay and\n Goyal, Naman and\n Chaudhary, Vishrav and\n Wenzek, Guillaume and\n Guzm{'a}n, Francisco and\n Grave, Edouard and\n Ott, Myle and\n Zettlemoyer, Luke and\n Stoyanov, Veselin\",\n booktitle = \"Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics\",\n month = jul,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.acl-main.747\",\n doi = \"10.18653/v1/2020.acl-main.747\",\n pages = \"8440--8451\",\n abstract = \"This paper shows that pretraining multilingual language models at scale leads to significant performance gains for a wide range of cross-lingual transfer tasks. We train a Transformer-based masked language model on one hundred languages, using more than two terabytes of filtered CommonCrawl data. Our model, dubbed XLM-R, significantly outperforms multilingual BERT (mBERT) on a variety of cross-lingual benchmarks, including +14.6{%} average accuracy on XNLI, +13{%} average F1 score on MLQA, and +2.4{%} F1 score on NER. XLM-R performs particularly well on low-resource languages, improving 15.7{%} in XNLI accuracy for Swahili and 11.4{%} for Urdu over previous XLM models. We also present a detailed empirical analysis of the key factors that are required to achieve these gains, including the trade-offs between (1) positive transfer and capacity dilution and (2) the performance of high and low resource languages at scale. Finally, we show, for the first time, the possibility of multilingual modeling without sacrificing per-language performance; XLM-R is very competitive with strong monolingual models on the GLUE and XNLI benchmarks. We will make our code and models publicly available.\",\n}\n@inproceedings{wenzek-etal-2020-ccnet,\n title = \"{CCN}et: Extracting High Quality Monolingual Datasets from Web Crawl Data\",\n author = \"Wenzek, Guillaume and\n Lachaux, Marie-Anne and\n Conneau, Alexis and\n Chaudhary, Vishrav and\n Guzm{'a}n, Francisco and\n Joulin, Armand and\n Grave, Edouard\",\n booktitle = \"Proceedings of the 12th Language Resources and Evaluation Conference\",\n month = may,\n year = \"2020\",\n address = \"Marseille, France\",\n publisher = \"European Language Resources Association\",\n url = \"https://www.aclweb.org/anthology/2020.lrec-1.494\",\n pages = \"4003--4012\",\n abstract = \"Pre-training text representations have led to significant improvements in many areas of natural language processing. The quality of these models benefits greatly from the size of the pretraining corpora as long as its quality is preserved. In this paper, we describe an automatic pipeline to extract massive high-quality monolingual datasets from Common Crawl for a variety of languages. Our pipeline follows the data processing introduced in fastText (Mikolov et al., 2017; Grave et al., 2018), that deduplicates documents and identifies their language. We augment this pipeline with a filtering step to select documents that are close to high quality corpora like Wikipedia.\",\n language = \"English\",\n ISBN = \"979-10-95546-34-4\",\n}\n", "homepage": "https://data.statmt.org/cc-100/", "license": "", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "cc100", "config_name": "ha", "version": {"version_str": "0.0.0", "description": null, "major": 0, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 325637136, "num_examples": 3655296, "dataset_name": "ha_cc100_processed"}}, "download_checksums": null, "download_size": 174315350, "post_processing_size": null, "dataset_size": 325637136, "size_in_bytes": 499952486}}