Datasets:
Tasks:
Token Classification
Modalities:
Text
Formats:
parquet
Languages:
English
Size:
10K - 100K
ArXiv:
Tags:
acronym-identification
License:
# coding=utf-8 | |
# Copyright 2020 HuggingFace Datasets Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Lint as: python3 | |
import json | |
import datasets | |
_DESCRIPTION = """\ | |
Acronym identification training and development sets for the acronym identification task at SDU@AAAI-21. | |
""" | |
_HOMEPAGE_URL = "https://github.com/amirveyseh/AAAI-21-SDU-shared-task-1-AI" | |
_CITATION = """\ | |
@inproceedings{veyseh-et-al-2020-what, | |
title={{What Does This Acronym Mean? Introducing a New Dataset for Acronym Identification and Disambiguation}}, | |
author={Amir Pouran Ben Veyseh and Franck Dernoncourt and Quan Hung Tran and Thien Huu Nguyen}, | |
year={2020}, | |
booktitle={Proceedings of COLING}, | |
link={https://arxiv.org/pdf/2010.14678v1.pdf} | |
} | |
""" | |
_TRAIN_URL = "https://raw.githubusercontent.com/amirveyseh/AAAI-21-SDU-shared-task-1-AI/master/dataset/train.json" | |
_VALID_URL = "https://raw.githubusercontent.com/amirveyseh/AAAI-21-SDU-shared-task-1-AI/master/dataset/dev.json" | |
_TEST_URL = "https://raw.githubusercontent.com/amirveyseh/AAAI-21-SDU-shared-task-1-AI/master/dataset/test.json" | |
class AcronymIdentification(datasets.GeneratorBasedBuilder): | |
VERSION = datasets.Version("1.0.0") | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"tokens": datasets.Sequence(datasets.Value("string")), | |
"labels": datasets.Sequence( | |
datasets.ClassLabel(names=["B-long", "B-short", "I-long", "I-short", "O"]) | |
), | |
}, | |
), | |
supervised_keys=None, | |
homepage=_HOMEPAGE_URL, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
train_path = dl_manager.download_and_extract(_TRAIN_URL) | |
valid_path = dl_manager.download_and_extract(_VALID_URL) | |
test_path = dl_manager.download_and_extract(_TEST_URL) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={"datapath": train_path, "datatype": "train"}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={"datapath": valid_path, "datatype": "valid"}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={"datapath": test_path, "datatype": "test"}, | |
), | |
] | |
def _generate_examples(self, datapath, datatype): | |
with open(datapath, encoding="utf-8") as f: | |
data = json.load(f) | |
for sentence_counter, d in enumerate(data): | |
resp = { | |
"id": d["id"], | |
"tokens": d["tokens"], | |
} | |
if datatype != "test": | |
resp["labels"] = d["labels"] | |
else: | |
resp["labels"] = ["O"] * len(d["tokens"]) | |
yield sentence_counter, resp | |