|
|
|
import os |
|
from skimage import io, img_as_float32 |
|
from skimage.color import gray2rgb |
|
from sklearn.model_selection import train_test_split |
|
from imageio import mimread |
|
from functools import partial |
|
from skimage.transform import resize |
|
|
|
|
|
import torch |
|
import random |
|
import numpy as np |
|
from torch.utils.data import Dataset |
|
import pandas as pd |
|
from augmentation import AllAugmentationTransform |
|
import glob |
|
import math |
|
|
|
import pickle |
|
from basicsr.data.degradations import circular_lowpass_kernel, random_mixed_kernels |
|
from basicsr.utils import FileClient, get_root_logger, imfrombytes, img2tensor |
|
|
|
|
|
|
|
def read_video(name, frame_shape): |
|
""" |
|
Read video which can be: |
|
- an image of concatenated frames |
|
- '.mp4' and'.gif' |
|
- folder with videos |
|
""" |
|
|
|
if os.path.isdir(name): |
|
|
|
frames = sorted(os.listdir(name)) |
|
num_frames = len(frames) |
|
video_array = np.array( |
|
[img_as_float32(io.imread(os.path.join(name, frames[idx]))) for idx in range(num_frames)]) |
|
elif name.lower().endswith('.png') or name.lower().endswith('.jpg'): |
|
image = io.imread(name) |
|
|
|
if len(image.shape) == 2 or image.shape[2] == 1: |
|
image = gray2rgb(image) |
|
|
|
if image.shape[2] == 4: |
|
image = image[..., :3] |
|
|
|
image = img_as_float32(image) |
|
|
|
video_array = np.moveaxis(image, 1, 0) |
|
|
|
video_array = video_array.reshape((-1,) + frame_shape) |
|
video_array = np.moveaxis(video_array, 1, 2) |
|
|
|
elif name.lower().endswith('.gif') or name.lower().endswith('.mp4') or name.lower().endswith('.mov'): |
|
video = np.array(mimread(name)) |
|
if len(video.shape) == 3: |
|
video = np.array([gray2rgb(frame) for frame in video]) |
|
if video.shape[-1] == 4: |
|
video = video[..., :3] |
|
video_array = img_as_float32(video) |
|
else: |
|
raise Exception("Unknown file extensions %s" % name) |
|
|
|
return video_array |
|
|
|
|
|
class FramesDataset(Dataset): |
|
""" |
|
Dataset of videos, each video can be represented as: |
|
- an image of concatenated frames |
|
- '.mp4' or '.gif' |
|
- folder with all frames |
|
""" |
|
|
|
def __init__(self, root_dir, frame_shape=(256, 256, 3), id_sampling=False, is_train=True, |
|
random_seed=0, pairs_list=None, augmentation_params=None): |
|
self.root_dir = root_dir |
|
|
|
tmp_file = open(root_dir + 'train_file_list.pickle','rb') |
|
self.train_files_list = pickle.load(tmp_file) |
|
|
|
self.videos = os.listdir(root_dir) |
|
self.frame_shape = tuple(frame_shape) |
|
self.pairs_list = pairs_list |
|
self.id_sampling = id_sampling |
|
if os.path.exists(os.path.join(root_dir, 'train')): |
|
assert os.path.exists(os.path.join(root_dir, 'test')) |
|
print("Use predefined train-test split.") |
|
if id_sampling: |
|
|
|
|
|
|
|
train_videos = list(self.train_files_list.keys()) |
|
else: |
|
train_videos = os.listdir(os.path.join(root_dir, 'train')) |
|
test_videos = os.listdir(os.path.join(root_dir, 'test')) |
|
self.root_dir = os.path.join(self.root_dir, 'train' if is_train else 'test') |
|
else: |
|
print("Use random train-test split.") |
|
train_videos, test_videos = train_test_split(self.videos, random_state=random_seed, test_size=0.2) |
|
|
|
if is_train: |
|
self.videos = train_videos |
|
else: |
|
self.videos = test_videos |
|
|
|
self.is_train = is_train |
|
|
|
if self.is_train: |
|
self.transform = AllAugmentationTransform(**augmentation_params) |
|
|
|
|
|
|
|
|
|
self.kernel_range = [2 * v + 1 for v in range(1,3)] |
|
self.pulse_tensor = torch.zeros(11, 11).float() |
|
self.pulse_tensor[5, 5] = 1 |
|
|
|
self.resize_range = [0.15, 1.5] |
|
|
|
|
|
self.blur_kernel_size = 7 |
|
self.kernel_list = ['iso', 'aniso', 'generalized_iso', 'generalized_aniso', 'plateau_iso', 'plateau_aniso'] |
|
self.kernel_prob = [0.45, 0.25, 0.12, 0.03, 0.12, 0.03] |
|
self.blur_sigma = [0.1, 0.5] |
|
self.betag_range = [0.2, 1] |
|
self.betap_range = [0.5, 1.2] |
|
self.sinc_prob = 0.1 |
|
|
|
|
|
self.blur_kernel_size2 = 7 |
|
self.kernel_list2 = ['iso', 'aniso', 'generalized_iso', 'generalized_aniso', 'plateau_iso', 'plateau_aniso'] |
|
self.kernel_prob2 = [0.45, 0.25, 0.12, 0.03, 0.12, 0.03] |
|
self.blur_sigma2 = [0.1, 0.5] |
|
self.betag_range2 = [0.2, 1] |
|
self.betap_range2 = [1, 1.2] |
|
self.sinc_prob2 = 0.1 |
|
else: |
|
self.transform = None |
|
|
|
def __len__(self): |
|
return len(self.videos) |
|
|
|
def __getitem__(self, idx): |
|
if self.is_train and self.id_sampling: |
|
|
|
|
|
name = self.videos[idx] |
|
choice_list = self.train_files_list[name] |
|
|
|
|
|
|
|
paths = np.random.choice(choice_list) |
|
else: |
|
name = self.videos[idx] |
|
paths = os.path.join(self.root_dir, name) |
|
|
|
video_name = os.path.basename(paths) |
|
if self.is_train and os.path.isdir(paths): |
|
frames = os.listdir(paths) |
|
num_frames = len(frames) |
|
frame_idx = np.sort(np.random.choice(num_frames, replace=True, size=2)) |
|
|
|
|
|
if self.frame_shape is not None: |
|
resize_fn = partial(resize, output_shape=self.frame_shape) |
|
else: |
|
resize_fn = img_as_float32 |
|
video_array = [resize_fn(img_as_float32(io.imread(paths + '/' + '%06d.jpg'%(idx) ))) for idx in frame_idx] |
|
|
|
|
|
else: |
|
video_array = read_video(paths, frame_shape=self.frame_shape) |
|
num_frames = len(video_array) |
|
frame_idx = np.sort(np.random.choice(num_frames, replace=True, size=2)) if self.is_train else range( |
|
num_frames) |
|
video_array = video_array[frame_idx] |
|
|
|
if self.transform is not None: |
|
video_array = self.transform(video_array) |
|
|
|
out = {} |
|
if self.is_train: |
|
source = np.array(video_array[0], dtype='float32') |
|
driving = np.array(video_array[1], dtype='float32') |
|
out['driving'] = driving.transpose((2, 0, 1)) |
|
out['source'] = source.transpose((2, 0, 1)) |
|
|
|
|
|
|
|
|
|
kernel_size = random.choice(self.kernel_range) |
|
if np.random.uniform() < 0.1: |
|
|
|
if kernel_size < 11: |
|
omega_c = np.random.uniform(np.pi / 3, np.pi) |
|
else: |
|
omega_c = np.random.uniform(np.pi / 5, np.pi) |
|
kernel = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False) |
|
else: |
|
kernel = random_mixed_kernels( |
|
self.kernel_list, |
|
self.kernel_prob, |
|
kernel_size, |
|
self.blur_sigma, |
|
self.blur_sigma, [-math.pi, math.pi], |
|
self.betag_range, |
|
self.betap_range, |
|
noise_range=None) |
|
|
|
pad_size = (21 - kernel_size) // 2 |
|
kernel = np.pad(kernel, ((pad_size, pad_size), (pad_size, pad_size))) |
|
|
|
|
|
|
|
kernel_size = random.choice(self.kernel_range) |
|
if np.random.uniform() < 0.1: |
|
if kernel_size < 13: |
|
omega_c = np.random.uniform(np.pi / 3, np.pi) |
|
else: |
|
omega_c = np.random.uniform(np.pi / 5, np.pi) |
|
kernel2 = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False) |
|
else: |
|
kernel2 = random_mixed_kernels( |
|
self.kernel_list2, |
|
self.kernel_prob2, |
|
kernel_size, |
|
self.blur_sigma2, |
|
self.blur_sigma2, [-math.pi, math.pi], |
|
self.betag_range2, |
|
self.betap_range2, |
|
noise_range=None) |
|
|
|
pad_size = (21 - kernel_size) // 2 |
|
kernel2 = np.pad(kernel2, ((pad_size, pad_size), (pad_size, pad_size))) |
|
|
|
|
|
if np.random.uniform() < 0.8: |
|
kernel_size = random.choice(self.kernel_range) |
|
omega_c = np.random.uniform(np.pi / 3, np.pi) |
|
sinc_kernel = circular_lowpass_kernel(omega_c, kernel_size, pad_to=11) |
|
sinc_kernel = torch.FloatTensor(sinc_kernel) |
|
else: |
|
sinc_kernel = self.pulse_tensor |
|
|
|
|
|
|
|
kernel = torch.FloatTensor(kernel) |
|
kernel2 = torch.FloatTensor(kernel2) |
|
|
|
|
|
out['kernel'] = kernel |
|
out['kernel2']= kernel2 |
|
out['sinc_kernel'] = sinc_kernel |
|
|
|
else: |
|
video = np.array(video_array, dtype='float32') |
|
out['video'] = video.transpose((3, 0, 1, 2)) |
|
|
|
out['name'] = video_name |
|
|
|
return out |
|
|
|
|
|
class DatasetRepeater(Dataset): |
|
""" |
|
Pass several times over the same dataset for better i/o performance |
|
""" |
|
|
|
def __init__(self, dataset, num_repeats=100): |
|
self.dataset = dataset |
|
self.num_repeats = num_repeats |
|
|
|
def __len__(self): |
|
return self.num_repeats * self.dataset.__len__() |
|
|
|
def __getitem__(self, idx): |
|
return self.dataset[idx % self.dataset.__len__()] |
|
|