mmiakashs commited on
Commit
165da3c
·
verified ·
1 Parent(s): 5b86989

Release dataset generator

Browse files
notebooks/01_create_assets.ipynb ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "# Step 1: Create Assets from Raw PDFs\n",
8
+ "\n",
9
+ "This notebook processes raw PDFs and creates structured assets:\n",
10
+ "- Page images (PNG at 300 DPI)\n",
11
+ "- OCR text (AWS Textract)\n",
12
+ "\n",
13
+ "**Output**: Structured assets for benchmark creation"
14
+ ]
15
+ },
16
+ {
17
+ "cell_type": "code",
18
+ "execution_count": null,
19
+ "metadata": {},
20
+ "outputs": [],
21
+ "source": [
22
+ "import sys\n",
23
+ "sys.path.append(\"../src/assets\")\n",
24
+ "\n",
25
+ "from services.pdf_loader import PdfLoader\n",
26
+ "from services.textract_ocr import TextractOcr\n",
27
+ "from services.asset_writer import AssetWriter\n",
28
+ "from services.asset_creator import AssetCreator"
29
+ ]
30
+ },
31
+ {
32
+ "cell_type": "markdown",
33
+ "metadata": {},
34
+ "source": [
35
+ "## Configuration"
36
+ ]
37
+ },
38
+ {
39
+ "cell_type": "code",
40
+ "execution_count": null,
41
+ "metadata": {},
42
+ "outputs": [],
43
+ "source": [
44
+ "RAW_DATA_PATH = '../data/raw_pdfs'\n",
45
+ "OUTPUT_PATH = '../data/assets'\n",
46
+ "WORKERS = 10\n",
47
+ "LIMIT = None # Set to number to limit processing"
48
+ ]
49
+ },
50
+ {
51
+ "cell_type": "markdown",
52
+ "metadata": {},
53
+ "source": [
54
+ "## Load PDFs"
55
+ ]
56
+ },
57
+ {
58
+ "cell_type": "code",
59
+ "execution_count": null,
60
+ "metadata": {},
61
+ "outputs": [],
62
+ "source": [
63
+ "loader = PdfLoader(raw_data_path=RAW_DATA_PATH)\n",
64
+ "documents = loader.get_all_documents()\n",
65
+ "\n",
66
+ "print(f\"Loaded {len(documents)} documents\")\n",
67
+ "print(f\"Sample: {documents[0]}\")"
68
+ ]
69
+ },
70
+ {
71
+ "cell_type": "markdown",
72
+ "metadata": {},
73
+ "source": [
74
+ "## Create Assets"
75
+ ]
76
+ },
77
+ {
78
+ "cell_type": "code",
79
+ "execution_count": null,
80
+ "metadata": {},
81
+ "outputs": [],
82
+ "source": [
83
+ "ocr = TextractOcr()\n",
84
+ "writer = AssetWriter(output_base_path=OUTPUT_PATH)\n",
85
+ "creator = AssetCreator(writer, ocr)\n",
86
+ "\n",
87
+ "results = creator.create_all(\n",
88
+ " documents=documents,\n",
89
+ " workers=WORKERS,\n",
90
+ " limit=LIMIT\n",
91
+ ")\n",
92
+ "\n",
93
+ "print(f\"\\nResults: {results}\")"
94
+ ]
95
+ },
96
+ {
97
+ "cell_type": "markdown",
98
+ "metadata": {},
99
+ "source": [
100
+ "## Save Document Mapping (Optional)"
101
+ ]
102
+ },
103
+ {
104
+ "cell_type": "code",
105
+ "execution_count": null,
106
+ "metadata": {},
107
+ "outputs": [],
108
+ "source": [
109
+ "loader.save_document_mapping(\n",
110
+ " documents,\n",
111
+ " output_path='../data/document_mapping.csv'\n",
112
+ ")\n",
113
+ "\n",
114
+ "print(\"Document mapping saved!\")"
115
+ ]
116
+ }
117
+ ],
118
+ "metadata": {
119
+ "kernelspec": {
120
+ "display_name": "Python 3",
121
+ "language": "python",
122
+ "name": "python3"
123
+ },
124
+ "language_info": {
125
+ "name": "python",
126
+ "version": "3.8.0"
127
+ }
128
+ },
129
+ "nbformat": 4,
130
+ "nbformat_minor": 4
131
+ }
notebooks/02_create_benchmarks.ipynb ADDED
@@ -0,0 +1,226 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "# Step 2: Create Benchmarks from Assets\n",
8
+ "\n",
9
+ "This notebook generates document splitting benchmarks using all strategies.\n",
10
+ "\n",
11
+ "**Prerequisites**: Assets created from notebook 01\n",
12
+ "\n",
13
+ "**Output**: Benchmark datasets with ground truth for train/test/validation splits"
14
+ ]
15
+ },
16
+ {
17
+ "cell_type": "code",
18
+ "execution_count": null,
19
+ "metadata": {},
20
+ "outputs": [],
21
+ "source": [
22
+ "import sys\n",
23
+ "sys.path.append('../src/benchmarks')\n",
24
+ "\n",
25
+ "from services.asset_loader import AssetLoader\n",
26
+ "from services.split_manager import SplitManager\n",
27
+ "from services.benchmark_generator import BenchmarkGenerator\n",
28
+ "from services.benchmark_writer import BenchmarkWriter\n",
29
+ "from services.shuffle_strategies import get_strategy, STRATEGIES"
30
+ ]
31
+ },
32
+ {
33
+ "cell_type": "markdown",
34
+ "metadata": {},
35
+ "source": [
36
+ "## Configuration"
37
+ ]
38
+ },
39
+ {
40
+ "cell_type": "code",
41
+ "execution_count": null,
42
+ "metadata": {},
43
+ "outputs": [],
44
+ "source": [
45
+ "ASSETS_PATH = '../data/assets'\n",
46
+ "OUTPUT_PATH = '../data/benchmarks'\n",
47
+ "SPLIT_MAPPING_PATH = '../data/metadata/split_mapping.json'\n",
48
+ "\n",
49
+ "# Number of spliced documents per split\n",
50
+ "NUM_TRAIN = 800\n",
51
+ "NUM_TEST = 200\n",
52
+ "NUM_VAL = 500\n",
53
+ "\n",
54
+ "# Size: small (5-20 pages) or large (20-500 pages)\n",
55
+ "SIZE = 'small'\n",
56
+ "MIN_PAGES = 5 if SIZE == 'small' else 20\n",
57
+ "MAX_PAGES = 20 if SIZE == 'small' else 500\n",
58
+ "\n",
59
+ "RANDOM_SEED = 42\n",
60
+ "\n",
61
+ "print(f\"Configuration:\")\n",
62
+ "print(f\" Size: {SIZE} ({MIN_PAGES}-{MAX_PAGES} pages)\")\n",
63
+ "print(f\" Train: {NUM_TRAIN}, Test: {NUM_TEST}, Val: {NUM_VAL}\")\n",
64
+ "print(f\" Strategies: {list(STRATEGIES.keys())}\")"
65
+ ]
66
+ },
67
+ {
68
+ "cell_type": "markdown",
69
+ "metadata": {},
70
+ "source": [
71
+ "## Load Assets"
72
+ ]
73
+ },
74
+ {
75
+ "cell_type": "code",
76
+ "execution_count": null,
77
+ "metadata": {},
78
+ "outputs": [],
79
+ "source": [
80
+ "loader = AssetLoader(assets_path=ASSETS_PATH)\n",
81
+ "documents_by_type = loader.load_all_documents()\n",
82
+ "\n",
83
+ "print(f\"Loaded {loader.total_documents} documents across {len(documents_by_type)} types\")\n",
84
+ "for doc_type, docs in documents_by_type.items():\n",
85
+ " print(f\" {doc_type}: {len(docs)} documents\")"
86
+ ]
87
+ },
88
+ {
89
+ "cell_type": "markdown",
90
+ "metadata": {},
91
+ "source": [
92
+ "## Create Train/Test/Validation Split"
93
+ ]
94
+ },
95
+ {
96
+ "cell_type": "code",
97
+ "execution_count": null,
98
+ "metadata": {},
99
+ "outputs": [],
100
+ "source": [
101
+ "split_manager = SplitManager(random_seed=RANDOM_SEED)\n",
102
+ "splits = split_manager.create_split(documents_by_type)\n",
103
+ "\n",
104
+ "# Save split mapping\n",
105
+ "split_manager.save_split(splits, SPLIT_MAPPING_PATH)\n",
106
+ "\n",
107
+ "print(f\"\\nSplit statistics:\")\n",
108
+ "for split_name in ['train', 'test', 'validation']:\n",
109
+ " total = sum(len(docs) for docs in splits[split_name].values())\n",
110
+ " print(f\" {split_name}: {total} documents\")"
111
+ ]
112
+ },
113
+ {
114
+ "cell_type": "markdown",
115
+ "metadata": {},
116
+ "source": [
117
+ "## Generate All Benchmarks"
118
+ ]
119
+ },
120
+ {
121
+ "cell_type": "code",
122
+ "execution_count": null,
123
+ "metadata": {},
124
+ "outputs": [],
125
+ "source": [
126
+ "all_strategies = ['mono_seq', 'mono_rand', 'poly_seq', 'poly_int', 'poly_rand']\n",
127
+ "\n",
128
+ "for strategy_name in all_strategies:\n",
129
+ " print(f\"\\n{'='*60}\")\n",
130
+ " print(f\"Processing strategy: {strategy_name}\")\n",
131
+ " print(f\"{'='*60}\")\n",
132
+ " \n",
133
+ " # Initialize strategy\n",
134
+ " strategy = get_strategy(\n",
135
+ " strategy_name,\n",
136
+ " min_pages=MIN_PAGES,\n",
137
+ " max_pages=MAX_PAGES,\n",
138
+ " random_seed=RANDOM_SEED\n",
139
+ " )\n",
140
+ " \n",
141
+ " generator = BenchmarkGenerator(strategy=strategy)\n",
142
+ " output_path = f'{OUTPUT_PATH}/{strategy_name}/{SIZE}'\n",
143
+ " writer = BenchmarkWriter(output_base_path=output_path, assets_path=ASSETS_PATH)\n",
144
+ " \n",
145
+ " # Generate train\n",
146
+ " print(f\"Generating train...\")\n",
147
+ " train_benchmark = generator.generate_for_split(\n",
148
+ " documents_by_type=documents_by_type,\n",
149
+ " doc_names_for_split=splits['train'],\n",
150
+ " num_spliced_docs=NUM_TRAIN,\n",
151
+ " split_name='train',\n",
152
+ " benchmark_name=strategy_name\n",
153
+ " )\n",
154
+ " writer.save_benchmark_set(train_benchmark, 'train')\n",
155
+ " \n",
156
+ " # Generate test\n",
157
+ " print(f\"Generating test...\")\n",
158
+ " test_benchmark = generator.generate_for_split(\n",
159
+ " documents_by_type=documents_by_type,\n",
160
+ " doc_names_for_split=splits['test'],\n",
161
+ " num_spliced_docs=NUM_TEST,\n",
162
+ " split_name='test',\n",
163
+ " benchmark_name=strategy_name\n",
164
+ " )\n",
165
+ " writer.save_benchmark_set(test_benchmark, 'test')\n",
166
+ " \n",
167
+ " # Generate validation\n",
168
+ " print(f\"Generating validation...\")\n",
169
+ " val_benchmark = generator.generate_for_split(\n",
170
+ " documents_by_type=documents_by_type,\n",
171
+ " doc_names_for_split=splits['validation'],\n",
172
+ " num_spliced_docs=NUM_VAL,\n",
173
+ " split_name='validation',\n",
174
+ " benchmark_name=strategy_name\n",
175
+ " )\n",
176
+ " writer.save_benchmark_set(val_benchmark, 'validation')\n",
177
+ " \n",
178
+ " print(f\"✅ Completed {strategy_name}\")\n",
179
+ "\n",
180
+ "print(f\"\\n{'='*60}\")\n",
181
+ "print(f\"✅ All benchmarks generated!\")\n",
182
+ "print(f\"{'='*60}\")"
183
+ ]
184
+ },
185
+ {
186
+ "cell_type": "markdown",
187
+ "metadata": {},
188
+ "source": [
189
+ "## Summary"
190
+ ]
191
+ },
192
+ {
193
+ "cell_type": "code",
194
+ "execution_count": null,
195
+ "metadata": {},
196
+ "outputs": [],
197
+ "source": [
198
+ "print(f\"\\n✅ Benchmark creation complete!\")\n",
199
+ "print(f\"\\nOutput structure:\")\n",
200
+ "for strategy_name in all_strategies:\n",
201
+ " print(f\"\\n{OUTPUT_PATH}/{strategy_name}/{SIZE}/\")\n",
202
+ " print(f\" ├── train.csv ({NUM_TRAIN} documents)\")\n",
203
+ " print(f\" ├── test.csv ({NUM_TEST} documents)\")\n",
204
+ " print(f\" ├── validation.csv ({NUM_VAL} documents)\")\n",
205
+ " print(f\" └── ground_truth_json/\")\n",
206
+ " print(f\" ├── train/ (JSON per document)\")\n",
207
+ " print(f\" ├── test/ (JSON per document)\")\n",
208
+ " print(f\" └── validation/ (JSON per document)\")\n",
209
+ "print(f\"\\nSplit mapping: {SPLIT_MAPPING_PATH}\")"
210
+ ]
211
+ }
212
+ ],
213
+ "metadata": {
214
+ "kernelspec": {
215
+ "display_name": "Python 3",
216
+ "language": "python",
217
+ "name": "python3"
218
+ },
219
+ "language_info": {
220
+ "name": "python",
221
+ "version": "3.8.0"
222
+ }
223
+ },
224
+ "nbformat": 4,
225
+ "nbformat_minor": 4
226
+ }
notebooks/03_analyze_benchmarks.ipynb ADDED
@@ -0,0 +1,321 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "# Step 3: Analyze Benchmarks\n",
8
+ "\n",
9
+ "This notebook analyzes generated benchmarks:\n",
10
+ "- Load and inspect benchmark CSV and ground truth JSON\n",
11
+ "- Visualize statistics\n",
12
+ "- Validate ground truth consistency\n",
13
+ "\n",
14
+ "**Prerequisites**: Benchmarks created from notebook 02"
15
+ ]
16
+ },
17
+ {
18
+ "cell_type": "code",
19
+ "execution_count": null,
20
+ "metadata": {},
21
+ "outputs": [],
22
+ "source": [
23
+ "import json\n",
24
+ "import os\n",
25
+ "from PIL import Image\n",
26
+ "import numpy as np\n",
27
+ "import matplotlib.pyplot as plt\n",
28
+ "from pathlib import Path\n",
29
+ "from collections import Counter\n",
30
+ "from datasets import load_dataset"
31
+ ]
32
+ },
33
+ {
34
+ "cell_type": "markdown",
35
+ "metadata": {},
36
+ "source": [
37
+ "## Configuration"
38
+ ]
39
+ },
40
+ {
41
+ "cell_type": "code",
42
+ "execution_count": null,
43
+ "metadata": {},
44
+ "outputs": [],
45
+ "source": [
46
+ "STRATEGY = 'poly_seq' # mono_seq, mono_rand, poly_seq, poly_int, poly_rand\n",
47
+ "SIZE = 'small' # small or large\n",
48
+ "SPLIT = 'train' # train, test, or validation\n",
49
+ "\n",
50
+ "BENCHMARK_PATH = f'../data/benchmarks/{STRATEGY}/{SIZE}'\n",
51
+ "CSV_FILE = f'{BENCHMARK_PATH}/{SPLIT}.csv'\n",
52
+ "JSON_DIR = f'{BENCHMARK_PATH}/ground_truth_json/{SPLIT}'"
53
+ ]
54
+ },
55
+ {
56
+ "cell_type": "markdown",
57
+ "metadata": {},
58
+ "source": [
59
+ "## Load CSV Benchmark"
60
+ ]
61
+ },
62
+ {
63
+ "cell_type": "code",
64
+ "execution_count": null,
65
+ "metadata": {},
66
+ "outputs": [],
67
+ "source": [
68
+ "# Load dataset using HuggingFace datasets library\n",
69
+ "dataset = load_dataset('csv', data_files=CSV_FILE)['train']\n",
70
+ "\n",
71
+ "print(f\"Loaded {len(dataset)} rows from {CSV_FILE}\")\n",
72
+ "print(f\"\\nColumns: {dataset.column_names}\")\n",
73
+ "print(\"\\nFirst 5 rows:\")\n",
74
+ "# Display first 5 rows\n",
75
+ "for i in range(min(5, len(dataset))):\n",
76
+ " print(dataset[i])"
77
+ ]
78
+ },
79
+ {
80
+ "cell_type": "markdown",
81
+ "metadata": {},
82
+ "source": [
83
+ "## Basic Statistics"
84
+ ]
85
+ },
86
+ {
87
+ "cell_type": "code",
88
+ "execution_count": null,
89
+ "metadata": {},
90
+ "outputs": [],
91
+ "source": [
92
+ "# Count unique parent documents\n",
93
+ "unique_parents = set(dataset['parent_doc_name'])\n",
94
+ "num_parent_docs = len(unique_parents)\n",
95
+ "total_pages = len(dataset)\n",
96
+ "unique_doc_types = set(dataset['doc_type'])\n",
97
+ "num_doc_types = len(unique_doc_types)\n",
98
+ "\n",
99
+ "print(\"📊 Benchmark Statistics\")\n",
100
+ "print(\"=\"*50)\n",
101
+ "print(f\"Strategy: {STRATEGY}\")\n",
102
+ "print(f\"Size: {SIZE}\")\n",
103
+ "print(f\"Split: {SPLIT}\")\n",
104
+ "print(f\"\\nTotal parent documents: {num_parent_docs}\")\n",
105
+ "print(f\"Total pages: {total_pages}\")\n",
106
+ "print(f\"Unique document types: {num_doc_types}\")\n",
107
+ "print(f\"Average pages per document: {total_pages / num_parent_docs:.2f}\")"
108
+ ]
109
+ },
110
+ {
111
+ "cell_type": "markdown",
112
+ "metadata": {},
113
+ "source": [
114
+ "## Pages per Parent Document"
115
+ ]
116
+ },
117
+ {
118
+ "cell_type": "code",
119
+ "execution_count": null,
120
+ "metadata": {},
121
+ "outputs": [],
122
+ "source": [
123
+ "# Group by parent_doc_name and count pages\n",
124
+ "\n",
125
+ "pages_per_doc = Counter(dataset['parent_doc_name'])\n",
126
+ "pages_counts = list(pages_per_doc.values())\n",
127
+ "\n",
128
+ "plt.figure(figsize=(10, 6))\n",
129
+ "plt.hist(pages_counts, bins=30, edgecolor='black')\n",
130
+ "plt.xlabel('Total Pages')\n",
131
+ "plt.ylabel('Frequency')\n",
132
+ "plt.title(f'Distribution of Pages per Parent Document ({STRATEGY}/{SIZE}/{SPLIT})')\n",
133
+ "plt.grid(axis='y', alpha=0.3)\n",
134
+ "plt.show()\n",
135
+ "\n",
136
+ "print(\"\\nPages per document statistics:\")\n",
137
+ "\n",
138
+ "print(f\"count {len(pages_counts)}\")\n",
139
+ "print(f\"mean {np.mean(pages_counts):.6f}\")\n",
140
+ "print(f\"std {np.std(pages_counts):.6f}\")\n",
141
+ "print(f\"min {np.min(pages_counts):.6f}\")\n",
142
+ "print(f\"25% {np.percentile(pages_counts, 25):.6f}\")\n",
143
+ "print(f\"50% {np.percentile(pages_counts, 50):.6f}\")\n",
144
+ "print(f\"75% {np.percentile(pages_counts, 75):.6f}\")\n",
145
+ "print(f\"max {np.max(pages_counts):.6f}\")"
146
+ ]
147
+ },
148
+ {
149
+ "cell_type": "markdown",
150
+ "metadata": {},
151
+ "source": [
152
+ "## Document Type Distribution"
153
+ ]
154
+ },
155
+ {
156
+ "cell_type": "code",
157
+ "execution_count": null,
158
+ "metadata": {},
159
+ "outputs": [],
160
+ "source": [
161
+ "# Count document types\n",
162
+ "type_counts = Counter(dataset['doc_type'])\n",
163
+ "\n",
164
+ "plt.figure(figsize=(12, 6))\n",
165
+ "plt.bar(type_counts.keys(), type_counts.values(), edgecolor='black')\n",
166
+ "plt.xlabel('Document Type')\n",
167
+ "plt.ylabel('Number of Pages')\n",
168
+ "plt.title(f'Document Type Distribution ({STRATEGY}/{SIZE}/{SPLIT})')\n",
169
+ "plt.xticks(rotation=45, ha='right')\n",
170
+ "plt.grid(axis='y', alpha=0.3)\n",
171
+ "plt.tight_layout()\n",
172
+ "plt.show()\n",
173
+ "\n",
174
+ "print(\"\\nDocument type page counts:\")\n",
175
+ "for doc_type, count in sorted(type_counts.items(), key=lambda x: x[1], reverse=True):\n",
176
+ " print(f\" {doc_type}: {count} pages\")"
177
+ ]
178
+ },
179
+ {
180
+ "cell_type": "markdown",
181
+ "metadata": {},
182
+ "source": [
183
+ "## Inspect Sample Parent Document"
184
+ ]
185
+ },
186
+ {
187
+ "cell_type": "code",
188
+ "execution_count": null,
189
+ "metadata": {},
190
+ "outputs": [],
191
+ "source": [
192
+ "# Get first parent document\n",
193
+ "sample_parent = dataset['parent_doc_name'][0]\n",
194
+ "# Filter dataset for this parent\n",
195
+ "sample_indices = [i for i, parent in enumerate(dataset['parent_doc_name']) if parent == sample_parent]\n",
196
+ "sample_data = dataset.select(sample_indices)\n",
197
+ "\n",
198
+ "print(f\"Parent Document: {sample_parent}\")\n",
199
+ "print(f\"Total Pages: {len(sample_data)}\")\n",
200
+ "print(\"\\nSubdocuments (by group_id):\")\n",
201
+ "unique_groups = set(sample_data['group_id'])\n",
202
+ "for group_id in sorted(unique_groups):\n",
203
+ " group_indices = [i for i, g in enumerate(sample_data['group_id']) if g == group_id]\n",
204
+ " group_data = sample_data.select(group_indices)\n",
205
+ " doc_type = group_data['doc_type'][0]\n",
206
+ " original_doc = group_data['original_doc_name'][0]\n",
207
+ " pages = group_data['page']\n",
208
+ " print(f\" {group_id}: {doc_type}/{original_doc} - Pages: {pages[:5]}{'...' if len(pages) > 5 else ''}\")\n",
209
+ "\n",
210
+ "print(\"\\nFirst 10 pages:\")\n",
211
+ "for i in range(min(10, len(sample_data))):\n",
212
+ " row = sample_data[i]\n",
213
+ " print(f\" Page {row['page']}: {row['doc_type']}/{row['original_doc_name']} (group: {row['group_id']}, ordinal: {row['local_doc_id_page_ordinal']})\")"
214
+ ]
215
+ },
216
+ {
217
+ "cell_type": "markdown",
218
+ "metadata": {},
219
+ "source": [
220
+ "## View Sample Images"
221
+ ]
222
+ },
223
+ {
224
+ "cell_type": "code",
225
+ "execution_count": null,
226
+ "metadata": {},
227
+ "outputs": [],
228
+ "source": [
229
+ "# Display all pages vertically (scrollable)\n",
230
+ "for i in range(len(sample_data)):\n",
231
+ " row = sample_data[i]\n",
232
+ " img_path = f\"../{row['image_path']}\"\n",
233
+ " \n",
234
+ " if os.path.exists(img_path):\n",
235
+ " img = Image.open(img_path)\n",
236
+ " \n",
237
+ " plt.figure(figsize=(8, 10))\n",
238
+ " plt.imshow(img)\n",
239
+ " plt.title(f\"Page {row['page']} | {row['doc_type']} | Group: {row['group_id']}\", fontsize=12)\n",
240
+ " plt.axis('off')\n",
241
+ " plt.tight_layout()\n",
242
+ " plt.show()\n",
243
+ " \n",
244
+ " print(f\"Page {row['page']}: {row['original_doc_name']}\")\n",
245
+ " print(f\"Group: {row['group_id']} | Ordinal: {row['local_doc_id_page_ordinal']}\")\n",
246
+ " print(\"-\" * 80)"
247
+ ]
248
+ },
249
+ {
250
+ "cell_type": "markdown",
251
+ "metadata": {},
252
+ "source": [
253
+ "## Load and Inspect Ground Truth JSON"
254
+ ]
255
+ },
256
+ {
257
+ "cell_type": "code",
258
+ "execution_count": null,
259
+ "metadata": {},
260
+ "outputs": [],
261
+ "source": [
262
+ "# Load ground truth JSON for sample parent document\n",
263
+ "json_file = f'{JSON_DIR}/{sample_parent}.json'\n",
264
+ "\n",
265
+ "with open(json_file, 'r') as f:\n",
266
+ " gt_json = json.load(f)\n",
267
+ "\n",
268
+ "print(f\"Ground Truth JSON for: {gt_json['doc_id']}\")\n",
269
+ "print(f\"Total Pages: {gt_json['total_pages']}\")\n",
270
+ "print(f\"Number of Subdocuments: {len(gt_json['subdocuments'])}\")\n",
271
+ "print(f\"\\nFull JSON structure:\")\n",
272
+ "print(json.dumps(gt_json, indent=2))"
273
+ ]
274
+ },
275
+ {
276
+ "cell_type": "markdown",
277
+ "metadata": {},
278
+ "source": [
279
+ "## Summary"
280
+ ]
281
+ },
282
+ {
283
+ "cell_type": "code",
284
+ "execution_count": null,
285
+ "metadata": {},
286
+ "outputs": [],
287
+ "source": [
288
+ "print(\"\\n📊 Final Summary\")\n",
289
+ "print(\"=\"*50)\n",
290
+ "print(f\"Strategy: {STRATEGY}\")\n",
291
+ "print(f\"Size: {SIZE}\")\n",
292
+ "print(f\"Split: {SPLIT}\")\n",
293
+ "print(f\"\\nParent documents: {num_parent_docs}\")\n",
294
+ "print(f\"Total pages: {total_pages}\")\n",
295
+ "print(f\"Unique document types: {num_doc_types}\")\n",
296
+ "print(f\"\\nAverage pages per document: {total_pages / num_parent_docs:.2f}\")"
297
+ ]
298
+ }
299
+ ],
300
+ "metadata": {
301
+ "kernelspec": {
302
+ "display_name": "idplabs",
303
+ "language": "python",
304
+ "name": "python3"
305
+ },
306
+ "language_info": {
307
+ "codemirror_mode": {
308
+ "name": "ipython",
309
+ "version": 3
310
+ },
311
+ "file_extension": ".py",
312
+ "mimetype": "text/x-python",
313
+ "name": "python",
314
+ "nbconvert_exporter": "python",
315
+ "pygments_lexer": "ipython3",
316
+ "version": "3.12.11"
317
+ }
318
+ },
319
+ "nbformat": 4,
320
+ "nbformat_minor": 4
321
+ }
src/assets/__init__.py ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ # Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
2
+ # SPDX-License-Identifier: CC-BY-NC-4.0
src/assets/models.py ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
2
+ # SPDX-License-Identifier: CC-BY-NC-4.0
3
+
4
+ from pydantic import BaseModel, Field
5
+
6
+
7
+ class Document(BaseModel):
8
+ """Represents a document in the dataset."""
9
+
10
+ doc_type: str = Field(..., description="Document category/type")
11
+ doc_name: str = Field(..., description="Unique document identifier")
12
+ filename: str = Field(..., description="PDF filename")
13
+ absolute_filepath: str = Field(..., description="Full path to PDF file")
14
+ page_count: int = Field(..., gt=0, description="Number of pages in document")
src/assets/run.py ADDED
@@ -0,0 +1,123 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
2
+ # SPDX-License-Identifier: CC-BY-NC-4.0
3
+
4
+ """
5
+ Create Assets from Raw PDFs
6
+
7
+ Processes raw PDFs and creates structured assets:
8
+ - Page images (PNG at 300 DPI)
9
+ - OCR text (AWS Textract)
10
+
11
+ Usage:
12
+ python main.py
13
+ python main.py --workers 20 --limit 100
14
+ """
15
+ import os
16
+ import argparse
17
+ from loguru import logger
18
+
19
+ from services.pdf_loader import PdfLoader
20
+ from services.textract_ocr import TextractOcr
21
+ from services.deepseek_ocr import DeepSeekOcr
22
+ from services.asset_writer import AssetWriter
23
+ from services.asset_creator import AssetCreator
24
+
25
+
26
+ def main():
27
+ parser = argparse.ArgumentParser(description='Create assets from raw PDFs')
28
+ parser.add_argument('--raw-data-path', default='../raw_data')
29
+ parser.add_argument('--output-path', default='../processed_assets')
30
+ parser.add_argument('--metadata-path', default='../metadata')
31
+ parser.add_argument('--workers', type=int, default=10)
32
+ parser.add_argument('--limit', type=int, default=None)
33
+ parser.add_argument('--save-mapping', action='store_true')
34
+ parser.add_argument('--use-deepseek-for-language', action='store_true', help='Use DeepSeek OCR for language docs (default: Textract)')
35
+ parser.add_argument('--s3-bucket', default=os.getenv('DOCSPLIT_S3_BUCKET'), help='S3 bucket for Textract temporary uploads')
36
+ parser.add_argument('--s3-prefix', default='textract-temp', help='S3 prefix for uploads')
37
+
38
+ args = parser.parse_args()
39
+
40
+ logger.info("Creating assets from PDFs")
41
+
42
+ # Load all PDFs
43
+ loader = PdfLoader(raw_data_path=args.raw_data_path)
44
+ documents = loader.get_all_documents()
45
+
46
+ successful_docs = []
47
+
48
+ if args.use_deepseek_for_language:
49
+ # Separate language documents for DeepSeek processing
50
+ language_docs = [doc for doc in documents if doc.doc_type == 'language']
51
+ other_docs = [doc for doc in documents if doc.doc_type != 'language']
52
+
53
+ # Process non-language documents with Textract
54
+ if other_docs:
55
+ logger.info(f"Processing {len(other_docs)} non-language documents with Textract")
56
+ ocr = TextractOcr(s3_bucket=args.s3_bucket, s3_prefix=args.s3_prefix)
57
+ writer = AssetWriter(output_base_path=args.output_path)
58
+ creator = AssetCreator(writer, ocr)
59
+
60
+ results = creator.create_all(
61
+ documents=other_docs,
62
+ workers=args.workers,
63
+ limit=args.limit
64
+ )
65
+
66
+ logger.info(f"Textract completed: {results}")
67
+ if results['failed'] > 0:
68
+ logger.warning(f"Textract failed: {results['failed_docs']}")
69
+
70
+ failed_names = set(results['failed_docs'])
71
+ successful_docs.extend([doc for doc in other_docs if doc.doc_name not in failed_names])
72
+
73
+ # Process language documents with DeepSeek
74
+ if language_docs:
75
+ logger.info(f"Processing {len(language_docs)} language documents with DeepSeek OCR")
76
+ try:
77
+ deepseek_ocr = DeepSeekOcr()
78
+ writer = AssetWriter(output_base_path=args.output_path)
79
+ creator = AssetCreator(writer, deepseek_ocr)
80
+
81
+ results = creator.create_all(
82
+ documents=language_docs,
83
+ workers=args.workers,
84
+ limit=args.limit
85
+ )
86
+
87
+ logger.info(f"DeepSeek completed: {results}")
88
+ if results['failed'] > 0:
89
+ logger.warning(f"DeepSeek failed: {results['failed_docs']}")
90
+
91
+ failed_names = set(results['failed_docs'])
92
+ successful_docs.extend([doc for doc in language_docs if doc.doc_name not in failed_names])
93
+ except Exception as e:
94
+ logger.error(f"DeepSeek OCR initialization failed: {e}")
95
+ else:
96
+ # Process ALL documents with Textract
97
+ logger.info(f"Processing {len(documents)} documents with Textract")
98
+ ocr = TextractOcr(s3_bucket=args.s3_bucket, s3_prefix=args.s3_prefix)
99
+ writer = AssetWriter(output_base_path=args.output_path)
100
+ creator = AssetCreator(writer, ocr)
101
+
102
+ results = creator.create_all(
103
+ documents=documents,
104
+ workers=args.workers,
105
+ limit=args.limit
106
+ )
107
+
108
+ logger.info(f"Textract completed: {results}")
109
+ if results['failed'] > 0:
110
+ logger.warning(f"Textract failed: {results['failed_docs']}")
111
+
112
+ failed_names = set(results['failed_docs'])
113
+ successful_docs.extend([doc for doc in documents if doc.doc_name not in failed_names])
114
+
115
+ # Save mapping AFTER processing with only successful documents
116
+ if args.save_mapping:
117
+ mapping_path = f"{args.metadata_path}/document_mapping.csv"
118
+ loader.save_document_mapping(successful_docs, output_path=mapping_path)
119
+ logger.info(f"Saved mapping for {len(successful_docs)} successful documents")
120
+
121
+
122
+ if __name__ == '__main__':
123
+ main()
src/assets/services/__init__.py ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ # Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
2
+ # SPDX-License-Identifier: CC-BY-NC-4.0
src/assets/services/asset_creator.py ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
2
+ # SPDX-License-Identifier: CC-BY-NC-4.0
3
+
4
+ import os
5
+ from concurrent.futures import ThreadPoolExecutor, as_completed
6
+ from typing import List, Optional
7
+ from loguru import logger
8
+ from tenacity import retry, stop_after_attempt, wait_exponential, retry_if_exception_type
9
+
10
+ from models import Document
11
+ from services.textract_ocr import TextractOcr
12
+ from services.deepseek_ocr import DeepSeekOcr
13
+ from services.asset_writer import AssetWriter
14
+
15
+
16
+ class AssetCreator:
17
+ """Creates assets from PDFs: extracts images and OCR text."""
18
+
19
+ def __init__(self, writer: AssetWriter, ocr):
20
+ """Initialize AssetCreator.
21
+
22
+ Args:
23
+ writer: AssetWriter instance
24
+ ocr: OCR service (TextractOcr or DeepSeekOcr)
25
+ """
26
+ self.writer = writer
27
+ self.ocr = ocr
28
+ self.is_deepseek = isinstance(ocr, DeepSeekOcr)
29
+
30
+ @retry(
31
+ stop=stop_after_attempt(3),
32
+ wait=wait_exponential(multiplier=1, min=4, max=10),
33
+ retry=retry_if_exception_type((Exception,)),
34
+ reraise=True,
35
+ )
36
+ def create_assets(self, doc: Document) -> None:
37
+ """Create assets for a single document with retry logic."""
38
+ try:
39
+ logger.trace(f"Processing: {doc.doc_name}")
40
+
41
+ # Read PDF
42
+ with open(doc.absolute_filepath, 'rb') as f:
43
+ pdf_bytes = f.read()
44
+
45
+ # Extract text via OCR
46
+ if self.is_deepseek:
47
+ # DeepSeek needs images, extract them first
48
+ from src.idp_labs.core.util.pdf_util import PdfUtil
49
+ images = PdfUtil.get_pages_images_from_pdf(pdf_path=doc.absolute_filepath)
50
+ text_pages = self.ocr.extract_text_from_images(images)
51
+ else:
52
+ # Textract uses PDF bytes
53
+ text_pages = self.ocr.extract_text_from_pdf(pdf_bytes)
54
+
55
+ # Write all assets
56
+ self.writer.save_document_assets(
57
+ doc_type=doc.doc_type,
58
+ doc_name=doc.doc_name,
59
+ filename=doc.filename,
60
+ pdf_bytes=pdf_bytes,
61
+ text_pages=text_pages
62
+ )
63
+
64
+ logger.trace(f"Completed: {doc.doc_name}")
65
+
66
+ except Exception as e:
67
+ logger.exception(f"Error processing {doc.doc_name}: {e}")
68
+ raise
69
+
70
+ def create_all(
71
+ self,
72
+ documents: List[Document],
73
+ workers: Optional[int] = None,
74
+ limit: Optional[int] = None
75
+ ) -> dict:
76
+ """Create assets for all documents with concurrent execution.
77
+
78
+ Returns:
79
+ Dict with 'successful', 'failed', and 'failed_docs' keys.
80
+ """
81
+ if workers is None:
82
+ workers = os.cpu_count() or 1
83
+
84
+ docs_to_process = documents[:limit] if limit and limit > 0 else documents
85
+
86
+ logger.info(f"Processing {len(docs_to_process)} documents with {workers} workers")
87
+
88
+ successful = 0
89
+ failed = 0
90
+ failed_docs = []
91
+
92
+ with ThreadPoolExecutor(max_workers=workers) as executor:
93
+ future_to_doc = {
94
+ executor.submit(self.create_assets, doc): doc
95
+ for doc in docs_to_process
96
+ }
97
+
98
+ for future in as_completed(future_to_doc):
99
+ doc = future_to_doc[future]
100
+ try:
101
+ future.result()
102
+ successful += 1
103
+ except Exception as e:
104
+ failed += 1
105
+ failed_docs.append(doc.doc_name)
106
+ logger.error(f"Failed: {doc.doc_name} - {e}")
107
+
108
+ logger.info(f"Completed: {successful} successful, {failed} failed")
109
+
110
+ return {
111
+ 'successful': successful,
112
+ 'failed': failed,
113
+ 'failed_docs': failed_docs
114
+ }
src/assets/services/asset_writer.py ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
2
+ # SPDX-License-Identifier: CC-BY-NC-4.0
3
+
4
+ import os
5
+ from pathlib import Path
6
+ from typing import List
7
+ from PIL import Image
8
+ import fitz
9
+ from loguru import logger
10
+
11
+
12
+ class AssetWriter:
13
+ """Writes document assets (PDF, images, OCR text) to disk."""
14
+
15
+ def __init__(self, output_base_path: str = ".data/rvl-cdip-nmp-hf/rvl-cdip-nmp-assets"):
16
+ self.output_base_path = Path(output_base_path)
17
+
18
+ def save_document_assets(
19
+ self,
20
+ doc_type: str,
21
+ doc_name: str,
22
+ filename: str,
23
+ pdf_bytes: bytes,
24
+ text_pages: List[str]
25
+ ):
26
+ """Save all assets for a document: original PDF, page images, and OCR text."""
27
+
28
+ # Create directory structure: {doc_type}/{filename}/
29
+ doc_dir = self.output_base_path / doc_type / filename
30
+ original_dir = doc_dir / "original"
31
+ pages_dir = doc_dir / "pages"
32
+
33
+ original_dir.mkdir(parents=True, exist_ok=True)
34
+
35
+ # Save original PDF
36
+ original_pdf_path = original_dir / filename
37
+ with open(original_pdf_path, 'wb') as f:
38
+ f.write(pdf_bytes)
39
+
40
+ # Extract and save page images
41
+ pdf_doc = fitz.open(stream=pdf_bytes, filetype="pdf")
42
+
43
+ for page_num in range(len(pdf_doc)):
44
+ page = pdf_doc[page_num]
45
+ page_num_str = f"{page_num + 1:04d}"
46
+
47
+ # Create page directory
48
+ page_dir = pages_dir / page_num_str
49
+ page_dir.mkdir(parents=True, exist_ok=True)
50
+
51
+ # Save page image
52
+ pix = page.get_pixmap(dpi=300)
53
+ img_path = page_dir / f"page-{page_num_str}.png"
54
+ pix.save(str(img_path))
55
+
56
+ # Save OCR text
57
+ if page_num < len(text_pages):
58
+ text_path = page_dir / f"page-{page_num_str}-textract.md"
59
+ with open(text_path, 'w', encoding='utf-8') as f:
60
+ f.write(text_pages[page_num])
61
+
62
+ pdf_doc.close()
63
+ logger.debug(f"Saved assets for {doc_type}/{doc_name}")
src/assets/services/deepseek_ocr.py ADDED
@@ -0,0 +1,151 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
2
+ # SPDX-License-Identifier: CC-BY-NC-4.0
3
+
4
+ import os
5
+ import sys
6
+ import io
7
+ import tempfile
8
+ import shutil
9
+ import re
10
+ from typing import List, Optional
11
+ from contextlib import redirect_stdout
12
+ from loguru import logger
13
+ from PIL import Image
14
+
15
+ # Pin model revision for reproducibility and supply chain security
16
+ # Update README.md 9f30c71 commited on Nov 3, 2025
17
+ # False positive, high entropy string is acutally a commit hash required to remediate B615
18
+ MODEL_REVISION = "9f30c71f441d010e5429c532364a86705536c53a" # nosec SECRET-HEX-HIGH-ENTROPY-STRING
19
+
20
+
21
+ class DeepSeekOcr:
22
+ """DeepSeek OCR for language documents."""
23
+
24
+ def __init__(
25
+ self,
26
+ model_name: str = "deepseek-ai/DeepSeek-OCR",
27
+ device: str = "cuda",
28
+ cache_dir: Optional[str] = None
29
+ ):
30
+ """Initialize DeepSeek OCR from Hugging Face.
31
+
32
+ Args:
33
+ model_name: Hugging Face model name
34
+ device: Device to run model on ('cuda' or 'cpu')
35
+ cache_dir: Optional cache directory for model downloads (use larger disk if needed)
36
+ """
37
+ try:
38
+ from transformers import AutoModel, AutoTokenizer
39
+ import torch
40
+
41
+ # Verify CUDA availability
42
+ if device == "cuda" and not torch.cuda.is_available():
43
+ logger.warning("CUDA requested but not available. Falling back to CPU. Performance will be significantly slower.")
44
+ device = "cpu"
45
+
46
+ logger.info(f"Loading DeepSeek model: {model_name} on {device}")
47
+
48
+ self.tokenizer = AutoTokenizer.from_pretrained( # nosec B615 - False positive, see MODEL_REVISION is set to a specific version hash
49
+ model_name,
50
+ trust_remote_code=True,
51
+ cache_dir=cache_dir,
52
+ revision=MODEL_REVISION
53
+ )
54
+
55
+ self.model = AutoModel.from_pretrained( # nosec B615 - False positive, see MODEL_REVISION is set to a specific version hash
56
+ model_name,
57
+ _attn_implementation='flash_attention_2',
58
+ trust_remote_code=True,
59
+ use_safetensors=True,
60
+ torch_dtype=torch.bfloat16,
61
+ cache_dir=cache_dir,
62
+ revision=MODEL_REVISION
63
+ )
64
+
65
+ self.model = self.model.eval()
66
+ if device == "cuda":
67
+ self.model = self.model.cuda()
68
+
69
+ self.device = device
70
+ logger.info(f"DeepSeek model loaded successfully on {device}")
71
+ except ImportError as e:
72
+ logger.error(f"Failed to import dependencies: {e}")
73
+ raise
74
+ except Exception as e:
75
+ logger.error(f"Failed to load DeepSeek model: {e}")
76
+ raise
77
+
78
+ def extract_text_from_images(self, images: List[Image.Image]) -> List[str]:
79
+ """Extract text from page images using DeepSeek OCR.
80
+
81
+ Args:
82
+ images: List of PIL Images
83
+
84
+ Returns:
85
+ List of markdown text per page
86
+ """
87
+ texts = []
88
+ temp_dir = tempfile.mkdtemp(prefix='deepseek_ocr_')
89
+
90
+ try:
91
+ for idx, image in enumerate(images):
92
+ if not isinstance(image, Image.Image):
93
+ logger.warning(f"Page {idx + 1} is not a valid PIL Image, skipping")
94
+ texts.append("")
95
+ continue
96
+
97
+ try:
98
+ # Suppress model debug output
99
+ with redirect_stdout(io.StringIO()):
100
+ self.model.infer(
101
+ self.tokenizer,
102
+ prompt="<image>\n<|grounding|>Convert the document to markdown.",
103
+ image_file=image,
104
+ output_path=temp_dir,
105
+ base_size=1024,
106
+ image_size=640,
107
+ crop_mode=True,
108
+ save_results=True
109
+ )
110
+
111
+ # Read result from saved file
112
+ result_file = os.path.join(temp_dir, 'result.mmd')
113
+ if os.path.exists(result_file):
114
+ with open(result_file, 'r', encoding='utf-8') as f:
115
+ result = f.read()
116
+
117
+ # Clean markup tags
118
+ clean_text = re.sub(r'<\|ref\|>text<\|/ref\|>', '', result)
119
+ clean_text = re.sub(r'<\|det\|>\[\[.*?\]\]<\|/det\|>', '', clean_text)
120
+ clean_text = clean_text.strip()
121
+
122
+ texts.append(clean_text)
123
+
124
+ # Delete all output files after reading
125
+ for item in os.listdir(temp_dir):
126
+ item_path = os.path.join(temp_dir, item)
127
+ try:
128
+ if os.path.isfile(item_path):
129
+ os.remove(item_path)
130
+ elif os.path.isdir(item_path):
131
+ shutil.rmtree(item_path)
132
+ except Exception as e:
133
+ logger.debug(f"Failed to clean up {item_path}: {e}")
134
+
135
+ logger.info(f"DeepSeek OCR completed for page {idx + 1}")
136
+ else:
137
+ logger.warning(f"No result file found for page {idx + 1}")
138
+ texts.append("")
139
+
140
+ except Exception as e:
141
+ logger.error(f"DeepSeek OCR error on page {idx + 1}: {e}")
142
+ texts.append("")
143
+ finally:
144
+ # Cleanup temp directory
145
+ if os.path.exists(temp_dir):
146
+ shutil.rmtree(temp_dir, ignore_errors=True)
147
+ logger.debug(f"Cleaned up temp directory: {temp_dir}")
148
+
149
+ return texts
150
+
151
+
src/assets/services/pdf_loader.py ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
2
+ # SPDX-License-Identifier: CC-BY-NC-4.0
3
+
4
+ import os
5
+ from pathlib import Path
6
+ from typing import List, Optional
7
+ import csv
8
+ from loguru import logger
9
+ import fitz
10
+
11
+ from models import Document
12
+
13
+
14
+ class PdfLoader:
15
+ """Loads PDF files from raw data directory."""
16
+
17
+ def __init__(self, raw_data_path: str = ".data/rvl-cdip-mp/raw_data", max_file_size_mb: float = 150):
18
+ """Initialize PDF loader.
19
+
20
+ Args:
21
+ raw_data_path: Path to raw data directory
22
+ max_file_size_mb: Maximum file size in MB for valid PDFs
23
+ """
24
+ self.raw_data_path = Path(raw_data_path)
25
+ self.max_file_size_mb = max_file_size_mb
26
+
27
+ def validate_pdf(self, file_path: Path) -> tuple[bool, str, int]:
28
+ """Validate if a PDF is readable and within size limits.
29
+
30
+ Args:
31
+ file_path: Path to PDF file
32
+
33
+ Returns:
34
+ Tuple of (is_valid, status_message, page_count)
35
+ """
36
+ try:
37
+ # Check file size
38
+ size_bytes = file_path.stat().st_size
39
+ size_mb = size_bytes / (1024 * 1024)
40
+
41
+ if size_bytes == 0:
42
+ return False, "ZERO_SIZE", 0
43
+
44
+ if size_mb > self.max_file_size_mb:
45
+ return False, f"TOO_LARGE ({size_mb:.1f}MB)", 0
46
+
47
+ # Check PDF header
48
+ with open(file_path, "rb") as f:
49
+ header = f.read(4)
50
+ if header != b"%PDF":
51
+ return False, "INVALID_PDF_HEADER", 0
52
+
53
+ # Test readability with PyMuPDF
54
+ doc = fitz.open(str(file_path))
55
+
56
+ if doc.is_encrypted:
57
+ doc.close()
58
+ return False, "ENCRYPTED_PDF", 0
59
+
60
+ page_count = doc.page_count
61
+ if page_count == 0:
62
+ doc.close()
63
+ return False, "NO_PAGES", 0
64
+
65
+ # Try to access first page
66
+ page = doc[0]
67
+ page.get_text()
68
+ doc.close()
69
+
70
+ return True, "VALID", page_count
71
+
72
+ except Exception as e:
73
+ return False, f"ERROR: {str(e)[:50]}", 0
74
+
75
+ def get_all_documents(self, exclude_types: Optional[List[str]] = None) -> List[Document]:
76
+ """Get all valid PDF documents from raw data directory.
77
+
78
+ Args:
79
+ exclude_types: List of document types to exclude (e.g., ['language'])
80
+ """
81
+ if exclude_types is None:
82
+ exclude_types = []
83
+
84
+ documents = []
85
+
86
+ for doc_type_dir in self.raw_data_path.iterdir():
87
+ if not doc_type_dir.is_dir():
88
+ continue
89
+
90
+ doc_type = doc_type_dir.name
91
+
92
+ if doc_type in exclude_types:
93
+ logger.info(f"Skipping excluded type: {doc_type}")
94
+ continue
95
+
96
+ for pdf_file in doc_type_dir.glob("*.pdf"):
97
+ is_valid, status, page_count = self.validate_pdf(pdf_file)
98
+
99
+ if not is_valid:
100
+ logger.warning(f"Skipping invalid PDF {pdf_file}: {status}")
101
+ continue
102
+
103
+ doc = Document(
104
+ doc_type=doc_type,
105
+ doc_name=pdf_file.stem,
106
+ filename=pdf_file.name,
107
+ absolute_filepath=str(pdf_file.absolute()),
108
+ page_count=page_count
109
+ )
110
+ documents.append(doc)
111
+
112
+ logger.info(f"Loaded {len(documents)} valid documents")
113
+ return documents
114
+
115
+ def save_document_mapping(self, documents: List[Document], output_path: str):
116
+ """Save document mapping to CSV."""
117
+ os.makedirs(os.path.dirname(output_path), exist_ok=True)
118
+
119
+ with open(output_path, 'w', newline='') as f:
120
+ writer = csv.DictWriter(f, fieldnames=['type', 'doc_name', 'filename', 'pages', 'validation_status'])
121
+ writer.writeheader()
122
+ for doc in documents:
123
+ writer.writerow({
124
+ 'type': doc.doc_type,
125
+ 'doc_name': doc.doc_name,
126
+ 'filename': doc.filename,
127
+ 'pages': doc.page_count,
128
+ 'validation_status': 'VALID'
129
+ })
130
+
131
+ logger.info(f"Saved document mapping to {output_path}")
src/assets/services/textract_ocr.py ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
2
+ # SPDX-License-Identifier: CC-BY-NC-4.0
3
+
4
+ from typing import List
5
+ from loguru import logger
6
+ from textractor import Textractor
7
+ from textractor.data.constants import TextractFeatures
8
+
9
+
10
+ class TextractOcr:
11
+ """Extracts text from PDFs using AWS Textract with S3 upload."""
12
+
13
+ def __init__(self, s3_bucket: str, s3_prefix: str = 'textract-temp'):
14
+ """Initialize Textract OCR.
15
+
16
+ Args:
17
+ s3_bucket: S3 bucket for temporary uploads
18
+ s3_prefix: S3 prefix for uploads
19
+ """
20
+ self.textractor = Textractor()
21
+ self.s3_upload_path = f"s3://{s3_bucket}/{s3_prefix}"
22
+ logger.info(f"Textract S3 upload path: {self.s3_upload_path}")
23
+
24
+ def extract_text_from_pdf(self, pdf_bytes: bytes) -> List[str]:
25
+ """Extract text from PDF using Textract with S3 upload.
26
+
27
+ Returns:
28
+ List of markdown text, one per page.
29
+ """
30
+ # Use start_document_analysis with S3 upload
31
+ lazy_document = self.textractor.start_document_analysis(
32
+ file_source=pdf_bytes,
33
+ s3_upload_path=self.s3_upload_path,
34
+ features=[TextractFeatures.LAYOUT],
35
+ save_image=False,
36
+ )
37
+
38
+ # Wait for completion
39
+ _ = lazy_document.response
40
+ pages = lazy_document.document.pages
41
+
42
+ # Convert to markdown
43
+ page_texts = []
44
+ for page in pages:
45
+ try:
46
+ page_content = page.to_markdown()
47
+ except Exception:
48
+ page_content = page.get_text()
49
+ page_texts.append(page_content)
50
+
51
+ return page_texts if page_texts else ['']
src/benchmarks/__init__.py ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ # Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
2
+ # SPDX-License-Identifier: CC-BY-NC-4.0
src/benchmarks/models.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
2
+ # SPDX-License-Identifier: CC-BY-NC-4.0
3
+
4
+ from typing import List, Dict, Optional
5
+ from pydantic import BaseModel, Field
6
+
7
+
8
+ class SourceDocument(BaseModel):
9
+ """Represents a source document used in splicing."""
10
+
11
+ doc_type: str = Field(..., description="Document category/type")
12
+ doc_name: str = Field(..., description="Source document identifier")
13
+ pages: List[int] = Field(..., description="Page numbers used from this document")
14
+
15
+
16
+ class GroundTruthPage(BaseModel):
17
+ """Ground truth for a single page in spliced document."""
18
+
19
+ page_num: int = Field(..., ge=1, description="Page number in spliced document")
20
+ doc_type: str = Field(..., description="Document category/type")
21
+ source_doc: str = Field(..., description="Source document identifier")
22
+ source_page: int = Field(..., ge=1, description="Page number in source document")
23
+
24
+
25
+ class SplicedDocument(BaseModel):
26
+ """Represents a spliced benchmark document."""
27
+
28
+ spliced_doc_id: str = Field(..., description="Unique identifier for spliced document")
29
+ source_documents: List[SourceDocument] = Field(..., description="Source documents used")
30
+ ground_truth: List[GroundTruthPage] = Field(..., description="Ground truth page mappings")
31
+ total_pages: int = Field(..., gt=0, description="Total pages in spliced document")
32
+
33
+
34
+ class BenchmarkSet(BaseModel):
35
+ """Collection of spliced documents for a benchmark."""
36
+
37
+ benchmark_name: str = Field(..., description="Benchmark identifier")
38
+ strategy: str = Field(..., description="Shuffling strategy used")
39
+ split: str = Field(..., description="Dataset split: train, test, or validation")
40
+ created_at: str = Field(..., description="Creation timestamp")
41
+ documents: List[SplicedDocument] = Field(..., description="Spliced documents")
42
+ statistics: Dict[str, int] = Field(default_factory=dict, description="Benchmark statistics")
43
+
44
+
45
+ class DocumentAsset(BaseModel):
46
+ """Represents a loaded document asset."""
47
+
48
+ doc_type: str = Field(..., description="Document category/type")
49
+ doc_name: str = Field(..., description="Document identifier")
50
+ filename: str = Field(..., description="PDF filename")
51
+ page_count: int = Field(..., gt=0, description="Number of pages")
52
+ pages: List['PageAsset'] = Field(default_factory=list, description="Page assets")
53
+
54
+
55
+ class PageAsset(BaseModel):
56
+ """Represents a single page asset."""
57
+
58
+ page_num: int = Field(..., ge=1, description="Page number")
59
+ image_path: str = Field(..., description="Path to page image")
60
+ text_path: str = Field(..., description="Path to OCR text")
61
+ text_content: Optional[str] = Field(None, description="Loaded text content")
src/benchmarks/run.py ADDED
@@ -0,0 +1,148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
2
+ # SPDX-License-Identifier: CC-BY-NC-4.0
3
+
4
+ """
5
+ Create Benchmarks from Assets
6
+
7
+ Generates document splitting benchmarks from structured assets.
8
+
9
+ Usage:
10
+ python main.py --strategy multi_category_concat
11
+ python main.py --strategy single_category_concat --num-docs-train 500
12
+ """
13
+
14
+ import argparse
15
+ from pathlib import Path
16
+ from loguru import logger
17
+
18
+ from services.asset_loader import AssetLoader
19
+ from services.split_manager import SplitManager
20
+ from services.benchmark_generator import BenchmarkGenerator
21
+ from services.benchmark_writer import BenchmarkWriter
22
+ from services.shuffle_strategies import get_strategy, STRATEGIES
23
+
24
+
25
+ def main():
26
+ parser = argparse.ArgumentParser(description='Create benchmarks from assets')
27
+
28
+ # Paths
29
+ parser.add_argument('--assets-path', default='data/assets',
30
+ help='Path to assets from create_assets')
31
+ parser.add_argument('--output-path', default='data/benchmarks',
32
+ help='Output path for benchmarks')
33
+ parser.add_argument('--split-mapping', default='data/metadata/split_mapping.json',
34
+ help='Path to split mapping JSON (created if not exists)')
35
+
36
+ # Strategy
37
+ parser.add_argument('--strategy', choices=list(STRATEGIES.keys()) + ['all'], default='all',
38
+ help='Shuffle strategy to use (default: all strategies)')
39
+
40
+ # Split configuration
41
+ parser.add_argument('--num-docs-train', type=int, default=800,
42
+ help='Number of spliced documents for training')
43
+ parser.add_argument('--num-docs-test', type=int, default=500,
44
+ help='Number of spliced documents for testing')
45
+ parser.add_argument('--num-docs-val', type=int, default=200,
46
+ help='Number of spliced documents for validation')
47
+
48
+ # Strategy parameters
49
+ parser.add_argument('--size', choices=['small', 'large'], default='small',
50
+ help='Benchmark size: small (5-20 pages) or large (20-500 pages)')
51
+ parser.add_argument('--random-seed', type=int, default=42,
52
+ help='Random seed for reproducibility')
53
+
54
+ args = parser.parse_args()
55
+
56
+ # Set page ranges based on size
57
+ if args.size == 'small':
58
+ min_pages, max_pages = 5, 20
59
+ else: # large
60
+ min_pages, max_pages = 20, 500
61
+
62
+ # Determine which strategies to run
63
+ if args.strategy == 'all':
64
+ strategies_to_run = list(STRATEGIES.keys())
65
+ logger.info(f"Creating benchmarks for all strategies: {strategies_to_run}")
66
+ else:
67
+ strategies_to_run = [args.strategy]
68
+ logger.info(f"Creating benchmark with strategy: {args.strategy}")
69
+
70
+ logger.info(f"Size: {args.size} ({min_pages}-{max_pages} pages)")
71
+
72
+ # Load assets
73
+ loader = AssetLoader(assets_path=args.assets_path)
74
+ documents_by_type = loader.load_all_documents()
75
+
76
+ if not documents_by_type:
77
+ logger.error("No documents loaded. Check assets path.")
78
+ return
79
+
80
+ # Create or load split
81
+ split_manager = SplitManager(random_seed=args.random_seed)
82
+
83
+ if args.split_mapping and Path(args.split_mapping).exists():
84
+ logger.info(f"Loading existing split from {args.split_mapping}")
85
+ splits = split_manager.load_split(args.split_mapping)
86
+ else:
87
+ logger.info("Creating new split")
88
+ splits = split_manager.create_split(documents_by_type)
89
+
90
+ # Save split mapping to metadata folder
91
+ split_path = Path(args.split_mapping)
92
+ split_path.parent.mkdir(parents=True, exist_ok=True)
93
+ split_manager.save_split(splits, str(split_path))
94
+
95
+ # Run for each strategy
96
+ for strategy_name in strategies_to_run:
97
+ logger.info(f"\n{'='*60}")
98
+ logger.info(f"Processing strategy: {strategy_name}")
99
+ logger.info(f"{'='*60}\n")
100
+
101
+ # Initialize strategy
102
+ strategy = get_strategy(
103
+ strategy_name,
104
+ min_pages=min_pages,
105
+ max_pages=max_pages,
106
+ random_seed=args.random_seed
107
+ )
108
+
109
+ # Initialize generator and writer
110
+ generator = BenchmarkGenerator(strategy=strategy)
111
+ writer = BenchmarkWriter(
112
+ output_base_path=str(Path(args.output_path) / strategy_name / args.size),
113
+ assets_path=args.assets_path
114
+ )
115
+
116
+ # Generate benchmarks for each split
117
+ split_configs = [
118
+ ('train', args.num_docs_train),
119
+ ('test', args.num_docs_test),
120
+ ('validation', args.num_docs_val)
121
+ ]
122
+
123
+ for split_name, num_docs in split_configs:
124
+ if num_docs <= 0:
125
+ logger.info(f"Skipping {split_name} (num_docs=0)")
126
+ continue
127
+
128
+ logger.info(f"Generating {split_name} benchmark...")
129
+
130
+ benchmark_set = generator.generate_for_split(
131
+ documents_by_type=documents_by_type,
132
+ doc_names_for_split=splits[split_name],
133
+ num_spliced_docs=num_docs,
134
+ split_name=split_name,
135
+ benchmark_name=strategy_name
136
+ )
137
+
138
+ writer.save_benchmark_set(benchmark_set, split_name)
139
+
140
+ logger.info(f"Completed {split_name}: {benchmark_set.statistics}")
141
+
142
+ logger.info("\n" + "="*60)
143
+ logger.info("All benchmark creation complete!")
144
+ logger.info("="*60)
145
+
146
+
147
+ if __name__ == '__main__':
148
+ main()
src/benchmarks/services/__init__.py ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ # Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
2
+ # SPDX-License-Identifier: CC-BY-NC-4.0
src/benchmarks/services/asset_loader.py ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
2
+ # SPDX-License-Identifier: CC-BY-NC-4.0
3
+
4
+ import os
5
+ import csv
6
+ from pathlib import Path
7
+ from typing import List, Dict, Optional
8
+ from loguru import logger
9
+
10
+ from models import DocumentAsset, PageAsset
11
+
12
+
13
+ class AssetLoader:
14
+ """Loads document assets from create_assets output using document_mapping.csv."""
15
+
16
+ def __init__(self, assets_path: str, mapping_csv: str = None):
17
+ """Initialize asset loader.
18
+
19
+ Args:
20
+ assets_path: Path to assets directory
21
+ mapping_csv: Path to document_mapping.csv (default: data/metadata/document_mapping.csv)
22
+ """
23
+ self.assets_path = Path(assets_path)
24
+
25
+ if mapping_csv is None:
26
+ mapping_csv = "data/metadata/document_mapping.csv"
27
+
28
+ self.mapping_csv = Path(mapping_csv)
29
+
30
+ if not self.mapping_csv.exists():
31
+ raise FileNotFoundError(f"Document mapping not found: {self.mapping_csv}")
32
+
33
+ def load_all_documents(self, doc_types: List[str] = None) -> Dict[str, List[DocumentAsset]]:
34
+ """Load all document assets grouped by type from CSV.
35
+
36
+ Args:
37
+ doc_types: Optional list of document types to load. If None, loads all.
38
+
39
+ Returns:
40
+ Dict mapping doc_type to list of DocumentAsset objects.
41
+ """
42
+ documents_by_type = {}
43
+
44
+ # Read document mapping CSV
45
+ with open(self.mapping_csv, 'r', encoding='utf-8') as f:
46
+ reader = csv.DictReader(f)
47
+ for row in reader:
48
+ doc_type = row['type']
49
+ doc_name = row['doc_name']
50
+ filename = row['filename']
51
+ page_count = int(row['pages'])
52
+
53
+ # Filter by doc_types if specified
54
+ if doc_types and doc_type not in doc_types:
55
+ continue
56
+
57
+ # Build document asset
58
+ doc_asset = self._create_document_asset(
59
+ doc_type=doc_type,
60
+ doc_name=doc_name,
61
+ filename=filename,
62
+ page_count=page_count
63
+ )
64
+
65
+ if doc_type not in documents_by_type:
66
+ documents_by_type[doc_type] = []
67
+
68
+ documents_by_type[doc_type].append(doc_asset)
69
+
70
+ total = sum(len(docs) for docs in documents_by_type.values())
71
+ logger.info(f"Loaded {total} documents across {len(documents_by_type)} types from CSV")
72
+
73
+ return documents_by_type
74
+
75
+ def _create_document_asset(
76
+ self,
77
+ doc_type: str,
78
+ doc_name: str,
79
+ filename: str,
80
+ page_count: int
81
+ ) -> DocumentAsset:
82
+ """Create DocumentAsset with page information.
83
+
84
+ Args:
85
+ doc_type: Document category
86
+ doc_name: Document identifier
87
+ filename: PDF filename
88
+ page_count: Number of pages
89
+
90
+ Returns:
91
+ DocumentAsset with populated pages
92
+ """
93
+ pages = []
94
+
95
+ for page_num in range(1, page_count + 1):
96
+ page_num_str = f"{page_num:04d}"
97
+
98
+ # Construct paths based on known structure
99
+ page_dir = self.assets_path / doc_type / filename / "pages" / page_num_str
100
+ image_path = page_dir / f"page-{page_num_str}.png"
101
+ text_path = page_dir / f"page-{page_num_str}-textract.md"
102
+
103
+ page_asset = PageAsset(
104
+ page_num=page_num,
105
+ image_path=str(image_path),
106
+ text_path=str(text_path),
107
+ text_content=None # Loaded on demand
108
+ )
109
+ pages.append(page_asset)
110
+
111
+ return DocumentAsset(
112
+ doc_type=doc_type,
113
+ doc_name=doc_name,
114
+ filename=filename,
115
+ page_count=page_count,
116
+ pages=pages
117
+ )
src/benchmarks/services/benchmark_generator.py ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
2
+ # SPDX-License-Identifier: CC-BY-NC-4.0
3
+
4
+ from typing import Dict, List
5
+ from datetime import datetime
6
+ from loguru import logger
7
+
8
+ from models import DocumentAsset, BenchmarkSet
9
+ from services.shuffle_strategies.base_strategy import BaseStrategy
10
+
11
+
12
+ class BenchmarkGenerator:
13
+ """Orchestrates benchmark generation."""
14
+
15
+ def __init__(self, strategy: BaseStrategy):
16
+ self.strategy = strategy
17
+
18
+ def generate_for_split(
19
+ self,
20
+ documents_by_type: Dict[str, List[DocumentAsset]],
21
+ doc_names_for_split: Dict[str, List[str]],
22
+ num_spliced_docs: int,
23
+ split_name: str,
24
+ benchmark_name: str
25
+ ) -> BenchmarkSet:
26
+ """Generate benchmark set for a specific split.
27
+
28
+ Args:
29
+ documents_by_type: All available documents grouped by type
30
+ doc_names_for_split: Document names to use for this split
31
+ num_spliced_docs: Number of spliced documents to generate
32
+ split_name: Name of the split (train, test, validation)
33
+ benchmark_name: Name of the benchmark
34
+
35
+ Returns:
36
+ BenchmarkSet object
37
+ """
38
+ logger.info(f"Generating {num_spliced_docs} documents for {split_name} split")
39
+
40
+ spliced_documents = self.strategy.generate(
41
+ documents_by_type=documents_by_type,
42
+ doc_names_for_split=doc_names_for_split,
43
+ num_spliced_docs=num_spliced_docs
44
+ )
45
+
46
+ # Calculate statistics
47
+ statistics = self._calculate_statistics(spliced_documents)
48
+
49
+ benchmark_set = BenchmarkSet(
50
+ benchmark_name=benchmark_name,
51
+ strategy=self.strategy.__class__.__name__,
52
+ split=split_name,
53
+ created_at=datetime.now().isoformat(),
54
+ documents=spliced_documents,
55
+ statistics=statistics
56
+ )
57
+
58
+ logger.info(f"Generated benchmark set with {len(spliced_documents)} documents")
59
+ return benchmark_set
60
+
61
+ def _calculate_statistics(self, spliced_documents: List) -> Dict[str, int]:
62
+ """Calculate statistics for the benchmark set."""
63
+ total_pages = sum(doc.total_pages for doc in spliced_documents)
64
+ total_source_docs = sum(len(doc.source_documents) for doc in spliced_documents)
65
+
66
+ doc_types = set()
67
+ for doc in spliced_documents:
68
+ for source in doc.source_documents:
69
+ doc_types.add(source.doc_type)
70
+
71
+ return {
72
+ 'total_spliced_documents': len(spliced_documents),
73
+ 'total_pages': total_pages,
74
+ 'total_source_documents': total_source_docs,
75
+ 'unique_doc_types': len(doc_types),
76
+ 'avg_pages_per_document': int(total_pages / len(spliced_documents)) if spliced_documents else 0
77
+ }
src/benchmarks/services/benchmark_writer.py ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
2
+ # SPDX-License-Identifier: CC-BY-NC-4.0
3
+
4
+ import csv
5
+ import json
6
+ from pathlib import Path
7
+ from loguru import logger
8
+
9
+ from models import BenchmarkSet
10
+
11
+
12
+ class BenchmarkWriter:
13
+ """Writes benchmark datasets to disk as CSV files."""
14
+
15
+ def __init__(self, output_base_path: str, assets_path: str = "data/assets"):
16
+ self.output_base_path = Path(output_base_path)
17
+ self.assets_path = Path(assets_path)
18
+
19
+ def save_benchmark_set(
20
+ self,
21
+ benchmark_set: BenchmarkSet,
22
+ split: str
23
+ ):
24
+ """Save a benchmark set to CSV and ground truth JSON files.
25
+
26
+ Args:
27
+ benchmark_set: The benchmark set to save
28
+ split: Split name (train, test, or validation)
29
+ """
30
+ self.output_base_path.mkdir(parents=True, exist_ok=True)
31
+
32
+ output_path = self.output_base_path / f"{split}.csv"
33
+ json_dir = self.output_base_path / "ground_truth_json" / split
34
+ json_dir.mkdir(parents=True, exist_ok=True)
35
+
36
+ # Generate group IDs (AA, AB, AC, etc.)
37
+ def generate_group_id(index):
38
+ """Generate group_id like AA, AB, AC, ..., AZ, BA, BB, etc."""
39
+ alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
40
+ first_char = alphabet[index // 26 % 26]
41
+ second_char = alphabet[index % 26]
42
+ return first_char + second_char
43
+
44
+ # Flatten ground truth pages into CSV rows
45
+ rows = []
46
+
47
+ # Track unique source documents across all packets for group_id assignment
48
+ source_doc_to_group_id = {}
49
+ group_id_counter = 0
50
+
51
+ for doc_idx, doc in enumerate(benchmark_set.documents):
52
+ # Track page ordinal per source document
53
+ source_doc_ordinals = {}
54
+ # Track local_doc_id per source document within this packet
55
+ source_doc_to_local_id = {}
56
+ local_id_counter = {}
57
+
58
+ for gt_page in doc.ground_truth:
59
+ source_key = gt_page.source_doc
60
+
61
+ # Assign group_id per unique source document
62
+ if source_key not in source_doc_to_group_id:
63
+ source_doc_to_group_id[source_key] = generate_group_id(group_id_counter)
64
+ group_id_counter += 1
65
+
66
+ group_id = source_doc_to_group_id[source_key]
67
+
68
+ # Increment ordinal for this source document
69
+ if source_key not in source_doc_ordinals:
70
+ source_doc_ordinals[source_key] = 0
71
+ source_doc_ordinals[source_key] += 1
72
+
73
+ # Assign local_doc_id per source document
74
+ if source_key not in source_doc_to_local_id:
75
+ doc_type_prefix = gt_page.doc_type.replace(" ", "-").lower()
76
+ if doc_type_prefix not in local_id_counter:
77
+ local_id_counter[doc_type_prefix] = 0
78
+ local_id_counter[doc_type_prefix] += 1
79
+ source_doc_to_local_id[source_key] = f"{doc_type_prefix}-{local_id_counter[doc_type_prefix]:02d}"
80
+
81
+ local_doc_id = source_doc_to_local_id[source_key]
82
+
83
+ # Build paths
84
+ image_path = f"{self.assets_path}/{gt_page.doc_type}/{gt_page.source_doc}.pdf/pages/{gt_page.source_page:04d}/page-{gt_page.source_page:04d}.png"
85
+ text_path = f"{self.assets_path}/{gt_page.doc_type}/{gt_page.source_doc}.pdf/pages/{gt_page.source_page:04d}/page-{gt_page.source_page:04d}-textract.md"
86
+
87
+ rows.append({
88
+ 'doc_type': gt_page.doc_type,
89
+ 'original_doc_name': gt_page.source_doc,
90
+ 'parent_doc_name': doc.spliced_doc_id,
91
+ 'local_doc_id': local_doc_id,
92
+ 'page': gt_page.page_num,
93
+ 'image_path': image_path,
94
+ 'text_path': text_path,
95
+ 'group_id': group_id,
96
+ 'local_doc_id_page_ordinal': source_doc_ordinals[source_key]
97
+ })
98
+
99
+ # Generate ground truth JSON for this parent document
100
+ self._save_ground_truth_json(doc, json_dir)
101
+
102
+ # Write CSV
103
+ if rows:
104
+ fieldnames = ['doc_type', 'original_doc_name', 'parent_doc_name', 'local_doc_id',
105
+ 'page', 'image_path', 'text_path', 'group_id', 'local_doc_id_page_ordinal']
106
+ with open(output_path, 'w', newline='', encoding='utf-8') as f:
107
+ writer = csv.DictWriter(f, fieldnames=fieldnames)
108
+ writer.writeheader()
109
+ writer.writerows(rows)
110
+
111
+ logger.info(f"Saved {len(benchmark_set.documents)} spliced documents ({len(rows)} pages) to {output_path}")
112
+ logger.info(f"Saved {len(benchmark_set.documents)} ground truth JSON files to {json_dir}")
113
+
114
+ def _save_ground_truth_json(self, doc, json_dir: Path):
115
+ """Generate ground truth JSON for a single parent document."""
116
+ # Group pages by source document (doc_type, source_doc)
117
+ subdocs = {}
118
+ for gt_page in doc.ground_truth:
119
+ key = (gt_page.doc_type, gt_page.source_doc)
120
+ if key not in subdocs:
121
+ subdocs[key] = []
122
+ subdocs[key].append(gt_page)
123
+
124
+ # Build subdocuments structure
125
+ subdocuments = []
126
+
127
+ for subdoc_idx, ((doc_type, source_doc), pages) in enumerate(subdocs.items()):
128
+ group_id = self._generate_group_id(subdoc_idx)
129
+
130
+ # Count occurrences of this doc_type so far
131
+ doc_type_count = sum(1 for s in subdocuments if s['doc_type_id'] == doc_type) + 1
132
+ local_doc_id = f"{doc_type}-{doc_type_count:02d}"
133
+
134
+ page_ordinals = [p.page_num for p in pages]
135
+
136
+ subdoc_pages = []
137
+ for idx, gt_page in enumerate(pages, 1):
138
+ image_path = f"{self.assets_path}/{gt_page.doc_type}/{gt_page.source_doc}.pdf/pages/{gt_page.source_page:04d}/page-{gt_page.source_page:04d}.png"
139
+ text_path = f"{self.assets_path}/{gt_page.doc_type}/{gt_page.source_doc}.pdf/pages/{gt_page.source_page:04d}/page-{gt_page.source_page:04d}-textract.md"
140
+
141
+ subdoc_pages.append({
142
+ "page": gt_page.page_num,
143
+ "original_doc_name": gt_page.source_doc,
144
+ "image_path": image_path,
145
+ "text_path": text_path,
146
+ "local_doc_id_page_ordinal": idx
147
+ })
148
+
149
+ subdocuments.append({
150
+ "doc_type_id": doc_type,
151
+ "page_ordinals": page_ordinals,
152
+ "local_doc_id": local_doc_id,
153
+ "group_id": group_id,
154
+ "pages": subdoc_pages
155
+ })
156
+
157
+ # Build final JSON structure
158
+ ground_truth = {
159
+ "doc_id": doc.spliced_doc_id,
160
+ "total_pages": doc.total_pages,
161
+ "subdocuments": subdocuments
162
+ }
163
+
164
+ # Write JSON file
165
+ json_path = json_dir / f"{doc.spliced_doc_id}.json"
166
+ with open(json_path, 'w', encoding='utf-8') as f:
167
+ json.dump(ground_truth, f, indent=2)
168
+
169
+ def _generate_group_id(self, index):
170
+ """Generate group_id like AA, AB, AC, ..., AZ, BA, BB, etc."""
171
+ result = ""
172
+ index += 1
173
+ while index > 0:
174
+ index -= 1
175
+ result = chr(65 + (index % 26)) + result
176
+ index //= 26
177
+ return result or "A"
src/benchmarks/services/shuffle_strategies/__init__.py ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
2
+ # SPDX-License-Identifier: CC-BY-NC-4.0
3
+
4
+ from .base_strategy import BaseStrategy
5
+ from .mono_seq import MonoSeq
6
+ from .mono_rand import MonoRand
7
+ from .poly_seq import PolySeq
8
+ from .poly_int import PolyInt
9
+ from .poly_rand import PolyRand
10
+
11
+
12
+ STRATEGIES = {
13
+ 'mono_seq': MonoSeq,
14
+ 'mono_rand': MonoRand,
15
+ 'poly_seq': PolySeq,
16
+ 'poly_int': PolyInt,
17
+ 'poly_rand': PolyRand,
18
+ }
19
+
20
+
21
+ def get_strategy(name: str, **kwargs) -> BaseStrategy:
22
+ """Get a strategy instance by name."""
23
+ if name not in STRATEGIES:
24
+ raise ValueError(f"Unknown strategy: {name}. Available: {list(STRATEGIES.keys())}")
25
+ return STRATEGIES[name](**kwargs)
src/benchmarks/services/shuffle_strategies/base_strategy.py ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
2
+ # SPDX-License-Identifier: CC-BY-NC-4.0
3
+
4
+ from abc import ABC, abstractmethod
5
+ from typing import List, Dict
6
+ import random
7
+
8
+ from models import DocumentAsset, SplicedDocument
9
+
10
+
11
+ class BaseStrategy(ABC):
12
+ """Abstract base class for shuffle strategies."""
13
+
14
+ def __init__(
15
+ self,
16
+ min_pages: int = 17,
17
+ max_pages: int = 20,
18
+ random_seed: int = 42
19
+ ):
20
+ self.min_pages = min_pages
21
+ self.max_pages = max_pages
22
+ self.random_seed = random_seed
23
+ self.rng = random.Random(random_seed) # nosec B311 - non-cryptographic use for benchmark shuffling
24
+
25
+ @abstractmethod
26
+ def generate(
27
+ self,
28
+ documents_by_type: Dict[str, List[DocumentAsset]],
29
+ doc_names_for_split: Dict[str, List[str]],
30
+ num_spliced_docs: int
31
+ ) -> List[SplicedDocument]:
32
+ """Generate spliced documents using this strategy.
33
+
34
+ Args:
35
+ documents_by_type: All available documents grouped by type
36
+ doc_names_for_split: Document names to use for this split
37
+ num_spliced_docs: Number of spliced documents to generate
38
+
39
+ Returns:
40
+ List of SplicedDocument objects
41
+ """
42
+ pass
43
+
44
+ def _get_available_docs(
45
+ self,
46
+ documents_by_type: Dict[str, List[DocumentAsset]],
47
+ doc_names_for_split: Dict[str, List[str]]
48
+ ) -> Dict[str, List[DocumentAsset]]:
49
+ """Filter documents to only those in the split."""
50
+ available = {}
51
+
52
+ for doc_type, doc_names in doc_names_for_split.items():
53
+ if doc_type not in documents_by_type:
54
+ continue
55
+
56
+ doc_name_set = set(doc_names)
57
+ available[doc_type] = [
58
+ doc for doc in documents_by_type[doc_type]
59
+ if doc.doc_name in doc_name_set
60
+ ]
61
+
62
+ return available
63
+
64
+ def _get_random_doc(
65
+ self,
66
+ available_docs: Dict[str, List[DocumentAsset]],
67
+ doc_type: str = None
68
+ ) -> DocumentAsset:
69
+ """Get a random document, optionally from a specific type."""
70
+ if doc_type:
71
+ if doc_type not in available_docs or not available_docs[doc_type]:
72
+ raise ValueError(f"No documents available for type: {doc_type}")
73
+ return self.rng.choice(available_docs[doc_type])
74
+ else:
75
+ all_docs = [doc for docs in available_docs.values() for doc in docs]
76
+ if not all_docs:
77
+ raise ValueError("No documents available")
78
+ return self.rng.choice(all_docs)
79
+
80
+ def _get_random_pages(
81
+ self,
82
+ doc: DocumentAsset,
83
+ num_pages: int = None
84
+ ) -> List[int]:
85
+ """Get random page numbers from a document."""
86
+ if num_pages is None:
87
+ num_pages = self.rng.randint(self.min_pages, self.max_pages)
88
+
89
+ num_pages = min(num_pages, doc.page_count)
90
+ return self.rng.sample(range(1, doc.page_count + 1), num_pages)
src/benchmarks/services/shuffle_strategies/mono_rand.py ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
2
+ # SPDX-License-Identifier: CC-BY-NC-4.0
3
+
4
+ from typing import List, Dict
5
+ import uuid
6
+ from loguru import logger
7
+
8
+ from models import DocumentAsset, SplicedDocument, SourceDocument, GroundTruthPage
9
+ from services.shuffle_strategies.base_strategy import BaseStrategy
10
+
11
+
12
+ class MonoRand(BaseStrategy):
13
+ """DocSplit-Mono-Rand: Single category document pages randomization.
14
+
15
+ Similar to Mono-Seq but shuffles pages from concatenated documents.
16
+ Tests models' robustness to page-level disruptions common in manual
17
+ document assembly, requiring boundary detection and page sequence reconstruction.
18
+ """
19
+
20
+ def generate(
21
+ self,
22
+ documents_by_type: Dict[str, List[DocumentAsset]],
23
+ doc_names_for_split: Dict[str, List[str]],
24
+ num_spliced_docs: int
25
+ ) -> List[SplicedDocument]:
26
+
27
+ available_docs = self._get_available_docs(documents_by_type, doc_names_for_split)
28
+
29
+ # Filter out language category for large datasets (min_pages >= 20)
30
+ if self.min_pages >= 20 and "language" in available_docs:
31
+ del available_docs["language"]
32
+ spliced_documents = []
33
+
34
+ for i in range(num_spliced_docs):
35
+ # Pick a random document type
36
+ doc_type = self.rng.choice(list(available_docs.keys()))
37
+
38
+ # Set target page count
39
+ target_pages = self.rng.randint(self.min_pages, self.max_pages)
40
+
41
+ # Keep adding entire documents until reaching target
42
+ source_documents = []
43
+ ground_truth = []
44
+ current_page = 1
45
+ used_docs = set()
46
+
47
+ while current_page - 1 < target_pages:
48
+ available = [d for d in available_docs[doc_type]
49
+ if d.doc_name not in used_docs and d.page_count <= self.max_pages]
50
+
51
+ if not available:
52
+ break
53
+
54
+ doc = self.rng.choice(available)
55
+ used_docs.add(doc.doc_name)
56
+
57
+ if current_page - 1 + doc.page_count > self.max_pages:
58
+ continue
59
+
60
+ # Add all pages but shuffle their order
61
+ pages = list(range(1, doc.page_count + 1))
62
+ self.rng.shuffle(pages)
63
+
64
+ source_documents.append(SourceDocument(
65
+ doc_type=doc.doc_type,
66
+ doc_name=doc.doc_name,
67
+ pages=pages
68
+ ))
69
+
70
+ for source_page in pages:
71
+ ground_truth.append(GroundTruthPage(
72
+ page_num=current_page,
73
+ doc_type=doc.doc_type,
74
+ source_doc=doc.doc_name,
75
+ source_page=source_page
76
+ ))
77
+ current_page += 1
78
+
79
+ if current_page - 1 >= self.min_pages:
80
+ spliced_doc = SplicedDocument(
81
+ spliced_doc_id=str(uuid.uuid4()),
82
+ source_documents=source_documents,
83
+ ground_truth=ground_truth,
84
+ total_pages=current_page - 1
85
+ )
86
+ spliced_documents.append(spliced_doc)
87
+
88
+ logger.info(f"Generated {len(spliced_documents)} DocSplit-Mono-Rand documents")
89
+ return spliced_documents
src/benchmarks/services/shuffle_strategies/mono_seq.py ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
2
+ # SPDX-License-Identifier: CC-BY-NC-4.0
3
+
4
+ from typing import List, Dict
5
+ import uuid
6
+ from loguru import logger
7
+
8
+ from models import DocumentAsset, SplicedDocument, SourceDocument, GroundTruthPage
9
+ from services.shuffle_strategies.base_strategy import BaseStrategy
10
+
11
+
12
+ class MonoSeq(BaseStrategy):
13
+ """DocSplit-Mono-Seq: Single category document concatenation sequentially.
14
+
15
+ Creates document packets by concatenating entire documents from the same category
16
+ while preserving original page order. Tests boundary detection without
17
+ category transitions as discriminative signals.
18
+ """
19
+
20
+ def generate(
21
+ self,
22
+ documents_by_type: Dict[str, List[DocumentAsset]],
23
+ doc_names_for_split: Dict[str, List[str]],
24
+ num_spliced_docs: int
25
+ ) -> List[SplicedDocument]:
26
+
27
+ available_docs = self._get_available_docs(documents_by_type, doc_names_for_split)
28
+
29
+ # Filter out language category for large datasets (min_pages >= 20)
30
+ if self.min_pages >= 20 and "language" in available_docs:
31
+ del available_docs["language"]
32
+ spliced_documents = []
33
+
34
+ for i in range(num_spliced_docs):
35
+ # Pick a random document type
36
+ doc_type = self.rng.choice(list(available_docs.keys()))
37
+
38
+ # Set target page count
39
+ target_pages = self.rng.randint(self.min_pages, self.max_pages)
40
+
41
+ # Keep adding entire documents until reaching target
42
+ source_documents = []
43
+ ground_truth = []
44
+ current_page = 1
45
+ used_docs = set()
46
+
47
+ while current_page - 1 < target_pages:
48
+ # Get available docs of this type that haven't been used
49
+ available = [d for d in available_docs[doc_type]
50
+ if d.doc_name not in used_docs and d.page_count <= self.max_pages]
51
+
52
+ if not available:
53
+ break
54
+
55
+ # Pick a random document
56
+ doc = self.rng.choice(available)
57
+ used_docs.add(doc.doc_name)
58
+
59
+ # Check if adding this doc would exceed max_pages
60
+ if current_page - 1 + doc.page_count > self.max_pages:
61
+ continue
62
+
63
+ # Add all pages from this document in original order
64
+ pages = list(range(1, doc.page_count + 1))
65
+
66
+ source_documents.append(SourceDocument(
67
+ doc_type=doc.doc_type,
68
+ doc_name=doc.doc_name,
69
+ pages=pages
70
+ ))
71
+
72
+ # Add ground truth for each page
73
+ for source_page in pages:
74
+ ground_truth.append(GroundTruthPage(
75
+ page_num=current_page,
76
+ doc_type=doc.doc_type,
77
+ source_doc=doc.doc_name,
78
+ source_page=source_page
79
+ ))
80
+ current_page += 1
81
+
82
+ # Only add if we have at least min_pages
83
+ if current_page - 1 >= self.min_pages:
84
+ spliced_doc = SplicedDocument(
85
+ spliced_doc_id=str(uuid.uuid4()),
86
+ source_documents=source_documents,
87
+ ground_truth=ground_truth,
88
+ total_pages=current_page - 1
89
+ )
90
+ spliced_documents.append(spliced_doc)
91
+
92
+ logger.info(f"Generated {len(spliced_documents)} DocSplit-Mono-Seq documents")
93
+ return spliced_documents
src/benchmarks/services/shuffle_strategies/poly_int.py ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
2
+ # SPDX-License-Identifier: CC-BY-NC-4.0
3
+
4
+ from typing import List, Dict
5
+ import uuid
6
+ from loguru import logger
7
+
8
+ from models import DocumentAsset, SplicedDocument, SourceDocument, GroundTruthPage
9
+ from services.shuffle_strategies.base_strategy import BaseStrategy
10
+
11
+
12
+ class PolyInt(BaseStrategy):
13
+ """DocSplit-Poly-Int: Multi category document pages interleaving.
14
+
15
+ Similar to Poly-Seq but interleaves pages in a round-robin fashion.
16
+ Simulates batch processing scenarios such as mortgage processing where
17
+ property deeds, tax records, and legal notices are interspersed.
18
+ """
19
+
20
+ def generate(
21
+ self,
22
+ documents_by_type: Dict[str, List[DocumentAsset]],
23
+ doc_names_for_split: Dict[str, List[str]],
24
+ num_spliced_docs: int
25
+ ) -> List[SplicedDocument]:
26
+
27
+ available_docs = self._get_available_docs(documents_by_type, doc_names_for_split)
28
+ doc_types = list(available_docs.keys())
29
+
30
+ if len(doc_types) < 2:
31
+ raise ValueError("Need at least 2 document types for multi-category strategy")
32
+
33
+ spliced_documents = []
34
+
35
+ for i in range(num_spliced_docs):
36
+ # Set target page count
37
+ target_pages = self.rng.randint(self.min_pages, self.max_pages)
38
+
39
+ # Collect entire documents from different types
40
+ selected_docs = []
41
+ used_types = set()
42
+ total_pages = 0
43
+
44
+ while total_pages < target_pages:
45
+ available_types = [t for t in doc_types if t not in used_types]
46
+ if not available_types:
47
+ break
48
+
49
+ doc_type = self.rng.choice(available_types)
50
+ used_types.add(doc_type)
51
+
52
+ available = [d for d in available_docs[doc_type] if d.page_count <= self.max_pages]
53
+ if not available:
54
+ continue
55
+
56
+ doc = self.rng.choice(available)
57
+
58
+ if total_pages + doc.page_count > self.max_pages:
59
+ continue
60
+
61
+ selected_docs.append(doc)
62
+ total_pages += doc.page_count
63
+
64
+ # Collect all pages from selected documents
65
+ all_pages = []
66
+ for doc in selected_docs:
67
+ for page_num in range(1, doc.page_count + 1):
68
+ all_pages.append({
69
+ 'doc_type': doc.doc_type,
70
+ 'doc_name': doc.doc_name,
71
+ 'source_page': page_num
72
+ })
73
+
74
+ # Interleave pages (shuffle them)
75
+ self.rng.shuffle(all_pages)
76
+
77
+ # Build source documents and ground truth
78
+ source_docs_dict = {}
79
+ ground_truth = []
80
+
81
+ for idx, page_info in enumerate(all_pages, start=1):
82
+ doc_key = (page_info['doc_type'], page_info['doc_name'])
83
+
84
+ if doc_key not in source_docs_dict:
85
+ source_docs_dict[doc_key] = []
86
+
87
+ source_docs_dict[doc_key].append(page_info['source_page'])
88
+
89
+ ground_truth.append(GroundTruthPage(
90
+ page_num=idx,
91
+ doc_type=page_info['doc_type'],
92
+ source_doc=page_info['doc_name'],
93
+ source_page=page_info['source_page']
94
+ ))
95
+
96
+ source_documents = [
97
+ SourceDocument(doc_type=doc_type, doc_name=doc_name, pages=pages)
98
+ for (doc_type, doc_name), pages in source_docs_dict.items()
99
+ ]
100
+
101
+ if len(all_pages) >= self.min_pages:
102
+ spliced_doc = SplicedDocument(
103
+ spliced_doc_id=str(uuid.uuid4()),
104
+ source_documents=source_documents,
105
+ ground_truth=ground_truth,
106
+ total_pages=len(all_pages)
107
+ )
108
+ spliced_documents.append(spliced_doc)
109
+
110
+ logger.info(f"Generated {len(spliced_documents)} DocSplit-Poly-Int documents")
111
+ return spliced_documents
src/benchmarks/services/shuffle_strategies/poly_rand.py ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
2
+ # SPDX-License-Identifier: CC-BY-NC-4.0
3
+
4
+ from typing import List, Dict
5
+ import uuid
6
+ from loguru import logger
7
+
8
+ from models import DocumentAsset, SplicedDocument, SourceDocument, GroundTruthPage
9
+ from services.shuffle_strategies.base_strategy import BaseStrategy
10
+
11
+
12
+ class PolyRand(BaseStrategy):
13
+ """DocSplit-Poly-Rand: Multi category document pages randomization.
14
+
15
+ Similar to Poly-Seq but applies complete randomization across all pages,
16
+ representing maximum entropy scenarios. Stress-tests model robustness under
17
+ worst-case conditions where no structural assumptions hold.
18
+ """
19
+
20
+ def generate(
21
+ self,
22
+ documents_by_type: Dict[str, List[DocumentAsset]],
23
+ doc_names_for_split: Dict[str, List[str]],
24
+ num_spliced_docs: int
25
+ ) -> List[SplicedDocument]:
26
+
27
+ available_docs = self._get_available_docs(documents_by_type, doc_names_for_split)
28
+ doc_types = list(available_docs.keys())
29
+
30
+ if len(doc_types) < 2:
31
+ raise ValueError("Need at least 2 document types for multi-category strategy")
32
+
33
+ spliced_documents = []
34
+
35
+ for i in range(num_spliced_docs):
36
+ # Set target page count
37
+ target_pages = self.rng.randint(self.min_pages, self.max_pages)
38
+
39
+ # Collect entire documents from different types
40
+ selected_docs = []
41
+ used_types = set()
42
+ total_pages = 0
43
+
44
+ while total_pages < target_pages:
45
+ available_types = [t for t in doc_types if t not in used_types]
46
+ if not available_types:
47
+ break
48
+
49
+ doc_type = self.rng.choice(available_types)
50
+ used_types.add(doc_type)
51
+
52
+ available = [d for d in available_docs[doc_type] if d.page_count <= self.max_pages]
53
+ if not available:
54
+ continue
55
+
56
+ doc = self.rng.choice(available)
57
+
58
+ if total_pages + doc.page_count > self.max_pages:
59
+ continue
60
+
61
+ selected_docs.append(doc)
62
+ total_pages += doc.page_count
63
+
64
+ # Collect all pages from selected documents
65
+ all_pages = []
66
+ for doc in selected_docs:
67
+ for page_num in range(1, doc.page_count + 1):
68
+ all_pages.append({
69
+ 'doc_type': doc.doc_type,
70
+ 'doc_name': doc.doc_name,
71
+ 'source_page': page_num
72
+ })
73
+
74
+ # Fully shuffle all pages
75
+ self.rng.shuffle(all_pages)
76
+
77
+ # Build source documents and ground truth
78
+ source_docs_dict = {}
79
+ ground_truth = []
80
+
81
+ for idx, page_info in enumerate(all_pages, start=1):
82
+ doc_key = (page_info['doc_type'], page_info['doc_name'])
83
+
84
+ if doc_key not in source_docs_dict:
85
+ source_docs_dict[doc_key] = []
86
+
87
+ source_docs_dict[doc_key].append(page_info['source_page'])
88
+
89
+ ground_truth.append(GroundTruthPage(
90
+ page_num=idx,
91
+ doc_type=page_info['doc_type'],
92
+ source_doc=page_info['doc_name'],
93
+ source_page=page_info['source_page']
94
+ ))
95
+
96
+ source_documents = [
97
+ SourceDocument(doc_type=doc_type, doc_name=doc_name, pages=pages)
98
+ for (doc_type, doc_name), pages in source_docs_dict.items()
99
+ ]
100
+
101
+ if len(all_pages) >= self.min_pages:
102
+ spliced_doc = SplicedDocument(
103
+ spliced_doc_id=str(uuid.uuid4()),
104
+ source_documents=source_documents,
105
+ ground_truth=ground_truth,
106
+ total_pages=len(all_pages)
107
+ )
108
+ spliced_documents.append(spliced_doc)
109
+
110
+ logger.info(f"Generated {len(spliced_documents)} DocSplit-Poly-Rand documents")
111
+ return spliced_documents
src/benchmarks/services/shuffle_strategies/poly_seq.py ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
2
+ # SPDX-License-Identifier: CC-BY-NC-4.0
3
+
4
+ from typing import List, Dict
5
+ import uuid
6
+ from loguru import logger
7
+
8
+ from models import DocumentAsset, SplicedDocument, SourceDocument, GroundTruthPage
9
+ from services.shuffle_strategies.base_strategy import BaseStrategy
10
+
11
+
12
+ class PolySeq(BaseStrategy):
13
+ """DocSplit-Poly-Seq: Multi category documents concatenation sequentially.
14
+
15
+ Creates document packets by concatenating documents from different categories
16
+ without repetition while preserving page ordering. Simulates heterogeneous
17
+ document assembly scenarios such as medical claims processing.
18
+ """
19
+
20
+ def generate(
21
+ self,
22
+ documents_by_type: Dict[str, List[DocumentAsset]],
23
+ doc_names_for_split: Dict[str, List[str]],
24
+ num_spliced_docs: int
25
+ ) -> List[SplicedDocument]:
26
+
27
+ available_docs = self._get_available_docs(documents_by_type, doc_names_for_split)
28
+ doc_types = list(available_docs.keys())
29
+
30
+ if len(doc_types) < 2:
31
+ raise ValueError("Need at least 2 document types for multi-category strategy")
32
+
33
+ spliced_documents = []
34
+
35
+ for i in range(num_spliced_docs):
36
+ # Set target page count
37
+ target_pages = self.rng.randint(self.min_pages, self.max_pages)
38
+
39
+ # Keep adding entire documents from different types until reaching target
40
+ source_documents = []
41
+ ground_truth = []
42
+ current_page = 1
43
+ used_types = set()
44
+
45
+ while current_page - 1 < target_pages:
46
+ # Get available types not yet used
47
+ available_types = [t for t in doc_types if t not in used_types]
48
+
49
+ if not available_types:
50
+ break
51
+
52
+ # Pick a random type
53
+ doc_type = self.rng.choice(available_types)
54
+ used_types.add(doc_type)
55
+
56
+ # Pick a random document from this type
57
+ available = [d for d in available_docs[doc_type] if d.page_count <= self.max_pages]
58
+ if not available:
59
+ continue
60
+
61
+ doc = self.rng.choice(available)
62
+
63
+ if current_page - 1 + doc.page_count > self.max_pages:
64
+ continue
65
+
66
+ # Add all pages in original order
67
+ pages = list(range(1, doc.page_count + 1))
68
+
69
+ source_documents.append(SourceDocument(
70
+ doc_type=doc.doc_type,
71
+ doc_name=doc.doc_name,
72
+ pages=pages
73
+ ))
74
+
75
+ for source_page in pages:
76
+ ground_truth.append(GroundTruthPage(
77
+ page_num=current_page,
78
+ doc_type=doc.doc_type,
79
+ source_doc=doc.doc_name,
80
+ source_page=source_page
81
+ ))
82
+ current_page += 1
83
+
84
+ if current_page - 1 >= self.min_pages:
85
+ spliced_doc = SplicedDocument(
86
+ spliced_doc_id=str(uuid.uuid4()),
87
+ source_documents=source_documents,
88
+ ground_truth=ground_truth,
89
+ total_pages=current_page - 1
90
+ )
91
+ spliced_documents.append(spliced_doc)
92
+
93
+ logger.info(f"Generated {len(spliced_documents)} DocSplit-Poly-Seq documents")
94
+ return spliced_documents
src/benchmarks/services/split_manager.py ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
2
+ # SPDX-License-Identifier: CC-BY-NC-4.0
3
+
4
+ import json
5
+ import random
6
+ from pathlib import Path
7
+ from typing import Dict, List
8
+ from datetime import datetime
9
+ from loguru import logger
10
+
11
+ from models import DocumentAsset
12
+
13
+
14
+ class SplitManager:
15
+ """Manages train/test/validation splits for documents."""
16
+
17
+ def __init__(
18
+ self,
19
+ train_ratio: float = 0.6,
20
+ test_ratio: float = 0.25,
21
+ validation_ratio: float = 0.15,
22
+ random_seed: int = 42
23
+ ):
24
+ self.train_ratio = train_ratio
25
+ self.test_ratio = test_ratio
26
+ self.validation_ratio = validation_ratio
27
+ self.random_seed = random_seed
28
+
29
+ if abs(train_ratio + test_ratio + validation_ratio - 1.0) > 0.001:
30
+ raise ValueError("Split ratios must sum to 1.0")
31
+
32
+ def create_split(
33
+ self,
34
+ documents_by_type: Dict[str, List[DocumentAsset]]
35
+ ) -> Dict[str, Dict[str, List[str]]]:
36
+ """Create stratified train/test/validation split.
37
+
38
+ Returns:
39
+ Dict with structure: {split_name: {doc_type: [doc_names]}}
40
+ """
41
+ random.seed(self.random_seed)
42
+
43
+ splits = {
44
+ 'train': {},
45
+ 'test': {},
46
+ 'validation': {}
47
+ }
48
+
49
+ for doc_type, documents in documents_by_type.items():
50
+ doc_names = [doc.doc_name for doc in documents]
51
+ random.shuffle(doc_names)
52
+
53
+ total = len(doc_names)
54
+ train_end = int(total * self.train_ratio)
55
+ test_end = train_end + int(total * self.test_ratio)
56
+
57
+ splits['train'][doc_type] = doc_names[:train_end]
58
+ splits['test'][doc_type] = doc_names[train_end:test_end]
59
+ splits['validation'][doc_type] = doc_names[test_end:]
60
+
61
+ logger.info(f"Created split: train={self._count_docs(splits['train'])}, "
62
+ f"test={self._count_docs(splits['test'])}, "
63
+ f"val={self._count_docs(splits['validation'])}")
64
+
65
+ return splits
66
+
67
+ def save_split(self, splits: Dict, output_path: str):
68
+ """Save split mapping to JSON."""
69
+ Path(output_path).parent.mkdir(parents=True, exist_ok=True)
70
+
71
+ split_data = {
72
+ 'created_at': datetime.now().isoformat(),
73
+ 'split_config': {
74
+ 'train_ratio': self.train_ratio,
75
+ 'test_ratio': self.test_ratio,
76
+ 'validation_ratio': self.validation_ratio,
77
+ 'random_seed': self.random_seed,
78
+ 'stratified': True
79
+ },
80
+ 'splits': splits,
81
+ 'statistics': {
82
+ 'train': self._get_statistics(splits['train']),
83
+ 'test': self._get_statistics(splits['test']),
84
+ 'validation': self._get_statistics(splits['validation'])
85
+ }
86
+ }
87
+
88
+ with open(output_path, 'w') as f:
89
+ json.dump(split_data, f, indent=2)
90
+
91
+ logger.info(f"Saved split mapping to {output_path}")
92
+
93
+ def load_split(self, split_path: str) -> Dict[str, Dict[str, List[str]]]:
94
+ """Load split mapping from JSON."""
95
+ with open(split_path, 'r') as f:
96
+ split_data = json.load(f)
97
+
98
+ logger.info(f"Loaded split mapping from {split_path}")
99
+ return split_data['splits']
100
+
101
+ def _count_docs(self, split: Dict[str, List[str]]) -> int:
102
+ """Count total documents in a split."""
103
+ return sum(len(docs) for docs in split.values())
104
+
105
+ def _get_statistics(self, split: Dict[str, List[str]]) -> Dict[str, int]:
106
+ """Get statistics for a split."""
107
+ stats = {'total': self._count_docs(split)}
108
+ for doc_type, docs in split.items():
109
+ stats[doc_type] = len(docs)
110
+ return stats