amanteur commited on
Commit
e3ad494
Β·
1 Parent(s): 25432e2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +56 -0
README.md CHANGED
@@ -1,3 +1,59 @@
1
  ---
2
  license: cc-by-nc-4.0
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: cc-by-nc-4.0
3
+ task_categories:
4
+ - feature-extraction
5
+ tags:
6
+ - music
7
+ size_categories:
8
+ - 1K<n<10K
9
  ---
10
+
11
+ # CHAD-Hummings Subset
12
+
13
+ This repository contains the hummings subset of the dataset from ["A Semi-Supervised Deep Learning Approach to Dataset Collection for Query-by-Humming Task"]() (ISMIR 2023).
14
+
15
+ For the complete dataset and further details, please visit the main [GitHub repository](https://github.com/amanteur/CHAD#hummings).
16
+
17
+ ---
18
+ # Overview
19
+
20
+ The `chad_hummings_subset.tar.gz` archive provided in this repository contains a collection of 5,314 humming audio files.
21
+
22
+ These audio files are sorted into groups of 693 distinct humming fragments originating from 311 unique songs (groups).
23
+
24
+ Audio format - `.wav`.
25
+
26
+ ---
27
+
28
+ # Dataset Structure
29
+
30
+ Upon extracting the dataset from `chad_hummings_subset.tar.gz`, you will find the following structured hierarchy:
31
+
32
+ ```
33
+ β”œβ”€β”€ {GROUP_ID}
34
+ β”‚ β”œβ”€β”€ {FRAGMENT_ID}
35
+ β”‚ β”œβ”€β”€ {ID}.wav
36
+ β”‚ └── ...
37
+ β”‚ └── ...
38
+ └── ...
39
+ ```
40
+ where
41
+ - `GROUP_ID` - the unique identifier for each song,
42
+ - `FRAGMENT_ID` - the identifier for individual fragments within a song,
43
+ - `ID` - the version identifier for a specific fragment of the song.
44
+
45
+ This structured hierarchy organizes the audio files and fragments, making it easier to navigate and work with the dataset.
46
+
47
+ ---
48
+
49
+ # Citation
50
+
51
+ Please cite the following paper if you use the code or dataset provided in this repository.
52
+
53
+ ```bibtex
54
+ @inproceedings{Amatov2023,
55
+ title={A Semi-Supervised Deep Learning Approach to Dataset Collection for Query-by-Humming Task},
56
+ author={Amatov, Amantur and Lamanov, Dmitry and Titov, Maksim and Vovk, Ivan and Makarov, Ilya and Kudinov, Mikhail},
57
+ year={2023},
58
+ }
59
+ ```