Fin-Fact / xl_sum_gen.py
amanrangapur's picture
Upload 11 files
4ed10db
raw
history blame
3.1 kB
import re
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import json
class NLPFactGenerator:
def __init__(self, model_name="csebuetnlp/mT5_multilingual_XLSum"):
self.max_length = 1024
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
self.WHITESPACE_HANDLER = lambda k: re.sub('\s+', ' ', re.sub('\n+', ' ', k.strip()))
self.sentences_list = []
self.justification_list = []
self.titles_list = []
self.labels_list = []
self.claim_list = []
def load_data(self, filename):
with open(filename, "r") as infile:
self.data = json.load(infile)
def preprocess_data(self):
max_seq_length = 1024
for entry in self.data:
if "data" in entry:
self.titles_list.append(entry["title"])
justification = ' '.join(entry["paragraphs"])
for evidence in self.sentences_list:
if len(evidence) > max_seq_length:
evidence = evidence[:max_seq_length]
_evidence = ' '.join([item["sentence"] for item in entry["data"]])
self.justification_list.append(justification)
self.sentences_list.append(_evidence)
self.labels_list.append(entry["label"])
def generate_fact(self):
max_seq_length = 1024
generated_facts = []
count = 0
for evidence in self.justification_list:
if len(evidence) > max_seq_length:
evidence = evidence[:max_seq_length]
input_ids = self.tokenizer(
[self.WHITESPACE_HANDLER(evidence)],
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=1024)["input_ids"]
try:
output_ids = self.model.generate(
input_ids=input_ids,
max_length=128,
no_repeat_ngram_size=2,
num_beams=4)[0]
summary = self.tokenizer.decode(
output_ids,
skip_special_tokens=True,
clean_up_tokenization_spaces=False)
count+=1
print(count)
generated_facts.append(summary)
except:
print('Input ID: ', len(input_ids))
return generated_facts
if __name__ == "__main__":
fact_generator = NLPFactGenerator()
fact_generator.load_data("finfact_old.json")
fact_generator.preprocess_data()
generated_facts = fact_generator.generate_fact()
generated_data = []
for title, evi, fact in zip(fact_generator.titles_list, fact_generator.sentences_list, generated_facts):
generated_data.append({"title": title, "evidence":evi, "generated_fact": fact})
with open("generated_facts_xlsum.json", "w") as outfile:
json.dump(generated_data, outfile, indent=4)