wiqa / README.md
albertvillanova's picture
Convert dataset sizes from base 2 to base 10 in the dataset card (#2)
6a82038
metadata
language:
  - en
paperswithcode_id: wiqa
pretty_name: What-If Question Answering
dataset_info:
  features:
    - name: question_stem
      dtype: string
    - name: question_para_step
      sequence: string
    - name: answer_label
      dtype: string
    - name: answer_label_as_choice
      dtype: string
    - name: choices
      sequence:
        - name: text
          dtype: string
        - name: label
          dtype: string
    - name: metadata_question_id
      dtype: string
    - name: metadata_graph_id
      dtype: string
    - name: metadata_para_id
      dtype: string
    - name: metadata_question_type
      dtype: string
    - name: metadata_path_len
      dtype: int32
  splits:
    - name: train
      num_bytes: 17089298
      num_examples: 29808
    - name: test
      num_bytes: 1532223
      num_examples: 3003
    - name: validation
      num_bytes: 3779584
      num_examples: 6894
  download_size: 5247733
  dataset_size: 22401105

Dataset Card for "wiqa"

Table of Contents

Dataset Description

Dataset Summary

The WIQA dataset V1 has 39705 questions containing a perturbation and a possible effect in the context of a paragraph. The dataset is split into 29808 train questions, 6894 dev questions and 3003 test questions.

Supported Tasks and Leaderboards

More Information Needed

Languages

More Information Needed

Dataset Structure

Data Instances

default

  • Size of downloaded dataset files: 5.24 MB
  • Size of the generated dataset: 22.40 MB
  • Total amount of disk used: 27.65 MB

An example of 'validation' looks as follows.

{
    "answer_label": "more",
    "answer_label_as_choice": "A",
    "choices": {
        "label": ["A", "B", "C"],
        "text": ["more", "less", "no effect"]
    },
    "metadata_graph_id": "481",
    "metadata_para_id": "528",
    "metadata_path_len": 3,
    "metadata_question_id": "influence_graph:528:481:77#0",
    "metadata_question_type": "INPARA_EFFECT",
    "question_para_step": ["A male and female rabbit mate", "The female rabbit becomes pregnant", "Baby rabbits form inside of the mother rabbit", "The female rabbit gives birth to a litter", "The newborn rabbits grow up to become adults", "The adult rabbits find mates."],
    "question_stem": "suppose the female is sterile happens, how will it affect LESS rabbits."
}

Data Fields

The data fields are the same among all splits.

default

  • question_stem: a string feature.
  • question_para_step: a list of string features.
  • answer_label: a string feature.
  • answer_label_as_choice: a string feature.
  • choices: a dictionary feature containing:
    • text: a string feature.
    • label: a string feature.
  • metadata_question_id: a string feature.
  • metadata_graph_id: a string feature.
  • metadata_para_id: a string feature.
  • metadata_question_type: a string feature.
  • metadata_path_len: a int32 feature.

Data Splits

name train validation test
default 29808 6894 3003

Dataset Creation

Curation Rationale

More Information Needed

Source Data

Initial Data Collection and Normalization

More Information Needed

Who are the source language producers?

More Information Needed

Annotations

Annotation process

More Information Needed

Who are the annotators?

More Information Needed

Personal and Sensitive Information

More Information Needed

Considerations for Using the Data

Social Impact of Dataset

More Information Needed

Discussion of Biases

More Information Needed

Other Known Limitations

More Information Needed

Additional Information

Dataset Curators

More Information Needed

Licensing Information

More Information Needed

Citation Information

@article{wiqa,
      author    = {Niket Tandon and Bhavana Dalvi Mishra and Keisuke Sakaguchi and Antoine Bosselut and Peter Clark}
      title     = {WIQA: A dataset for "What if..." reasoning over procedural text},
      journal   = {arXiv:1909.04739v1},
      year      = {2019},
}

Contributions

Thanks to @patrickvonplaten, @lewtun, @thomwolf, @mariamabarham, @lhoestq for adding this dataset.